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1 - Quantum Optics : a heuristic approach - Terminology and
1.2 Physics of the stimulated emission processes

Numerology
If the e.nm. cavity where we are considering the radiation—
. - a r fag m. - -mﬂ 2 i i i
1.1 pefinition of Qquantwa Optics atom interaction 1s a rectangular cavity of sides X, ¥, Z ;
14

The term "quantws electronics™ was first used in 1959 at a volume V = X Y 2 , then the solution of the wave equation,

conference dealing with the physical and engineering uses of with = - periodic boundary conditions, yields the plane wave

expansion for the field

the MASER {Microwava Amplifier by stimulated Emission of Radia-
. . . . . 5 = i(bxekyy +kg Z)
tion) and MASER oscillators in high resolution spectroscopy and Ek,y 2 by = 2. Ez(k)s (1.1)
1.1
in the handling of electromagnetic signals at A ~o1ocm. where k. =n, - 2W/ % .
Half a year later, the first LASER was operated (L stays . T
For 1ight. The L has replaced the M because this time the gen— ky=n,. 21n/Y ﬁbw =1, 2, ...)
erated radiation is at urmm 1 Nrav ww =n, 2N /32

Since 1960 the LASER has become a useful device in many
For each set of k i ; : :
areas of physics and technology. 1,2,3 Ve have a different Field configuration,

. fe 3 . or m .
In the spectral range of interest, it is more convenient to ode

The dispersion relation imposes w.mommﬂdwwnﬂ between Frequency

) and amplitude X = ‘gw_m + xmm + Wum of the qun.ﬁou

speak of Quantum Optics, rather than Quantum Electronics.

Quantun Optics can be approached from three points of view,

namely :
T i) physics of the stimulated emission processes; - W = ck (1.2)
. . : . : Kk
ii) coherence and cooperative phenomena in radiation -matter 3
AK

- . >
interaction; In k space (Ffig. 1.1)

iii) applications of the LASER related to its spectral purity. Ko

each mode occupies an
We shall discuss the three aspects in sequence, defining slenentary volune
K,

Mu HM_%NM—A”Eu.
ks 3k Sk Sky = IZ |

Fig, 1.1

the terms and giving the orders of magnitude.
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B c? y (1.9)

8 = B . {1.10)

This can be interpreted by representing the degrees of free-
dom of the e.m, Field as boxes and the excited atom as linked

to all of them as in fig. 1.3
excited atom

Emission 1
possibilities

vwanoz
numbers O

Fig. 1.3

With the probabilities there »:aunmﬂmaweﬁm stimulated emis—
sion probability into one mode is larger than the total spont-
aneous emission over A M modes (all those within the linewidth

AV of the atomic emission) when

n > AM, (1+11)

In other words, it is not enough to have a mode with a
large population (n »>» 1) but it is necessary to obey the spec~
ific condition Ae.ﬂﬂv in order to observe stimulated effects.

Hitherto we referred to the whole rhoton number in the cavity,

It is more convenient to refer to the photon flux, given by
nv: =cn/ V or in terms of the field amplitude and the freq-
ency ¢a) , by

T hw em? sec

- 2 I
mv _ c¢, E photons (1.12)
o
This becomes smaller for high frequencies () , unless we
simultaneously increase the E field strength,

The stimulated transition probability per second per atom is

given by ,
W = mumN., (1.13)

where the cross section & for the process can be evaluated on

a purely classical basis. For a free electron, it has the

Thomson value
.24
g t o} =X
G, =3 T 0.6 xt Em (1.14)
where
Re = & /(brg mc*)

is the classical electron radius.

For a bound electron, if the field frequency is rasonant with the

atomic transition, the cross section is
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By Egs., (1.12) and {1.13)}, the condition (1.11) can be re-
S > bz\nv o Ew\mw.

This shows that for high frequencies and -~ constant G, stimul-

phrased in terms of & as

ated emission can be obtained only by very high fields. Hence
above ._oAhm Hz it is no longer convenient to extract energy froan
free electrons ( with G = Gy, } , even though outstanding
examples are offered of e.m. fields in the visible and U.V,
generated by free electrons (Cherenkov radiation, synchrotron
radiation). 1In fig. 1.5 we report the regions where most lasers
are available. It is useful to compare the A scale with the
eV, Hz and °X scales.

