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It is over a decade since picosecond laser pulses were first produced by passive
modelocking of a giuni-pulse ruby laser by Macker and Colfins [2.1] in 1965
and then Nd:glass tasers by de Maria et al, {2.2] in 1966. Since then the tech-
niques for the generation of these pulses have been developed to the extent
that it is possible to reliubly produce pulses of bandwidth-limited durations of
~1 ps from both pulsed and cw lasers. In addition. theoretical models have
been refined to the stage that there is excellent agreement with even the details
of the experimental results, and there is now a very good undersianding of the
mechanisms by which ultrashort pulses evolve from the initial Auocrescence
intensity fluctumstion patterns. These substuntial advances in technolegy and
physical understanding have been largely duc to the simultancous developmernit
ot the methods of picosecond chronoscopy. particwlarly the direet linear
measurcment of pulse durations by electron-optival streak cameras. This
pattern. of course. follows the historical pattern whereby developments in
science and technology are almost always retaled to advances in measurement
techniques. As « result the methods of picosecond laser pulse generation and
mmeasurement are now sufficiently refined and catalogued for them to be used
with confidence for the investigation on a picosecond timescale of the intet-
action of coherent light with matter.

The purpose of this chapter is to summarize the present state of the art in
picosecond pulse generation, dealing only with systems which are capuble of
producing pulses of durations ~ t0 ps or less. As a consequence. the methods
of active modelocking of pulsed and continuous lasers are not considered. since
such systerns have to date not produced such short pulses. (Actively modelocked
lasers have been extensively reviewed. {2.3. 4]). Also excluded are gas lasers.
although pulses of durations ~ 100 ps have been obtained by actively mode-
locking the argon-ion laser [2.5] and the iodinc photodissociation taser [2.€]
and. from a passively modelocked high-pressurc O, laser [271 and it is
likely that the newly developed broadband excimer and exciplex lasers based
upon high-pressure gases (see Proceedings of Conference on High Power Gas
Lasers 1975 [2.8]), wili provide sources of picosccond pulses tunable throngl:-
oul the uv,

The mathematical deseription of optical pulses is immediatcly foliowed by
an account of the experimental methods of measuring temporal intensity
profiles. Emphasis is piaced upon the recealy perfected electron-optical
picosecond streak-camera techmiques siace these provide direet linest measuie
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20 DS, Bradiey

The complex functicns F(:) and ¢(ww) can be employed to defing an optical
pulse in the time and frequency domains, respectively, By writing

r{em)=alw) exp [ - ig{w)] (2.5}

we define a(w) the spectrai amplitude and ¢(e) the speetral phase {2.13].
When the pulse bandwidth d¢ is narrow compared with the mean optical
frequency @, we can write

Viy=A{) exp i[@ (1) —myt . (2.6)

In this quasi-monochromatic case, the temporal amplitude A{s) and the
temporal phase ®{r} of the optical-frequency wave are both slowly varying
functions of time. The instantaneous intensity is then

HOy=V()* )= A%1). (2.7

By analogy. the spectral intensity function {recorded by a spectroscope or
spectral analyser) can be defined as

ilw)=rc(whMw)=a*(m) (2.8)

Since, by Parseval’s theorem,
T UTERp T ot rﬁc Hh@ A - 5
- " »

the total energy of a pulse is proportional to the area under either of the,
temporal or spectral, intensity profiles.

This notation cleatly shows the symmetry between the temporal and
frequency descriptions of an optical pulse. In each case, the structure of the
pulse is completely defined by a phase and an intensity, and there isa one-to-one
correspondence between the two intensity profiles, /{¢) and (). The general
m.m._m:n.zmwmw between the two functions arising from the Uncertainty Principle,
is

g

la .
Al e, oo

(Aed)InzK (2.10)

where K is a constant of the order of unity, whose value depends upon the
shapes of the intensity profiles. The shortest pulse obtainable with a given
spectral bundwidth is described as being “‘transform-limited” or *"bandwidth-
limited™, In this case the duration is

At=2n K{Am)™*. (211

Metheds of Guenerating Picosecond Light Pulses 21

The value of (Jeadr 2n), catled the “time-bandwidth product™ P. is 4 most
important parameter in the study of ultrashort faser pulses, and is used as a
measure of the extent to which the ileal modelocked situation has been
achieved with a particular system. A “bandwidth-limited” pulse can also be
defined physically as a pulse completely devoid of amplitude or frequency
madulation.

A better understanding of the degree of organisation produced by mode-
locking may be obtained by considering the pictorial representation of the time
and frequency descriptions given in Fig. 2.2 for the two cases of a non-mode-
locked laser and a perfectly modelocked laser, respectively. In genzrating
these diagrams it wus assumed [2.13] that the laser was operating with 101
discrete longitudinal modes. of equal frequency separation der. In the time
domain, the field pattern then repeats itself with a periodicity of 2m(de) ™",
corresponding to the double transit-time of the luser resonator, [2.14], even
when the longitudinal modes are largely uncorrelated. In this quasi-periodical
intensity Ructuation pattern. the duration of the shortest fluctuation is of the
order of the inverse bandwidth. Below the lasing threshold, the amplitudes
and phases of the cavity modes fluctuate randomly as a result of the indepen-
dence of the different spontaneousiy emitting sources. While these fluctuations
become progressively less marked as the threshold is passed and stimulated
emission begins to dominate, each mode still remains largely uncorrelated
with iis neighbours and the temporal pattern is still very similar to that of
thermal neise. In obtaining the computer simulation of Fig. 2.2a the 101
spectral phases were chosen randomly in the range —r to +n and the spectral
intensities were generated with a Rayleigh distribution about a gaussian mean.

To achieve modelocked operation of the laser it is necessary to introduce
some device that will correlate the spectral amplitudes and phases. Then the
perfectly modelocked situation, also shown in Fig. 2.2, is obtained. For simpli-
city the spectral intensity was chosen 1o have a gaussian distribution

flwy=exp [ —(w—eg)? x), (2.12)
and the corresponding temporal intensity profile is then also gaussian
F(t)=zexp{— =t —1,}*). {2.13)

For this combination of intensity profiles K=(21In2)/n=0.441 in {2.10) and
(2.11). With care this ideal situation, resulting in a train of isolased. transform-
limited pulses. can be achieved in practice with pulses as short as 0.3 ps (sce
Modclocked ew Dye Lasers).

While techniques and procedures for achieving good modelocking have
evolved empirically over the years, it was only with the development of the
picosecond electron-optical streak camera [2.13], with the capability of
recording 7(+) directly with adequate tima resolution, that a detailed under-
standing of the processes involved was obtained. The absence of this direct
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BEAM
SPLITTEA m
INPUT
BEAM
CNERLAP TWO -PHDTON
REGION FLUQRESGEMCE

ove Fig. 2.3. The triangular configurat-

ion for the two-photon fluorescence
{TPF} method of picosecond pulse
duration measurement. The align-
ment of the optical triangle is
critical il good results are to be
obtained

Fig. 2.3. Each pulse of a train, or a single switched-out pulse. is split into two
pulses of equal intensity which, in the usual triangular arrangememnt, overlap
in a dye cell. The dye is chosen so that it can be excited to Ruorescence by
light of the laser wavelength only by two-photon absorption. The intensity of’
the fluorescence subsequently emitted is then proportional to the square of the
intensity of the exciting radiation. At the centre of the dye cell the intensities
of the two pulses add to enhance the fluorescence. The fluorescence intensity
photographed at a distance Z from the midpoint of the dye cell is given by
[2.18] -
1ty = ANJS210 P dr+ 2§ 21Ot +1)dlr) (2.14)
¢
where 4 is a constant of proportionality and t=2Z/c. In deriving this relation,
time averaging by the photographic process and spatial averaging over several
optical wavelengths are assumed. This pulse duration measurement technique
has the advantage of directly relating the spatiai distribution of the Suorescence
1o the second-order correlation function G*(r). Eq. (2.14) can be rewritten as

