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APPLICATIONS OF INTENSITY CORRELATION SPECTROSCOPY
TO LIGHT SCATTERING FROM FLUIDS

V. Degiorgio
C.1.$.E. y Sec/wh (MaQos), M"O—Q‘r
The term intensity correlation spectroscopy (ICS) designates the
technique by which relevant properties of a scattering medium illumi-
nated by a light beam are derived from the measurement of the corre-
lation function of the intensity of the scattered light, In the last few
vears {CS has found many areas of appl icétions in physics, chemistry,
bioclogy, and engineering, Its understanding requires an acquaintanlce
with the statistics of light fields, theories of light scattering; and
some knowledge of optical and electronic instrumentation, Detailed
treatments of the ICS technique and of its must significant applica-
tions can be found in Refs, 1 and 2 and ar-t_icles .éuoted therein, We
shall discuss here a few important points, with the aim of making

clear the basic principles of ICS,

1. - Properties of correlation functions LSJ

The statistical properties of any random process {such as an
optical field) can be characterized by joint probabil ity distributions
or (and) correlation functions of any order, In practical cases, re-
levant information on optical fields is obtained by measuring only

(1) (2)

the lowest order correlation functions G and G ', defined as



follows;
G (r-l,r*z,‘? })=< E (rl,t) E (r‘z,t+t)> (1)
G (ri,rz,r )= < (r‘l,t) [ P Y > 2)
where E and | = |El2 are respectively the electric field and the in-

tensity of the optical beam,
Quite generally it can be said that the spatial properties of corre-
lation functions reflect merely the geometry of the source (the scat

tering volume in a light scattering experiment), We are here more

(1) (2)

interested in the time dependence of G and G which contains

.

information about the dynamics of source fluctuations. We put there

- — . H .
fore r~] = rz. Furtermore we consider only stationary fields, so

that G(” and G(z) depend only on the time delay T,

Properties of G“)(‘C):

G(”(O)=(I); IG(”(t)!s-:Gm(o) ;IimG“)(T)=0

T—-».0

(2)

Froperties of G ~( T)

G(Z)(O) = <|2),~| im G(Z)(‘C)‘-—' (|>2; G(Z)(t) - (152 s‘G(Z)(o) - (|>2

Tr*m



(1}

We recall also the definition of the optical spectrum S ' (w)

sm (W) =f6(”(‘6) e el dt {(3)

i
If S( ) (W) is a symmetric function with respect to the central fre-

quency W and we write the field as
il w o thy
=) = £ () e LWo! ¢ 0] (E_(1) real)

the correlation functions can be expressed as
1 : Tuw T
&'V (x) - > e o f(1) (4)

vy = (1+g (o)) 4s)

where f{ T ) and g (t) are real.

The following relation holds for gaussian fields

gltr) =t"(t ) (6)

2 i
Note that the knowledge of G( ) does not give completely G( ) even for
gaussian fields, The information about the central frequency 'vdo is

iost,



2. - Light scattering: generalities 1_4]

A schematic light scattering experiment is sketched in fig. 1,
A monocromatic plane wave, linearly polarized, is incident upon
a perfectly uniform transparent medium,

An optical detector in the position P reveals the presence of a
nonzero light intensity, generally weak, propagating in directions
other than that of the reflected and refracted beam. This is what is

called scattered light,

Fig., 1 - Schematic light scattering experiment, The incident beam
propagates along the y axis and is linearly polarized along the z axis;
w4 and 1y are respectively its angular frequency and its intensity,
The scatter‘ed light is observed at the pomt P having polar coordinates
(R, & e ). € is the angle between ko and ks . The effective volume

vV WhICh contributes to the scattered field collected at P does not in-
clude the entire sample, but it is rather defined by the cross section
of the incident beam and the detection optics, The distance R is ta-
ken to be much larger than the |linear size of: the scattering volume V/,

The physical origin of the scattering process, can be understcod

in the following way. The illuminated medium interacts with the incj-




dent electric field at opticaf frequency through a electric polariza-
bility per unit volume X('r':, t)iFor sake of simpiicity the medium is
assumed to be optically. isotropic { A is a scalar quantity) and Ii-
near ( ¥ independent of the amplitude of the incident field).