To put Bq (1.15) in a dilferent way, we recall that if ¥ is
due only to radiation dampiny {no collision broadening or other

things), then from classical electro-dynamics

e A Y A

2 "

T .
Cres ™ ALy {(1.15)

hence

Notice that the cross section is not the square of the elect-
ron radius nor tne cguare of the Bohr's orbit but the squared
wavelength which in the ¥iaible and UV .is ‘mich bigger..

One arrives at the same numerical wvalue by a semiclassical

approach. Take the interactipon Hamiltonian

-
\I.. =—d-E {1.16)

- 10 -

with a classical E field and a dipole operator whose matrix

element betwozn the two atomic states is <Aldle>= M

2 . . .
.\o x ¢cm for an allowed ﬂ«.w:mwnpoa. TPaen by Fermits

ﬂ .‘!..).JO|

golden rule the transition rate is

.U.\S L i
w o= W.W_. davif \cr E (1.17)

putting @_s\gavs - M\?DEV (Lorentzian curve) and dividing
o 2
by the photon flux ¢ -c¢ E \m.nnou , one has

"

& - M 4 @ 2 (cwn?) (1.18)
nvr \rnm..br_ \%

This value is numerically as Vw\bﬁ.\.
Dividing w by the photon number in the cavity

n o EEYV /(%a)

one has the coupling constant per atom and per photon

i 2% L 3
@. = :..m...mlﬁﬂl A \\r (1.19)

that we shall later use in the fully quantized interaction
Hamiltonian (Fig. 1.6)

H = *n g(a'sT + a s%) (1. 20)
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Let us c¢all N = ZN . zd y the differcnce of bopulation
between upper and lower state in the active ammwca\mm DODL1—

ation inversion,

Then, neglecting tae spontaneous contributions {i.e. assum-
ing Ba.(1.11) Fulfilled) tie rate equation for photens in tha

cavity will be

dn _ Q:V dn
dt = Tat/ . T Tdat
gain de loss

Ov , by use of relations (1.19) and (1.22),

dn AN n
aﬁum#..m.gl

Hence the thresiold condition for starting oscillations from

an initial spontaneocus seed (in other words: to have a self .
sustained oscillator rather than an amplifier; so that we

should say LOSER rather than LASER ! ) will be
@DZ > /T, (1.23)

This conditien is represeated in Fig. 1.7 for two different
pump values, i.e, for two different A N . In the first case
only one mode is above threshold, hence we have a single mono-
chromatic frequency. 1In the second case we may have emission
at three frequencies, Here we must introduce the fundamental

difference between homogenegus and inhomogenecus iinewidta.
S CIeOE DRy EneCus

H
N
-

4

In the former case a monociiromatic transition is broadened by
circumstances waich are equal For all atoms in tne cavity {as
spontaneous lifetine broadening, atomic collision broadening
in a gas, phonon intoraction in a solid mat»ix). All atoms can

contribute over the whole linewidth, Hence, once the moda

nearest to the peak ndas been mxnwﬁma-mw the associated field
"sweeps" the cavity, it will "eat" all atomic contributions,
forbidding the other modes from going above threshold. In the
mnmbmwlm wave case this frequency picture is not sufficient
and one should also consider the space pattern. As sketched
in fig. 1.8 two different modes have modes and maxima in dif~
ferent positions, hence they will "exploit" difFferent atoms,
releasing the competition. It is then possible the simultan—
eous laser action over many modes.