Ity=4 mQNAOV.TNQNT..: (2.15)
~
with Qm:wH_.MIWHT:Q+$3. {2.16)
I
&

The complete pulse autocorrelation profile is therefore displayed simultane-
ously as a function of distance. Since G2(r) becomes zero away from the region
of overlap, it is easy to see that the peak to background contrast ratio R of the
two-photon fluorescence (TPF) pattern, which is given by

R=10}(x) @1m
has the value 3. When the laser radiation is not a series of single. isolated

pulses, but is simply a burst of narrow-bandwidth radiationt noise. 1kere will
still be a peak at t=0 in the TPF pattern. due to the overlap of individual

AMerhods of Generating Picosecond Light Bulses 25

" fluctuations with themselves. It has been shown [2.19, 20] that for noise fluc-

tuations the contrast ratio has the value t.5. For a short burst of noise {nor a
single transform limited pulse) while the peak to background contrast ratio
is 3:1. the TPF pattern has a broad base representing the total duration of the
burst, with a fine “'noise spike™ superimposed. Fig. 2.4 was obtained {rom the
first photographs [2.21] of TPF profiles showing this feature. In these ex-
periments the width of the fine spike varied from 0.2 ps to 1 ps but was ahways
correlated with the simultancously recorded needymium:glass laser spectral
widths of 150 A to 30 A. TPF records of single pulses of durations 2 ps. with
the theoretical contrast ratio of 3:1, were also recorded (see also Chapt. 3).

.

Bl‘

_ 1

Fig. 2.4. Microdensitometer trace of the
TPF paitern obiained from a mode-
lecked Nd:glass laser (Bradier et ab
" 2.21]). The step on the right indicates
a conltrast ratio of 2.6. The width of the
fine spectral spike is ~0.2 ps

T
. -

Early reports of subpicosecond pulses from neodymium:glass lasers and
of ~ 3 ps pulses from ruby lasers were based upon TPF patterns, in which only
the noise spike was measured. Unfortunately, this led to overoptimistic ex-
pectations for the use of these fasers in experiments involving the measurement
of picosecond phenomena. The situation was further complicated by the
effect of Auorescence quenching under excitation by intense laser radiation
[2.22, 23]. which leads to a reversal of the TPF "noise spike™. Moreover, the
nonlinear TPF display technique does not uniquely define the shape of the
Jaser pulse. and the presence of a substantial proportion of the laser energy
outside the ultrashort pulses may not be detected. Finally, low intensity pulses
cannot be measured. These defects have been overcome by the development
of direct photoelectric picosecond chronoscopy with electron-optical streak
cameras.

Eleciron-Optical Picosecond Chronoscopy

The method of siudying rapidly varying luminous pkenomena by eleciron-
optical chronoscopy was first proposed in 1956 by Zaroiskii and Furichenko
[2.15]. who pointed out that the time resolution of an image tube streak camera
is witimately limited by the spread of the photoelectron transit times in the
first image tube. This spread arises from variations in the initial velocities of
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28 D.J. Bradlevs

are accelerated to a high velocity, the faster they “forget™ their small initial
differences in energy. The value of 4U for a particular photocathade depends
on the wavelength of the illuminating light. As an example, for an §1 photo-
cathode and 1060 nm light (the wavelength of the Nd:glass laser) the spread in
photoelectron energies has a half-width of ~0.3 eV, leading to a value of
2.3x 107 em s~ for AU. To obtain a time resolution of 1 ps in this case requires
a photocathode extraction field E=13 kV c¢cm™'. For light of wavelength
600 nm the energy spread is ~1 eV so that the time resolution limit at this
wavelength is increased to ~2 ps for the same photocathode extraction field.
Energy spreads of up to ~2 eV are produced by other photocathodes with uv
illumination (Fig. 2.6). The ultimate time resolution of a streak camera then
depends both on the type of photocathode and the wavelength of the light, as
well as on the extraction field strength. Thus to construct a camera with
picosecond time resolution throughout the spectrum from the vuv to the near
ir, extraction fields in the region of 20 kV cm ™" were needad. This performance
was first demonstrated with the second-generation Photochron I streak tube
{2.29, 30] which also has subpicosecond resolution in selected wavelengih
regions depending upon the photocathode type.

Streak-Camera Sysrems. The essential components of a streak-camera system
and the experimental arrangement used for testing its performance are shown
in Figs. 2.7 and 2.8, respectively. The availability of ?mnco:nv_wmmuv_n mode-
locked dye lasers [2.31} capable of reliably producing ﬁEmmw of durations
<2 ps permiited the direct measurement of the resolution of the new streak

Fig. 2.7. Photograph of Photocron streak camera showing the power supplies, the streak-tube
mountiny. the four-stage magnetically focused image intensifier and the recording camera

Methods of Generating Picoxecond Light Pulses 29
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Fig. 2.8. Experimental arrungement for meusuring picosecond pulse durations with the Photo-
chron streak camera (from Brodley E.um:..&?ﬁ»%«&

tubes [2.32]. An optical delay line arranged (Fig. 2.8) 10 produce, from a
single laser pulse, a series of identical pulse, with appropriale separations
greatly facititates calibration of the streak timescale. After an appropriate.
variable. clectronic delay, the photodiode pulse triggers the krytron circuit,
which generates the streak deflection voltage ramp. For a streak length of 5 cm
a deftection voltage of 1.5 kV is required. Writing speeds (at the streak-tube
phosphor) of >2x 10" cm ™! with a jitter of + 50 ps can be obtained (Fig. 2.9).

Fig. 2.10 shows a typical streak photograph. From microdensitometer
traces, such as that of Fig. 2.11. recorded pulsewidths, incorporating both

camera respense time and laser pulsewidth, as short as 1.5 ps were obtained. .

thus corfirming the subpicosecond resolution capability of the camera. To a
good approximation the recorded pulsewidth may be expressed as

Aty =1/ (A0) + (A1l +(dt ¥ 2.21)

where A1 is the time resolution limit arising from the finite spatial resolution
of the overall streak-camera eleciron-optical and optical systems at a parti-
cular streak writing speed. and 4y, is the laser pulse duration. Normally, the
slit-widih is set so that its effect on the spatiai resofution is negligible. Sub-
stituting (2.20b} in (2.21) vields

Arg=[(4e) + (A, + KPE 2] (2.22)

where k=mAUje. In the first experiments with 2 picosecond streak camera it
was confirmed that Ar, depended linearly on £72 [2.27] and that 4ty was a
tinear function of £7'. .