The polarization induced in each element of the illuminated volume

is oscillating at the same frequency of the incident field, Homusm,
uesnabee, The field radiated by each volume element follows the wellw
~known dipole radiation pattern, The field collected by a detector
placed in the position R is the sum, with appropriate phases, of the
contributions from each volume element, it is easy to show that,

if X (Fy1) is independent of F, we get des tructive interference in any
direction, apart from that of the refracted beam. If, however, X is a
fluctuating function of r—-’, all the elementary cor'n';ributions to the scat
tered field will not completely cancel out, .and we do expect a nonzero

scattered intensity,

The polarizability X can always be written as
X(E = ZxXS+ 3x(it)

where XY s the average part, independent of I and t for a homo—
geneous medium in stationary conditions, and ¢ X (F,1) is the fluc-
tuating part, which has zero average, From the intuitive considera-

tions given above, it is clear that scattering is produced by J;‘K('r‘?, t).



The theoretical computation gives the following expression for
the scattered field Es (R, t):
- —_p
H - — .
1 — - - v el(ks R- « t)

ks ks 0
> 4 T R

E_(R,1) = §e @)

where £= 1 + X is the relative dielectric constant of the medium,
-
V is the volume, ks is the wave vector of the scattered field, and

S}, (k, t) is defined by the Fourier transformation:

-

5e tky1) = {&(?,t)e‘”‘"' &’  (8)

—

The vector k, as shown in fig, 2, is defined by:

. —
k=k, =k (9)
Egs.(7~9) indicate that of all the Fourier components of the fluc-

tuation in dielectric constanf only that particular compohent whose
wave vector is the difference between the wave vectors of the scat-
tered and incident light is responsible for scattering in the direction
of observation, It is interesting to observe that this is completely
equivalent to say that the scattering process has to satisfy the Br*a_ég

condition for the reflection of the incident beam by a tridimensional

——rp
grating characterized by a reciprocal vector k,

(7}



Fig. 2 - Triangle of wave vectors, If ks & kg, the triangle
is practically isosceles,

Eq. (7) has been derived by using a perturbation approach which
takes 9 X (7, t) to be small compared to (X} and which as-
sumes the attenuation of the incident field to be negligible over the
whole length of the scattering volume, Multiple scattering effects
are, therefore, assumed to be very weak,

— -5

The scattered field ES(R, t) is a random function of position

Meepeee and time with a zero average, The time-dependent fluctua—
—

tions of ES exactly mirror the fluctuations in dielectric constant of

wave vector k, Fluctuations in dielectric constant are generally much

slower than an optical period, that is, the energy associated with

an elementary excitation in the medium is much smaller than the

energy of the incident optical photon, As a consequence, the energy



conservation theorem tells us that the energy of the scattered photon
is practically the same as that of the incident one, By putting;" l ksl=

ko l = Kgy the momentum conservation relation (9) gives k ®2kg W 6/

mimmegkr where € is the angle between kg and kg {(see fig, 2),
— L]

The space~-dependent fl uctuations of ES depend only, in usual cases,
on the geometry of the experiment, Indeed, if we compare E’S(R,t) with
— — i —p
ES(R + §R,t), where SRis a displacement on the sphere of ra-
dius R centered at the origin of the coordinate system, we find that
both amplitude and phase of Es are different since the relatjve phases
of the scattered fields from each volume element change by moving
fromRto R+ IR, The coherence area Ac of the scattered field is
qualitatively defined as the area (on the sphere of radius R) over

which the scattered field is appreciably uniform in amplitude and

phase, A more precisée definition would imply the use of a spatial cor
relation function for the scattered field, The coherence area is

given by:

'AS(@,W

where As( o, a/ ) is the area intersected on the scattering volume by
a plane perpendicular to R and pass&ng through the center of the scate
tering volume. It is evident from th is sexsidmmik definition that Ac

depends upon the observation direction, that is, the angles & and J/ .