The inhomogeneous line broadening corresponds to different
frequency locations of different atoms. ‘This can be due, e.g.,
to Doppler shift in a gas where thermatl agitation gives a
distribution of velocities to the molecules and hence a distrib.
ution of Doppler shifts

Aw = «w Y /c

-
where <w is velucity component along the k

vector,
Another inhomogeneity occurs in a crystal where active ions
are exposed to a crystal Field which changes from site to site,
contributing with a spread in the stark shifts,
For an inhomogeneous line, different modes can go above

threshold even without a standing wave pattern.
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at the upper level, mirrors) tiiere is also a
saturable dye which becones transparent at a
eritical ligat intensity I (see d) ). a1l
the standing waves of the different modos will
self-adjust their phases to have a maximum
when the dye is transparent, Transparency is
then lost with a decay time =5 << 2L/c
and then recovered after a transient 2 1L/c,
This corresponds to having a narrow pulse
bouncing forth and back between the two mir-
rors. Notice that, from b} the pulse duration

is 1/ bu\ﬁr

In £ig. 1.9 and in the associated caption it is explained
now to lock in phase the laser lines, in order to make short
pulses {as short as the uncertainty relation permits, i,e.

1/ AV a).

By using a Doppler broadened atomic line in a gas (like in

4. He-Ne, or in an At . laser}, then
Av ~ \%.. l_nw‘h\wglw_l» r ~0n__ Hz
hence

~ .
tugse™ 1 0 S

Using ions of a transition element imbedded in a erystal

3+ H+ in glass,

or glass matrix, as Cr”' in Al, O {ruby), or Nd

one may nave large kwvf because the 3 d or 4 f electron

— ¥

is strorgly affectcd by tha crystal fiata, 3 Laxin mw«um can
L . X complex dye molecules in
also be achieved in the cdse of 4 licuid solution because of
”~
the overlappirg among many vibrational 4and rotational levels,
It is novadays easy to acaieve
AV, ~ 10" Hz
and hence

~ 0. s
ﬂwzumm 0.1 p sec

Notice that the range of pricosecond times can be attained
only by techniques as in fig, 1.7 » and not by electronic

shutters,

1.3 Stimulated emission and nonlinear optics (NLO)

In f£ig. 1.3 we have represented the difference between
spontanecus and stimulated emission. With reference to the
Hamiltonian (1,20), and looking only at the field creation
operator, it is well known that it acts on an m — photon

state as follows

w+_3V = Ym+! _3+_V. {(1.21}

Therefore the transition rate for an emission process will

be proportional to :
. kN
spontaneous ¢ —A_ _ Q.T ‘OVH = A

stimulated : _As+_ _9+_3v_9 =+
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Table 1.1 - Examples of NLO processes

Nature of the gquanta

Name of the

process
2 3
light molecular vibrations Raman
" optical phonons in
"solids "
" acoustical phonons in
solids Brillouin

sound waves in
liquids

light

parametric conver-
sion {sum or dif-
ference of fFrequen-
cy, second harmonic
dgeneration etc.)

(4} -
o= X £y E.E, : (1.23)
eg_n.n
The nonlinear refraction index can be written in the isotro-

pic case as

no= n 4+ :w..tm_m A._.m.dd
In a liquid of anisotropic molecules,self actions stem
from orientation of the molecules due to interaction with the
induced dipole moments (high frequency Kerreffect)., In a liq-
uid of isotropic molecules, or in solids and gases, self
actions are due to electrostriction. For picosecond pulses,
electrostriction is too slow to Follow the amplitude changa,

and the effects are due to distortion of the electron cloud,

1.4 Coherence and cooperative phenomena

As shown in fig. 1.3, stimulated emission explains the
muh<wpmmmn £illing of a given mode, that is, a harrowing in
the frequency spectrum and in the spectrum of possible dir-
ections {monochromaticity and directionality). This amounts

to increasing the spectral purity , and use can be made of

it in physics and technology {(linear spectroscopy, holography,
Plasma production and compression by powerful laser pulses).

But all this has very little to do with coherence .

Stimulated emission is a first order effect, i.e. it prov-
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Fig. 1.14

We call coherent this highly excited field state without

noise. The field can be described with very good approxim-

. a : .
ation bya.c-number with constant amplitude and phase, Such a
Field can bring the induced atomic dipoles to a coherent
motion in which the phase relations among atomic wave func—

tions are kept for long times,

This is the basis for a coherent nonlinear spectroscopy

which sheds information on fine properties of atoms and

molecules,