As an example the use of (2.21), in the first measurements to directly de-
monstrate subpicosecond time resotution [2.30] with the experimental arrange-
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32 D.J. Bradley

Fig. .13, Streak photograph and cerresponding microdensitometer trace {arbitrary linear density
scale} of Raman-Stokes pulses at 733.7 nm showing recorded half-width of 900 fs

dispersion spread between the photocathode and the mesh is 380 fs. and time
dispersion in the mesh to anode region of the tube adds 120 f5, to give a total
time-dispersion resolution limit of 500 fs. At a phosphor-screen writing speed
of 2x 10" cm's™? and with a dynamic spatial resolution of better than 10 line
pairs/mm a total camera instrumental resoluation of 700 fs is obtained. Using
(2.21) to deconvolve this value from the measured pulsewidth of 900 {5 gives
a Raman puise duration of 570 fs,

Other picosecond streak-camera systems have recently been developed in
the USSR. Basor et al. [2.36] and Funchenko and Fralor [2.37] employed the
newly developed “Picochron™ streak camera also to study the structure of the
pulses from a modelocked Nd:glass laser. By adding an extra eiectrostatic
lens, an electric field strength of up to 6 kV em ™! at the photocathede is pro-
duced in the “Picochron™ image tube, giving a limiting time resolution of
~2 ps. An x-band resonance-cavity deflection system continuously sweeps a
peint image along an elliptical path on the output phosphor. While the result-
ing total recording time of 15 to 20 ns simplifies sweep timing und synchroni-
sation problems. the use of a point image instead of a slit image seriously
reduces the information content per time-resolution element. The facility for
picosecond time-resolved speciroscopy or source spatial variation studies is
also obviously lost. Another design of slit-streak image tube based on the
fine-mesh accelerating electrode principle of the Photochron tubes was intro-
duced in 1972 [2.38] with an electric field strength near the photocathode up
to 60 kV cm ™! and an experimentally demonstrated time resolution of ~ 1 ps.

Methods of Generating Prosecond Light Pulses . 13

With a new deflection electrode arrungement, the deflection sensilivity wis
tmproved 10 become comparable with that of the Photochron tubes 30 as to
achieve subpicosecond resofution [2.39).

xur and x-ray Streak Comeras. The study of high-density. high-temperature
plasmas for laser fusion [2.40] and the development of coherent light sources
in the vuv and xuv [2.41--43] spectral regions require the extension of electron-
optical chronoscopy to these shorter wavelengths, with temporal resolution in
the picosecond range. This has been achieved by employing gold photocathodes
in tubes developed for operation at longer wavelengths. The first camera
systems had photocathodes operating with front-surface emission [2.45] and
in the transmission mode {2.46—48]. The measured time-resolution limits of
these devices were restricted to 60--150 ps by the durations of the laser plasma
x-ray pulses employed as test sources. Later experiments [2.35] with short-
pulse x-ray emissions produced by 10 ps pulses from a Nd:glass laser demon-
strated structures as short as 20 ps. The experimental arrangement is shown
in Fig. 2.14. A single pulse from a modelocked laser oscillator was intensity
divided by reflection from a double-mirror configuration to give multiple
pulses of variable but known separation. When amplified up to energies of
~ 100 mJ these pulses were focused successively on to a plane copper target
to generate a plasma of diameter 100 pm, emitting recombination continua
and line radiation up to photon energies of ~1 keV. x-rays in a broad band of
energy around 1 keV, selected by an Al foil filter, passed through a tapered
slit of width varying from 7 pm to 57 um to project « magnified shadowgraph
image of the stit into the gold photocathode of the sireak tube, at a glancing

Sampla pulse Vacuum Chambr Lasar \ f
Fram Q-switched i Pu'se - |1 GW
Oscillator Fogussing Sas
_ Lem
Copper
Qscitlo- Photodiode Targes ._s
wope C r\
Plagma
Algminym
Eiltar \\Huﬂl\ Pinhote

|

Fitm back )
o OMA mHU
: -

Gated fiber-optic
infout intensiier Mesh

Gofd Pharocathods

Fig. 213 schenatic diagram of x-say streak camer and laser plasma tacget chamber. 113 Focusing
lens, 12em 4 3 (2) plane Cu tucget (3) plasma x-ray source (4 At lilter (5) tapered slit {6) gold photo-
cathode (7) accelerating mesh (8) phosphor screen*(9) photediods (10) streak deflection plates
{from Bradiey et af. [2.35])
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36 D.J. Brudley

channel analysers gives an immediate linear digital record of 7(1) [2.53. 54].
The shortest subpicosecond pulses are obtained from cw modelocked dye
lasers (see Modelocked cw Dye Lasers) with peak powers of 1% to 10° W.
While streak cameras are capable of recording these pulses directly, for studies,
for example, of the fluorescence generated repeatedly by such pulses, syn-
chroscan operation of the streak camera [2.55] permits the accumulation of
time-resolved data. In this mode of operation the streak plate deflecting voltage
is driven synchronously at the repetition frequency ( ~ 100 MHz) of the mode-
locked pulse train, so that successive streaks are superimposed on the tube
phosphor. The use of digital recording and storage then promises a very con-
venient system for the study of repetitive phenomena at low light levels.
Instrumentation for electron-optical picosecond chronoscopy is still devel-
oping very rapidly [2.56]. However with direct linear recording. not only of
laser pulses but also of luminous phenomena, over a wide range of photon
energies {rom 1 eV 10 10 keV with picosecond time resolution or betigr, it is
clear that a major revolution in chronescopy has already taken place.

2.2 Types of Modelocked Lasers

The various laser systems with which picosecond pulses have been reliably
produced can be divided into two main classes: ) giant pulse lasers, such as
Nd:glass and ruby lasers. and i) continuous, or quasi-continuous systems, of
which the dye laser is the outstanding example.

2.2.1 Giant-Pulse Lasers

Picosecond pulses were first obtained from ruby [2.1] and Nd:glass {2.2]
lasers. Q-switched and modelocked by saturable-absorber dye solutions inside
the laser resonators. The evolution of ultrashort pulses in these lasers has
since been extensively studied both theoretically and experimentally. A typical
experimental arrangement is shown in Fig. 2.17. Investigations have shown
that the fellowing conditions are necessary to achieve reliable modelocking in
giant-pulse lasers.

1) Thermal distortion in the laser rod should be minimized or corrected for,
and the laser should operate in a low order transverse mode. These conditions
are achieved by employing a spherical mirror with an ancillary corrector lens
to produce a generalised confocal cavity [2.57—39] or by filrering the pump
light to reduce thermal distortion [2.60]. In either case an intracavity aperture
is used to control the transverse mode structure.

ii) Spurious reflections inside the laser resonator and feedback from out-
side surfaces should be avoided. This is achieved either with a Brewster-angled
laser rod and wedged resonator components or with antireflection coatings
[2.18, 21, 61]. Outside the cavity lenses of long focal length are useful in
isolating other experimental equipment trom the laser oscilluor [2.62].

Methods of Gerer,

M, L F C oy PC M,

Fig. 2.17. Passively modelocked Nd:giass oscillator. L=thermat distortion corrector lems. €=
optically contucted saturable-absorber cell. PC=pockels cell. DL = oplicul delay line. F, =
tlashlump light flter trrom Bradiey and Siberr [2.53])

itt) The saturable absorber dye should be contained in a thin cell in optical
contact with one of the laser mirror surfaces [2.60, 62].

iv} The laser shoutd be operated close 1o threshold and at a high value
(2 70%,) for the low light level transmission of the absorber cell [2.58, 59, 63].

Because of the intrinsic randomaess of the passive modclocking process.
u completely modelocked pulse train is not produced with a success rate much
m excess of ~80", even with these precautions. particularly in the case of the
broad-bundwidih, inhomogeneously broudened Nd:glass laser.