2 :
The ratio A / AS is called the coherence solid angle. Eq,{10)
can be interpreted as an extension of the well known result for a.
one~dimensional grating of size @, which gives a diffraction angle
)\/q, and, therefore, a spot size )R/q, at a distance R,
— - . \

The scattered field E_ (R, t) at a given point is a random function

of time, A complete characterization of it is given by the set of cor-

relation funhctions:

L
Gm(t],...,t%) = (Es “1)

*
BN G E ) B>

+1

.

where m runs from 1 to infinity. By using Eq,(7) a one-to-one cor-
respondence between the correlation functions of the field and those

of the dielectric constant can be established.

3. - L.ight scattering: macomolecul ar solutions [5]

In a macroscopic system in thermal equilibrium at a temperature
T, local fluctuations of the dielectric constant are caused by fluc—-
tuations in the thermodynamic parameters describing the state of
. . . 5‘ -

the system, For instance, in a pure fluid the value of £ (r,t)

is mainly determined by local density fluctuations, We will discuss
now a specific example, that is light scattering from a suspension
of non-interacting macromolecules, small compared with the wave-

length of light, For such a system, containing Ng macromolecules



10, ~

in the scattering volume

N

S
— . <z -
dc (F,1) = dey 22 5[_’"'}(”] (1)

i=1

where dap is the difference in relative dielectric constant
between a macromolecuie and the solvent, and r (t) is the position
[

of the macromolecule i at time t, Equation 7 then becomes (taking

kL E)
5 o
). S SR ]
B T b g kTRl (2)

This result can also be obtained directly by regarding each macro-
molecule as an elementary dipole radiator, The electric field corre-

lation function is given by

G(I)('c ) \Eollg(u"da-: inc'c ZZ<2‘|° {t-f("ll;‘,}:“.), H:.(I-+ﬂ]}> 03)
TS “ |

For independent scatterers, the position of particle | will at al!
times be uncorrelated with the'position of particle j, Thus only
the terms for i = j will contribute to the double sum of Eq. 13 ,
For random walk diffusion under the influence of Brownian motion
it is easy to show that

G“)('C)= <IS> exp (i'w’o'z:)exp (-DIKZ‘E) {(14)



~

- : s

where {I.>is the average scattered intensity and D is the transla- |

b

tional diffusion coefficient of the macromolecule, An intuitive justifi-
. . 2,-1 .
cation of this result comes from the fact that (DK”)" ' is roughly the

time taken by a macromolecule to diffuse a distance I/k.
. L]

1f Ns is not too small, the scattered field, being the superposition
of many statistically independent contributions, is gaussian, The
intensity correlation function is therefore immediately derived from

Egs, 14 and 6, and reads

.; R ) 2 .
g @ (o & @2 4 |6V [

s ”
. [

#

= (Isi [1 +exp (=2 DKoT ):l (15)

4, - The intensity correlation technique

. . T \ 2,-1
Let us evaluate in a typical case the correlation time ‘tc = (Dk™) ',

For a spherical particle, D is given by the Einstein-Stokes relation

KB T
D= (186)

6\T7P

where KB is the Boltzmann constant, T the absolute temperature, 7

the viscosity of the solvent, and r the radius of the particle,
By considering a room temperature aqueous solution of spherical
. ° ) -6 2
macromolecules with r » 20 A, we find D o~ 10 cm /sec, If
. . o
the optical source is a He-Ne laser ( A = 6328 A ) and the scattering

. - X -4
angle is § = 60° , the correlation time comes out to be around 10 = sec,



We could evaluate alternatively the {inewidth A’é of the optical

spectrum of the scattered light, From Eqgs, 3 and 14 we obtain a

1
L tzian tru ith Ay = %
orentzian spectrum, with p 20 T 2 KH=z,
c

Besides the problem of the required frequency stability of the

laser source, it is clear that such a narrow linewidth cannot be
measured with the available optical instrumentation,