Itis now well known [2.58. 59, 60. 64] how the shape and duration of the
ultrashort pulses generated by a modelocked Nd:glass laser vary along a
pulse train. At the beginning of a train the pulses have smooth intensity pro-
files and durations of 4 to 10 ps. When special care is taken [2.58, 60} band-
width-limited pulses of 3 to 4 ps are obtained at the beginning of the train.
As an cxample, Fig. 2.18 shows the distributions of pulse durations at (wo
points of the trains emitted by the arrangement of Fig. 2.17. In this system the
saturable absorber dye (Eastman Kodak 9860 in dichlorethane) was contained
in a cell in contact with the 70°; reflectivity planc mirror M, . (Low light level
transmission of the cell was 707%). About ten pulses were switched out of the
train by & Pockels cell shutter PC and particular pulses within this group wers
studied with the streak camera. When the fifth pulse of the train was streaked.
pulse durations of 3 to 3 ps were consistently obtained for an absorber dye cell
thickness of 50 pm. The streak photograph of Fig. 2.19 shows two images of
a single pulse obtained by employing an optical delay line (D.L. of Fig. 2.17)
to subdivide each pulse into multiple pulses of predetermined separations. The
microdensilometer trace shows a clear separation. as expected from the ~ 2 ps
time resolution of the camera. The limiting value of the time-bandwidth pro-
duct. dv37/=0.5. was obtained for several 3 ps pulses. Similar results were
obtained by von der Linde [2.60) who used careful TPF measurements of the
pulse durations. Both investigations demonstrate the advantage ol using an
absorber dye cell in contact with a faser mirror for reliable generation of
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Fig. 2.21. Top Oscillogram of modelocked puise train from Nd:glass laser showing dip in intensity
due 1o self-focusing eftects. Bottonr Streak-camera recerd of puise from the beginning of the train
before sell-uction effects arise

peak pulse intensity, leading to more reliable modelocking with beiter spatial
propertics in the beams.

Similar puise trains have been obtained by employing the same experi-
mental arrangements with passively modelocked ruby [23. 57, 74. 75] and
Nd:YAG [2.54: 71, 76, 77] lasers. Because of the narrower fluorescence band-
widths of these materials the pulse durations lie in the range of 15 to 50 ps and.
hence, are too long for many interesting scientific applications of ultrashort
laser pulses (see later chapters).

Because of variations in pulse duration throughout the train and because
of transient effects in many materials, a single pulse must often be selected for
measuring accurately rapid processes in materials [2.60]. Single pulse selection
[2.57. 78—84] may be accomplished by passing 4 train of pulses through a
Kerr celt or a Pockels cell that has been activated clectronically for a short
time. in order to change the polarization of only one of the pulses. To gencrate
the high voltages necessary 1o rotate the polarization in the Pockels cells, a
high voltage spark gap or an all electronic circuit may be used [2.30. 84]. To
trigger the circuits. a small fraction of the laser beam is diverted. and by ad-

justing the optical and electronic deluy times. a pulse may be stected from any

portion of the train. Experimentatists usually choose earlier pulses in the train
because of their shorter durations, and cleaner envelopes.

Before discussing the application of the fuctuation model of a passively
modelocked laser to giant-pulse systems. the corresponding results obtained
with modelocked dye lasers will be described. Measurements on dye laser
systemns have elucidated more clearly the significance of absarber recovery
time and gain saturation in the generation of picosecond pulses by passive
modelocking. Comparison between the ruby laser and the cresyl-violet dye
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taser, operating at the same wavelength and modelocked by the same suturable
absorbers, has proved to be particularly illuminating.

2.2.2 Dve Lasers

Flushlamp Pumped Systems

While ultrashort pulses were first generated in dye lasers by synchronous
pumping with pulse trains from modelocked ruby lasers {2.85. 86] and. after
second-harmonic gencration, Nd:glass lasers [2.87. 88], the shortest pulses
were obtuined from passively modelocked systems [2.89]. Schmidt und Schfer
£2.90] had shown that the saturable absorber DODCI' could be employed to
modulate the output intensity profile of a flushlamp-pumped rhodamine 6G
dve laser. This result encouraged other workers to atlempt to generate pico-
second pulses in this manner, particularly since these pulses could be frequency
tuned across the broad spectral bandwidths of the laser dyes. Tunable pico-
second pulses were obtained with both rhodamine 6G and rhodamine B lasers
[2.91] by employing a diffraction grating as one laser resonator reflector. and
immersing the output mirror in the DODCI solution. Two-photon fluorescence
measuremenis showed that in these initial experiments pulse durations of
~ 5 ps were reliably produced. The introduction of interferometric tuning
{2.86] permitted the generation of pulses of bandwidth-limited durations.
frequency tunable from 380 to 700 nm [2.92, 93] by employing rhodamine and
cresyl-violer laser dyes with the appropriate polymethine saturable absorbers.
About the same time the development of picosecond streak cameras permitted
direct linear measurement of pulse shapes [2.94, 95].

As a result of extensive streak-camera investipatiops of ultrashort pulse
generation in flashlamp-pumped dye lasers [2.96—99] it became apparent that
the mechanism of modelocking dye lasers was quite different from that occurring
in giant-pulse tasers. {nvestigations of the modelocking dyes {2.96. 97, 100. 101}
also had shown that the saturable absorber recovery time was at least two
orders of magnitude longer than the duration of the modelocked dye laser
pulses. These experimental results were incorporated in a simple rate-equation
theory [2.102. 103] which showed that the combined actions of amplifier and
absorber saturation produced the observed rapid pulse compression.

The experimental arrangement now used for modeiocked pulsed dye lasers
is shown in Fig. 2.22. The laser dye is pumped uniformly by two Xenon flash-
lamps in a double-elliptical pumping reflector arrangement. About 100 J of
stored electrical energy is dissipated by each flashlamp in ~ 1 ps. The windows
of the guarts cell are wedged at t° and the laser dye is circulated continually
through a fine filter and a heat exchanger for cooling. The saturable absorber
solution is contained in a cell and is in optical contact with the 100°%; retlectivity

' DODRCI = 3.3 -diethyloxadicarbocyvunine iodide.
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Fig. 2.25 Microdensitometer traces tlingar density scale) of two pairs of simultaneously recorded
TPF pulses and specira of bandwidth-limited Rh 6G picosecond pulses (from Arthurs et al. {2.93h

The frequency range covered by flashlamp-pumped modelocked dye lasers

has since been extended to both shorter and longer wavelengths with the laser-

dyes .m:a. corresponding saturable absorbers listed in Table 2.1. General
mnn::_nm_ improvements in the dye flow systems, in uniformity of optical pump-
ing, and in laser optical components now permit the routine generation of
_u.n_mnm.o? few picoseconds durations or less over the wide range of wavelengths
given in .:ﬁ ﬁc_n. Operation of modelocked dye lasers is much less sensitive
to variations im pumping energy or to thermal effects in the laser media than
is operation E. solid state systems. Consequently. the lasers can be used at
higher repetition rates, mainly because two strongly nonlinear pulse shortening
Enn_..ﬁa_mam are operating simultaneously and partly because the liquid laser
media are more easily kept at uniform temnperatures,

Temporal Buildup of Modelocking in Dyve Lasers

The paradox that the shortest laser pulses were generated in dyc lasers passively
modelocked by saturable absorbers of relaxation times of hundreds of ?no..
mnno_.._am was cleared up by detailed experimental investigations of the buildup
of picosecond pulses [2.96-99, 104. 105). The nature of the initial buildup

Methods of Generating Picosecond Light Pulsas 45

Table 2.1, Picosccond pulse generation in fashiamp-pumped dye lusers
P B 3

Laser dyc Saturable ab- Tuning range Puise durations. References
sorber {nm} ps

Esculin mono- DASPI 465480 {i]

hydraie

Rhedamine 6 G DQOC! §75-600 1.5-3 12.3]
jrlelale] 6U0—623 2-3 3. 4]

Rhodamine B DQTCI 605-630 3-4 [51
DODCI 615-643 -3 (5. 6]

Cresyl Violet DTDCT 660--704 3-5 {5.6.7]

~Rhedamine 6 G DDCI 645680 ~3 15, 6. 7}
DOTCI 645—630 ~d4 [5]

DOTCE HITCCL 795-805 [8]

De formndae

#-diethyl.2 .2 thiadicarbocyanine iodide
DDC!  =t,1-diethyl-2.2 -dicarbeeyanine iodide
PODCH =3,3"-diethyl-oxadicarbocyanine jodide
DOTCT = 3.¥-diethyl-2,2-oxatricarbocyanine iodide

HITCT =133 1 ¥ ¥ Hesomethy-2.2 -indotricarboci anine todide
DQOC = 1.3 -diethyl-+.2 -quinolyoxacarbocyanide iodide
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phase was found to depend upon the operating wavelength and the particular
saturable absorber employed. For rhodamine 6G medelocked by DODCI and
taned to operate ai 605 nm, a very fast buildup of modelocking occurs, and
streaks such as that of Fig. 2.26 showed that within a few round trips {20 ns}
from the start of the laser action. a fluctuation noise burst of ~ 108 ps total
duration existed in the laser cavity. The subsequent history of evolution to a
single picosecond pulse is shown in Fig. 2.27. After ~25 round trips (120 ns)
the noise burst has been substantially compressed and then very quickly
evolves into a singie 2 ps pulse after ~ 35 round trips. (For calibration purposes
two images of each pulse separated by 57 ps were generated in an optical
delay line). The very rapid pulse shortening at this wavelength can be clearly
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43 D.J. Bradley

laser and modelocking dyes. Later studies with the Photochron IT streak
camera, with subpicosecond time resolution. confirmed that the final pulse
duration obtainable was ~2 ps (Fig. 2.10) and that the pulse to background
ratio was > 10" implying that > 95%, of the laser energy was contained within
the final isolated picosecond pulse.

Saturable Absorber Recovery Time and Photoisonmer Generation. The fact that
DODCI is effective as a saturable absorber for medelocking dye lasers operating
in the spectral range 584 to 645 nm. although its absorption maximum is at
380 nm, led to the suggestion [2.93] that at longer wavelengths modelocking
is due to the generation of a photoisomer, with a ground state lifetime of
~3x107* s and an absorption maximum at 620 nm [2.100]. This photoisomer
is generated when DODCI is excited by single-photon, or two-photon [2.57]
absorption, giving rise to strong fluorescence peaked at 646 nm. Also, conven-
tional laser-pumped {2.106] and 1ravelling-wave [2.57] DODCI dye lasers
operate at ~ 650 nm. Detailed measurements [2.97] of the fluorescence spectra
of both the normal and photoisomer forms of DODCI, with microsecond and
picosecond excitation. gave the fluorescence spectra of the photoisomer
species (Fig. 2.30).

When the temporal behaviour of the fluorescence from the intracavity
absorber cell was monitored at 600 nm and 650 nm with the laser tuned to
operate at various wavelengths, the fluorescence at 650 nm initially grew
rapidly, relative to the rise of the laser intensity. but then levelled off to follow
the laser intensity envelope shape. Likewise the fiuorescence at 600 nm fell
initially and then also stabilized. The time required for this initial stabilization
period was a function of the lasing wavelength. At 607 nm, 100 ns was required
by which time a well-defined single modelocked pulse was circulating inside the
resonator. For lasing wavelengths tonger than 610 nm the attainment of the
balance took ~ 200 ns. It had earlier been found [2.93] that at these wavelengths
the modelocked pulses also began to appear after ~ 200 ns. At wavelengths
shorter than 605 nm. where the normal form of DODCI has a large absorption

Fig. 2.30. Corrected fleorescence

spectra of {a) DODCT recorded

on a spectrophotofluorimeter und

() DODC1 photoisomer ohtained

ol w00 i 750 750 experimentally (from Artfrs edal.
WAYELENGTH (nm) [2.97h

FLUORESCENCE INTENSITY (orb.units)
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cross section, the formation of the photoisomer effectively reduces the dye
concentration and this explains why modelocking by DODCI is difficult at
these wavelengths.

The excited-state fluorescence lifetimes of the two species of DODCI were
measured when the pulse train from a modelocked, rhodamine 6G laser,
wned to 605 nm. was focused into a cell containing the absorber solution. A
microdensitometer trace of a typical streak-camera fluorescence time profiie
is shown in Fig. 2.31. From a large number of such profiles the fluorescence
decay time was measured to be 330440 ps for both the normal and photo-
isomer species. The decay of the sidelight fluorescence from the intracavity
celt was also investigated with the streak camera and the results obtained were
identical. However, in the case of the intracavity cell the photoisomer fluores-
cence was dominant.

The recovery time of the DODCI absorption following intense picosecond
excitation was investigated with the experimental arrangements of Fig. 2.32a,b
[2.97]. For studying the dye while operating as a saturable absorber inside the
laser resonator. the modelocked pulse train (Fig. 2.32a) was telescoped up to
reduce beam divergence, apertured, and then attenuated by neutral density
filters 1o produce a low intensity uniform beam. After passing through a delay
line. a polarizing prism, and further apertures, the beam was arranged (o
overlap again with. the resonator beam inside the DODCI modelocking cell.
A micrometer contro! of the position of the delay line prism permitted timing
of the arrival of the pulses of the probe beam 1o 0.5 ps. The probing pulse train
was monitored, before and after transmission through the cell.

Fig. 2.33 shows the transmission at a particular time during the train
plotted against the delay of the probing pulse. for the faser operating at
~610 nm. The 1/e recovery time 1, of the absorption is ~ 225 ps. Similar

S30ps

w. bﬁ Fig. 2.31. Microdensitometer trace of streak-
\P camera record of DODCI fluorescence lime
& profile under same conditions as inside a mode-
Vi §r€. locking cell in the laser cavity. Correcied e™!

d decay time i3 irdicated, (Ordinate is linear
density scale and the recorded signal to noise
ratio is 20:1)

TIME .
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D.J. Bradier

Table 2.2, Lifetimes (relaxation times) of saturable absorber molecules

Bye Molecular lifetimes References
Absorptior Fluorescence
Doc!
I methanol 25 ps — ]
— 14 ps 12}
In ethanol — it ps i3
DCT feryptocyanine
In methanol 80 ps — 4]
16 ps - fs]
— 110 ps {6]
— 20-40 ps 7]
In ethanol — 37ps 3]
ocr
In ethanol , IO ps — {8]
-— 20 ps 1]
prDct
Ia ethanol 175 ps 185 ps 18]
— 1.2ns 9]
DODCH )
1n ethanol 10-250 ps - 10, 11}
1.15ns — [12}
1.2 ns — [LE]|
300 ps — t4]
— 420 ps: 1.2 ns [15]
— 330 ps {16]
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(a)

Fig. 2.34 a—d. Sequence of streak camera
microdensitometer traces (time resolution
TIME ~ 30 ps) of pulse evolution in cuby Taser