We recall in fact that the smallest obtainable instrumental width

of a Fabry-Perot interferometer is around 1 MHz, The meaiur;emelnt

2 ¥
G( ) (T) is simpiy performed by sending the scattered beam to

of
a photodetector and by electronically processing the electric current

at the output of the detector, Weak light beams are generally detected

by high~gain photomuitiplier tubes which yield a current pulse for

each photon absorbed by the photodensitive surface, If the optical

signal to be analyzed is so intense that many photons are absorbed

within the response time of the photodetector, the output electric

current i(t) can be considered as an analog signal proportional to

the intensity of the light beam, If we assume that i{t) is a stationary random
variable, its autocorrelation function R{ T )={i(t)i(t+T )y depends

only on the delay T and can be evaluated by a time average, In prac-

tice, R(T) is measured by sampling i(t) periodically and performing

the appropriate multiplications among the samples, Since it iis easier

and faster from an electronic point of view to perform multiplications

among digital signhals, the result of each sampling operation is gquanti-



13, -

zed through an analog-t;:—-digital converter, Several correlators
based on this technique are now commercially available,They ‘general-
ly work at a maxlimum sampling frequency of 4 MHz, but real time
operation is possible only at sampling frequencies lower than a few
kilohertz,

If, however, the optical signal is so weak that it is very unfikely

to detect more than one photon within the response time of the photo-
detector, the output electric current consists of a random train of
nonoverlapping pulses, In this case the efficiency of correlators
utilizing analog-to~digital conversion is very low, and it is more
convenient to exploit the fact that the signal is already in digita!

form, Several photon correlators have been built in the last few
years, A detailed description of their design ar;d cperation can be
found in Refs, 6 and 7,

It should be recalled that the same information obtained from the
intensity correlation function can be gathered by measuring the photo-
current power spectrum which is the Former transform of the c‘orre—
lation function, This was indeed the technique emploved in the original
applications of electronic spectroscopy to light scattering, Spectral
analysis is still widely used for velocimetry applications (fluid mecha-
nics and electrophoresis) because it gives directly the velocity distri-
bution of the scatterers [.‘Z‘J .

In usual light scattering experiments the scattered field has gaussian

1
statistical properties, so that the time behavior of G( ) cah be deri-




(2)

ved from the measured G “( T ), It should be mentioned, however,
that a direct measurement of G“) can be performed also by tﬁe in-
tensity correlation technique, Indeed if the scattered light under
investigation is mixed on the photodetector surface with some of
the unscattered light whiéh acts as a local oscillator, and the
intensity of the local oscitlator is made much larger than the ave-
rage scattered-intensity, it can be shown that the time dependent
part of the intensity correlation is proportional to G (Wo— WS)T'-_“C(”/'C)I
G& , where wo and Ws are respectiyely the frequency |
of the incident beam and the central frequency of the scattered
field, The reference-beam technique is particularly useful when the
scattered field is not gaussian or is frequency shifted with respect
to the incident field,
Since ICS introduces electronic instead of optical delays, there is
practically no upper limit to the available time delays, The respon
se time of the photodetector puts however a lower limit to the de!ay.
A very interesting feature of ICS is that requirements on the tem-
poral coherence of the optica! source are much less severe than in
the case of interferometric measurements, If Eq, 7 is written as

E, (t} = E (t) a(t), | (17)
where aft) is proportional to the amplitude of the appropriate Fourier
component of the fluctUating polarizability of the scattering medium,

and if we take into account that Eo(t) and alt) are statisticaliy inde-
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pendent, the correlation functions of E (t) are expressed by

1
M (t) = sl () g'V
S o] a

(T) and  (18)

(<) = &2 (v) e (=) | (19)
S 9] a

where &' (x) = (el E t+n , 6z = Ldatre),
le
o

and so on, The function (t )l is constant if T is much

shorter than the coherence time T co of the source, and goes to

(1}

zero for 'L'::b'%o. Therefore G (T) can be derived from the

(1 )

measured G (t} only when its decay time is S‘%o. Quite different
. . . \ (2) (2)
is the situation for the measurement of G, because G o ()
becomes asymptotically a constant for large delays, Hence, provi-
ded the source is intensity stabilized, no matter how broad’'is its