— medelocked by DDCL. (a) 3 ps (b) 2.5 us
; i N N {€) 1.5 ps (d) 1 ps before peak of giamt
D U WP ORI N TN R pulse. respectively
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Sy Lwsy
cases of modelocking dye lasers modelocked commonly met} by absorbers of
long lifetimes and solid state lasers with short duration abs: Vn_.m. are special
cases. In ruby and Nd:glass lasers the absorber cell aperture time sets a lower
limit to the final pulse generated. In the case of dye lasers the very short storage
times of the laser media result in the domination of saturable amplification so
that picosecond pulses can be generated with saturable absorbers of a very
wide range of relaxation times. This analysis was confirmed by studies of mode-
locking of the cresyl-violet laser [2.98]. The absorption spectra of the mode-
locking polymethine dyes used are shown in Fig. 2.35. The absorber-cell
aperture times were measured by the methods used for DODCI. employing
picosecond pulses from the modelocked laser tuned to operate at the appro-
priate wavelengths. The results obtained are given in Table 2.2 together with
the corresponding results obtained by other researchers. The ability of DTDCI
to modelock at 694.3 nm arises from the generation of a photoisomer with an
absorption specirum shifted to the red [2.100] as in the case of rhedamine
6 modelocked by DODCI at 625 nm. While there has been controversy [2.101,
109] over the value of the molecular lifetime of DODCI, and even about the
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DYE CELL

ARG IO

INPDT \

PHOTOZIONE ane Fig. 2.37. Passively medelocked
SAMPLING SCOPE ¢w dye laser configuration

duration and stability are not dependent upon pumping level and the dye
laser can operate up to 20% above threshold to give an average output power
of 15 mW for 0.5 ps pulses (peak power 300 W). When the optically conracted
absorber cell was replaced by a second free-flowing dye stream, single pulses
were obtained only close to threshold as has been observed by other workers
[2.119]. At higher pumping powers structured pulses were produced, as detected
both by second-harmonic autocerrelation and streak-camera measurements.
Another striking difference lies in the pulse shapes produced by the contacted
and free-flowing absorber arrangements. In the former, the best fit to the auto-
correlation traces gives a sech’ pulse shape in good agreement with a recent
theoretical model [2.120]. For the noncontacted cell the pulses are characterized
by exponential trailing edges. Similar single-sided exponential pulse shapes
have been reported by Jppen and Shank [2.117].

Confirmation of the generation of bandwidth-limited subpicosecand pulses
by the narrow-gap contacted absorber cell was given by simultaneous temporal
and spectral intensity recordings. such as Fig. 2.38. These pulses, having the
high degree of organisation represented in Fig. 2.2b, are particularly valuable
for experiments in nonlinear optics because the interpretation of the results is
then relatively simpte.

As with the flashiamp-pumped rhodamine 6G laser modelocked by DODCI,
at wavelengths less than 600 nm modelocking of the cw [aser deteriorates due
to the decrease in the DODCI photoisomer absorption cross section at these
wavelengths. Again, the use of DQOCI extends the range of ultrashort pulse
generation in the cw laser to cover the spectral region 580 1o 6i3 nm. Sub-
picosecond pulses have also been obtained with DQOCI. although detailed
investigations of the tuning range have not been carrled out. However, it is
anticipaied that bandwidth-lmited subpicosecond pulses will be available over
most of the DQOCI modelocking range.

Employing the various combinations of laser dyes and saturable absorbers
given in Table 2.3 continuous tuning of the modelocked cw dye laser has been
achieved over the range 580 to 630 nm with the optically contacted absorber
dye celt arrangement. it is likely that bandwidth-limited pulses of ~100 fs
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Fig. 2.38a and b. (a) Second-barmonic autocorrelation trace for laser operating at wavelength
607 nm. The diserete points are caleulared for a sech? laser pulse intensity profile. (b) Micro-
densitometer trace of the spectrum of modelocked laser recorded simultanecusly with the pulse
duration measurement of {a). Arrows indicate the spectral halfwidth (linear density scale)

Tablz: 2.3. Continuous wave Dye Lasers Modelocked by Contacted Absorber Dye Cell

Laser dye Absorber dye Pulse duration (ps)  Tining range (nm)
Rhadaminz 6G DODCI Sub-picosecond 598--415
: 0.37-1.5 592617
BQOCIH 0.6%2 580-613
Rhodamine B '~ DOoDCl 3-4 610-630
DQOCI 45 600-620
Cresyl-violet 3-4 §10-620
Sodium fluorescein Rhodamine 6 G 5-7 546

* 200 pm ceil thickness
(Data from [.S, Ruddeck: PAD Thesis, University of London 1976} ).

durations could be obtained with narrower dye cells and general engineering
improvements. There must be a minimum number of optical cycles to define
the stationary-puise sech® intensity profile, and because there would be only
~ 350 cyeles in a 100 {5 pulse, it is evident that we are approaching the limit for
ultrashort pulse generation in the visible region,

Synchronously Pumped Dye Lasers

As mentiened in Flushlamp Pumped Systems, the generation of ultrashort
pulses in dye lasers was first achieved by pumping with pulse trains from high
power modelocked ruby [2 85, 86]and from the second-harmonic of modelocked
Nd:glass lasers {1.87. 88]. By setting the cavily length of the dye lasers equal
to. or a submultiple of. that of the pumping lasers, the gain of the dye laser
was impulsively driven in synchronism with the cavity round-trip repetition
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Fig. 2.39. Behaviour of gain. intensity and spectral widih of passively modelocked Nd:glass laser

(Frewfqiv.C Vew u npublshed),

where / is the pulse intensity at the A-th pass. normalized to the absorber
saturation intensity J,=(2¢,T,,)"%, A, is the gain per pass. and I represents
the cavity losses arising from scattering and the mirror transmissions, &y and
Ty, are the cross section and the relaxation time of the saturable absorber dye,
tespectively, and B, is the initial absorption coefficient. The gain coefficient
A, obeys the equation

ddyJdk= — A (20,1, T)], +fT . (2.25)
r
where f is the rate of flashiamp pumping and &, is the gain cross section. In
deriving (2.24) and (2.25) it is assumed that the nonlinear absorber has in-
stantaneous response, and that the Hashlamp pumping produces a linearly
increasing value of 4, as shown in Fig. 2.39. The effective gain coefficient is

G=A—T~By/(1+1). (2.26)

At time £,, G is positive for all the pulses of the circulating intensity pattern.
After that time only pulses above the critical intensity. given by

Ie=[(Boid ~ D)} —1=[B, (B, + A4)] 1 (2.27)

Mcthods of Generating Picosecond Light Bulses )

for which G =0, will continue to grow since as the gain becomes depleted,
dd=A—~I— B, becomes negative.

In the computer simulation model employed by Glenn, the gain was
assumed o be constant during a pass through the laser and was recalcutated at
the end of each pass, taking into account the total encrgy extracted from the
laser medium. The set of A starting pulses (corresponding to M longitudinal
cavity modes) was assumed to have the probability density W{l)=exp(-D,
for which the most probable, normalized, intensity of the N-th largest pulse
has the value log (M N). Clearly, the most important property of the fluctuation
pattern is the ratio of the intensities of the two largest fuctuations at the end
of the linear amplification stage. The probability that the largest pulse is more
than R times as intense as the next largest can be shown to be, approximately,
R{M+ 1R If each pulse is assigned its most probable value, the ratio
between the two largest pulses is ~ 1.18 and for A = 100, the ratio will exceed
this value for ~ 507/ of the time.

Figure 2.40 illustrates the basic type of behaviour predicted by the fuc-
tuation model of Glenn for the case of the modelocked Nd:glass laser, operat-
ing in a cavity of 5 ns round-trip time. The upper family of curves shows the -
development of the five largest pulses out of an ensemble of 100, when gain

1090
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o= 0.3

INTENSITY
EnS r =01

0o

| [ T —— -——r e ]

Fig. 2.40. Development of Gve lar-
gest pulses out of an ensemble of
100 for B, =03, '=0.1 and dA=
0.02 at the start of the process,
Upper curves show development
when gain saturation s neglected
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64 D.t. Bradley

When the rate-equution analysis is applied to the early growth eof mode-
locking in a ring dye laser the initial rate of buildup is found to be a strong
function of the absorber relaxation times T,,. being slow when T, is short,
inagreement with the results obtained with cresyl-violet modelocked by DTDCI
and DIC, described in Temporal Buildup of Modelocking jn Dve Lasers. The
minimum condition for modelocking .

S(M/T,)>A4,/B, (2.29

is also obtained, where 4, and B, are the unsaturated (small signal) amplifi-
cation and absorption coefficients, respectively, per cavity transit.

Steady-State Pulse Solutiohs

Garside and Lim [2.140] applied standard density matrix formalism. with the
rotating wave and the slowly varying envelope approximations, also to a ring
dye laser to study modelocking conditions by a perturbation analysis. This
analysis again showed that the recovery time of the absorber does not restrain
the durations of the modelocked pulses. The results obtained by this approach
were compared in detaif {2.141] with those of New For both cw and flashlamp-
pumped dye lasers. These authors further showed [2.141] that under typical
experimental conditions flashlamp-pumped dye lasers can generate pulses
that are close to being steady state. The wavelength dépendence of the buildup
of medelocking by DODCI in the rhodamine 6G dye laser (Fig. 2.24) also
came out of the computations.

Haus [2.120) and Haus et al. [2.146] considered the situation when both
the gain and loss per transit are relatively small (~20°)). This situation is a
good approximation to the cw dye laser case. These authors assumed that the
saturable-absorber loss and the laser-medium gain coefficients could be
expanded to second order in their pulse-energy dependence, and that the
dispersion of the system, as a function of frequency. could be expanded to the
second order in frequency (ie.. the laser pulse spectrum is natrow compared
with either the laser dye Auorescence spectrum or the saturable-absorber
bandwidth). )

Closed-form analytic solutions were obtained to the steady-state equation

U+l —g(er— Eﬁbaua_u._%Jm: V= — {3/ deNdE(). di (2.30)

where 1 (1), g(¢) are the loss and gain on transit through the absorbing and
active media respectively: § isa time delay (or advance) parameter proportional
to any deviation 57 of the pulse repetition period from the round-trip time T.
The presence of a bandwidth-limiting element (tuning prism or etalon of
bandwidth 4w) tesults in the introduction of the operator —{Aex} " 2%/t ?,
which leads to spreading of the pulse temporal profile. For the equilibrium

Methods of Generating Picosecond Light Pulses 85

situation this pulse broadening is balanced by the pulse compression pro-
cesses.

The conditions required to achieve modelocking with a saturabie absorber
of long relaxation time when expressed in terms of the same parameters, were
similar to those of New, with quantitative discrepancies of only ~10°,. By
approximating the excess-gain versus pulse energy curve by a paraboia the
steady-state pulse shape was shown 10 be a hyperbolic secant, with intensity
{(+) proportional to sech?(#/411,). The pulse width dt, was found to be inversely
proportional to the disperser element bandwidth Aw. to the pulse energy. and
to the squace root of the small-signal value of the absorber loss {1). These
predictions are in good agreement with the properties of the bandwidth-limited
subpicosecond pulses obtained from the cw dye laser arrangement described
in Modelocked cw Dye Lasers.

2.4 Picosecond Pulse Amplification

In Section 2.2 it was shown that, for a modetocked laser oscillator producing
bandwidth-limited pulses, the energy content and peak powers of individual
pulses were limited to the values 1072 J (300 W) for the cw dye laser, 50
(25 MW) from the flashlamp-pumped dye-laser and [ mJ (200 MW} for giaft-
pulse solid-state lasers. For several applications of picosecond pulses amplifiers
must be used to obtain greater energies. without producing either amplitude
or frequency modulation of the oscillator pulses. The physical parameters
affecting the design of picosecond pulse amplifiers, and limiting the per-
formance, are the stimulated emission cross section a, the lifetime of the upper
laser level T\, and the nonlinear refractive index #; of the host material.

Consider the rate equatiouns, for a pulse travelling in the positive v direction
through an amplifying medium [2.102, 147]

A=l —m T —neF (2.31)
and oF@x=noF (2.32)
where F is the photon flux, n, is the population inversion at F=0, and the
differentiation in (2.31) is with respect to the local time t=¢—(x/r). where ¢
is the velocity of light in the medium. For picosecond puises 7,3 the pulse
duration A¢, and (2.31) gives

r{T)=n; exp (— ol (2.33)

where

Jo=[", Firydz. (2.34)

<~
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Fig. 2.41a and b. m.‘.ﬁmman:,w_ arrangement for (u) amplification and () frequency conversion
of ultrashor: pulses trom Nd:glass and Nd:YAG lusers (from Krrods et al 12.160)

parasitic oscillation. The amplifiers are also decoupled and isolated by satur-
able absorber dye cells and by Faraday rotators with diclectric polarizers. The
cmn:. profile is cleaned up by spatial filtering. The final rod amplifier has a
dmeter of 64 mm and the power density is ~ 18 GW cm ™2

New fluoride luser glasses with even smaller values of #. are under devel-
opment [2.138] with gain coefficients and saturation parameters comparable
to those of silicate glasses. These glasses should permit greater flexibility in the
construction of picosecond amplifier systemns. )

Amplifier systems may also be used in conjunction with saturable absorbers
1o preduce subpicosecond pulses 2.161. 162},

2.4.2 Amplification of Dye Laser Pulses

H.u«.o laser amplifiers differ from Nd:glass systems in their disparate storage
times of ~5 ns and ~ 300 ps, respectively. As a resuli. in a Hashlamp-pumped
&:«. laser amplifier it is only the energy stored during the 5 ns or so before the
m_.q._é._ of a picosecond pulse that contributes. Because of the large sttmulated
emission cross section (¢~ 10" cm?) dye amplifier dimensions are limited by
the a.non_ to avoid ASE losses, which are significant even with low stored energy
densities. Also, as already discussed. 1he large cross section results in a high
small-signal gain and a low saturation enerey density (~ 3 mJ em ~3). )

Methods of Generating Picosecond Light Pulses 2]

Amplification to peak powers of >3 GW have been. achieved with the
arrangement shown in Fig. 2.42 [2.33]. Modelocking of an agueous solution of
thodamine 6G (Rh6G) by an ethanolic sofution of DODCE covered the
spectral range 593 to 625 nm while the region 573 to 600 nm was covered by
modelocking an ethanolic selution of Rh6G by DQOCT. The pulses employed
for amplification studies had durations of ~2 ps. as measured with a streak
camera. and the corresponding spectral bandwidths (FWHM) were ~2 nm.
The first amplifier employed a 5 mm internal diameter dye cell, and the second
amplifier a 1 em diameter dye cell. Firing of the two amplifiers was synchronized
to + 100 ns und maximum gain abways occurred at the peak of the 5 ps flash-
lamp pulse. With the system aligned and firing'only the amplifiers. up to 500 m!
of ASE wus emitted from the second amplifier. This arose. in part. from
refiection from the oscillator output mirror and could be overcome by employ-
ing ethanolic solutions of Rh6G. Then ASE occurred mainly at wavelengths
shorter than 585 nm. When amplifying pulses of wavelengths >600 nm a
solution of 3.3"-dimethyithiacyanine iodide placed between the oscillator and
the first amplifier selectively absorbed the ASE.