. (2) . . (2) NP
optical spectrum, G s is proportional to Ga « Theonly limita-
tion to the spectral width of the source comes from the fact that Eq, 7

is valid only if the scattering volume is smaller than the coherence

volume of the source,

5.~ A pplications

We list below the main applications of ICS,

a) Eluids in thermal equilibrium :
Physical chemistry of macromolecules in solut;on polymers, bio-

logical macromolecules, micelles, Information on size, shape,

hydration, molecular weight, interaction, association~dissociation




equilibria, motility of living microorganisms (bacteria, sperm celis),

Dense fluids : single and multicomponent systems, Measurement

—— i a——

of thermal diffusivity and mass diffusion coefficients, Study of

phase transitions [8].
]
Fluid interfaces : velocity of propagating surface waves (ripplons),

_ e e emm —— —

Information on surface tension and shear viscosity,

Plasmas and gases ! velocity distribution of ions, electrons, atoms,

Information on temperature and other parameters,

b) Elowing fluids (Laser Dopoler velocimetrv) {2]

Hydrodynamics : laminar and turbolent flows, convective mstablh-

— e —— —— e ==

Aerodynamics : wind tunnels

Combuitio_r_w_ and flames

Blood flow

— — — —

EIectrophoresns : macromofecular motion under the action of an

— — -

electric field,
wiH ﬂ.equ.,\:l bs OJW:Q\'CA(T.O% 5)

only mention here the principle on which L.aser Doppler \Velocimetry
is based, If we consider Eq, 12 and assume that the Ns particles
are moving with a constant velocity v, the position R (t) can be

— -3 -
written as r:j'(t) =i + v t. As a consequence the scattered field
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s frequency shifted with respect to the incident field of a quantity

$ v
Ay = s
D . -H,.2q - -,

We have not here the space to give even a sketchy treatment Of. all
application a), The following short discussion is confined to macrg
molecular solutions,

Macromolecules with a linear size much smaller than 1/K are essen-
tially point scatterers, and only motion of their centres of mass will
contribute to the time-dependence of scattered light fluctuatiohs. ‘

If we further assume the scatterers to be non-interacting and iden-

1
tical, G( )

(1T ) is exponential (sec Eq. 14) with a decay time T =
2.1 . . . . . .

(DK™)™', The translational diffusion coefficient D is a parameter of

some importance for the following reasons, First of all it 'can be

used to determine the molecular weight of the macromolecule through

the Svedberg equation [5) , once the sedimentation coefficient is

known, Furthermore D provides a direct measure of the friction

coefficient f  through the relation D = (KB T/ fo). For spherical
)

particles f_is, in turn, given by the Stokes relation (cf. Eq, 16)
8]
= (20)
fo 6n 7 RH

where RH is the radius of the particle in solution, the so-called
hydrodynamic radius, Note that when the macromolecule is hydrated
Py does not coincide with the radius of the dry macromolecule,

and the comparison of rH withe the dry radius gives information on




the degree of solvation; For non—spher‘ical particles a form factor
has to be included into Eq, 20, Therefore configuratichal cha:nges

in the macromolecule produced by any variation of the environment,
such as temperature or pH, can be detected by measuring changes
of D, A typical application is the study of the reversible denatu'r*a—
tion of small proteins,

The treatment becomes more complicated if macromolecular poly-
dispersity and {or} interactions are taken into account, We refer

to the specialized literature for a full discussion of these points, |
We just mention here that, from the experimental point of view, po-
lydispersity appears as a departure of G“) (T ) from the single.
exponential behavior and interactions give rise_to a concentration
dependence of the diffusion coefficient D,.

A large variety of macromolecuies have been studied in the last
few years by ICS, The list includeg naturally occurring and man-
made polymers in water and other organic solvents, many macro-
molecules of biological interest, such as proteins, viruses, phages,
microorganismé such as bacteria and sperm cells, Very recently

ICS has been applied to micelles which are colloidal aggregates

formed by surfactant molecules [_9],
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