Alternatively. when the ASE was not spectrally different from the pico-
second pulses. a Fabry-Perot filter was used as isolator. Smal signal gain
measurements were carried out, for each amplifier independently. by attenuat-
ing the oscillator output one-hundred fold. Fig. 2.43 gives the variation of
peak small-signal amplifier gain with wavelengih, for different dyz solutions
and shows the importance of choosing the correct amplifying solution for
optimising small-signal gain at 2 particular wavelength. To obtain the wave-
length dependence of gain in the saturated regime (¢ varies with wavelength
(Fig. 2.43) and hence the value of the saturation energy density E) the unat-
tenuated oscillator beam was passed through the first amplifier and the beam
area telescoped down to 3 mm® before the second amplifier. From Fig. 2.44
it can be seen that. with the energy densities employed, the gain at each wave-
length diminishes rapidly from its small-signal value to a wavelength in-
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Fig. 2.32. Schematic disgram of modetocked dye-laser osallator and amplifier chain for amplifi-
cation of picosacond pulses to powers of >3 GW (from ddrain et al {2 33])
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72 D.J. Bradley

from the passively modelocked ew dye laser [2.118. 1671 Also several high-
power fashlamp-pumped lasers could be modelocked, synchronised and
aligned by a single cw oscillator [2.168].

2.5 Frequency Changing

Harmonic generation provides the easiest means of producing picosecond
pulses at short wavelengths. Apart from satisfying the normal phase-matching
conditions (see Aklmanor et al. [2.169] for an excellent review of optical
harmonic generation and optical frequency multipliers) group velocity mis-
maich has to be taken into account. For efficient harmonic generation it is
necessary 1o have the optical path length L in the nonlinsar ‘material shorter

than the group velocity characteristic fength - o

- o -

< Ly=d1f2u”" where du"!(=u3"—u') is the group velocity mismatch
parameter “ind u,. uy are the group velocities of the fundamental and N-th
harmonic frequencies, respectively. The group velocity mismatch for the
commonly used nonlinear crystals is given in Tuble 2.4, It can be seen that the
effect is large in LiNbO; and LilQ, for 1.06 um pulses and is even larger for
ultraviolet frrquency multipliers. When L<Ly (the quasi-static regime), if
the fundamental pulse has 2 gaussian intensity temporal profile, the harmonic
pulse is also gaussian with the duration reduced by i factor |7V and the band-
width increased by the same factor. When L > L, the width of the harmonic
spectrum narrows [2.170] and the pulse duration increases during propagation
through the crystal to the value Z. 4™ *. This effect has beer demonstrated for
second-harmonic generation of Nd :glass laser picosecond pulses in KDP and
in LiNbO, [2.171]. The spectral width and the harmonic pulse duration also
depend strongly on the beam divergence [2.172]. On the positive side, the
threshold intensities for optical breakdown in crysials increase for ultrashort
pulses as the inverse of the laser pulse duration [2.173] and reach values of
16 to 10" W e ™2 for picosecond pulses.

Akhnianov et al. [2.174] generated the fourth-harmonic frequency of pico-
second pulses from a Nd: glass laser by successive second-harmonic generalion
in KDP crystals, with an overall energy conversion cfficiency of 2°;. The laser
Was operating in many transverse modes and self-phase modulation probably

Tabie 24. Characteristic group-delay length L, for second-harmenic generation of a 1 ps pulse

Fundamental wavelength L, em

KDP LiNbQ, LilO, CDA
106 pm 37 0.2 0.3 14
0.53 um §.3 — _ .

(From Akhmanov et al. [2.169))

kayve,

Methods of Generating Picosecond Light Pulses 73

was affecting the temporal profiles of the pulses. Phase modulation can result
in a deviation from the optimal phase-matching relationship when there is
group velocity mismatch, Energy is then pumped back into the fundamental
frequency [2.175). With breakup of the temporal profile due 1o self-action
eifects, group velocity mismaich will certainly come into play. Kung et al.
[2.176] obtained 80°, efficiency for frequency doubling. and 10%; efficiency
for cascade tripling of bandwith-limited 50 ps pulses from a Nd:YAG laser.
Employing an intracavity cesium dihydrogen arsenate (CDA), 90° phase-
matched. second-harmonic generator Weismian and Rice [2.73] generated
trains of pulses of nearly equal energies at the fundamental and harmonic
frequencies of a Nd :glass laser. The second-harmonic bandwidth was narrowest
when phase matching was optimized by temperature tuning the CDA crystal
and operation of the modelocked laser was then at its most stable (pulse
duration ~9 ps). This indicated that self-focusing and self-phase modulation
were being suppressed by the nonlinear loss introduced by the harmonic
generator [2.177).

Second-harmonic generation of puises from synchronously pumped cw ) .\lw
dye lasers over the uv spectral region from 265 nm to 335 nm has been obtained m..r. >
using RhB. Rh6G and Na-fluorescein dyes. The pulse duration of the Rh6G
laser was 7.5 ps at 600 nm and was bandwidth limited. With angle-tuned KDP
crystals the energy conversion efficiency was ~0.05%, giving uv average
powers of 50 to 250 uW. With 90" phase-matched ADP a conversion efficiency
of 2%, was measured at 270 nm. The authors/oF ot 2
achieve an average (modelocked) uv output pof¥er of 5 mW from Rh6G with
a 90" phase-matched ADA harmonic generator. Ippen and Shank 2178
reported conversion to the uv of the pulses from a passively modelocked dye
taser by frequency doubling in a LilO; crystal. of thickness 0.25 mm. The large
noalinear coefficient of this material more than compensates for the shorter
characteristic group-delay length. Visible pulses with a peak power of ~5 kW
can be converted to produce ~1 ps. 307.5 nm pulses with ~ 15% efficiency.

Puises from dye lasers synchronously pumped by a modelocked Nd:YAG
laser hue been sum and difference mixed with both the fundamental and the
second-harmonic pulses of the pumping laser, to generate turable ultrashor
pulses in the uv from 270 to 432 nm, and in the ir from 1.13 to 5.6 um
techniqued has the advantages over optical parametric generators [2. 80
in that large beam divergences and broad spectral bandwidths are avoided®
Also lower input power levels are required since the mixing process does not
start from parametric noise. The modelocked Nd:YAG oscillator trains of - ﬁNu
30 ps pulses {in a TEAM,, beam of ~ 3 mJ total energy and a transform-limited N
bandwidth of ~0.1 nm} were amplified {sevenfold energy gain} and frequency
doubled in a KDP crystal (energy conversion 30%). The dye laser was fre-
quency narrowed and tuned by two Fabry-Perot etalons, of 6 ym and 100 um
spacings. to produce 12 ps bandwidth-limited pulses in a lincarly polarized
TEMy mede from Rh6G. With RhB, cresyl-violet perchlorate, and carabizine
122 dyes a continuous’tuning range of 549 10 727 nm was covered. Sum- |
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76 D.J. Bradley

{from a frequency tunable Xe, laser [2.163, 193]. in this way Xuv picosecond
putses could be obtained at useful powers.

In this chapter we have reviewed the methods of generating picosecond
pulses by modelocked lasers. In the xuv region coherent generation has just
recently been obtained [2.193), and new techniques are also being developed
for the ir region. For example, ultrashort pulses can also be generated by an
optical analogue of NMR free induction decay (FID)} [2.197, 198]. Subnanose-
cond 10.6 um pulses have been produced by sharply terminatinga longduration
CO, pulse by optical breakdown, and then passing it through a narrow CO,
absorber [2.199]. Nearly total absorption occurred until the absorber reradiated
a short FID pulse upon input pulse termination. Direct puise ohservation as
well as autocorrelation techniques {2,200, 201) have inferred pulses as short as
30 to 50 ps.
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