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RESERVOIR THEORY —
DENSITY OPERATOR METHOD

16. Reservoir Theory — Density Operator Method

Qur treatment of the quantum theory of radiation so far has predominantly
involved entire systems, such as the electromagnetic figld in 2 cavity. In most
areas of quantum optics, however, we are interested in only part of the entire
system. For example, in the laser problem, we want to know the field but are
not particularly interested in what happens to the atoms. We find it convenient
to separate the system of primary interest from that (or those) of secondary
interest and to call the former simply the “system” and the latter the “res-
ervoir.” We can eliminate the reservoir by using the reduced density operator
method in the Schrédinger (or interaction) picture or the noise operator
method in the Heisenberg picture. In this chapter we discuss the density
operator method, which provides computational convenience while stressing
the statistical aspects of the problem. In Chap. 19 we use the noise operator
approach, which often requires more calculation but offers a direct physical
appeal in its resemblance to the classical Brownian motion problem.

In Sec. 16-1 we intreduce the reservoir concept by considering a system
consisting of a simple harmonic oscillator (e.g., radiation field) interacting
with a reservoir of resonant, two-level atoms. The field is taken to vary little
during the lifetime of an atom (as in the semiclassical theory of Chap. 8),
allowing the use of a **coarse-grained” time rate of change for the field density
matrix. The atom-field probability amplitudes derived in Chap. 14 are used
in the derivation. With a good knowledge of this section, the reader is prepared
for the quantum theory of the laser in Chap. 17.

In Sec. 16-2 we carry out a more general approach in which the density
operator is used for the entire caculation. The formalism is illustrated by the
atomic beam reserveir problem of Sec. 16-1 and allows an easy calculation
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260 RESERVOIR THEORY—DENSITY OPERATOR METHOD [CHAP. 16

was solved in Sec. 14-3 by the use of ordinary time-dependent perturbation
theory. The resulting atom-field density operator is given by

Pat( + 1) = 3 Pylyat(t + D<yart (t + 7)), ™
L4

which is then used in (5) for p(t + 7). The initial condition for the combined
atom-field state vector is the outer product !
[Wa—t(t)> = (1 )> 15, (8)

where the state vector |w(¢)Dis any one of those appearing in(2). Inasmuch as
this second method is considerably easier for the simple reservoir interaction
at i:and, we use it here and postpone further discussion of the straight density
operator method to the general theory of Sec. 16-2. 1t is interesting to note
that a very realistic model of the laser consists of sirnple extensions of the
field-beam problem, and we will need in Chap 17 no more than our present
method to give a fairly general quantum theory of the laser. In that develop-
ment we use the strong-signal results of Sec. 14-3. Here we need consider only
second-order perturbation theory solutions on resonance.

Our initial field state vector (at time ¢ of atom injection) is given in the
number representation and interaction picture as the superposition

W) = .\M Ca(t) n>. ®
Corresponding to this is the initial field density operator:
)= Mruisv i = wuw_. MM CaCu™* 1> <m|
= 22 pam(1) > <m]. _ (10)
The initial atom-field state vector is just the (outer) product:
| et = [Watom(t)> (1))
[ Watom(t)> M Ca(t) | (11)

From (14.70) and (14.71), we know that the atom-field probability amplitudes
Ca,a(?) and Cp,n+1(f) are coupled together in time according to the (on res-
onance} equations of motion

Can(t) = —ig(n + DV2 Conpalt), (12)
Crmalt) = —ig(n + DVZ Capn(r). (13)
Hence we write the atom-field state vector at the later time ¢ + 7 as

att + > = ZCarlt + D]ad|n> + Conialt + DBDIn+ D). (14)

Suppose first that the atoms are injected into the lower state, that is,
|wstom(t)> = |B>. Then the initial state vector for the combined atom-field
system is

16-1]  ATOMIC BEAM RESERVIOR 261

|wat@)> = X Cana(t)in + 1|5, )

where we have used n + 1 instead of n to interface with the results in m.no.
14-3. Hence the probability amplitudes Cg,x(?} and Cy,n41(f) in Emﬁ.mmozoc
have the initial conditions Can(t) = 0, Cp,n41(1}) = Cny1 (¢). Equation (14,
74) then gives, to first-order,

Qn.:ﬁ + ._..v = IL.WJ\H ﬂh.\.?a.vuﬁc = ....MN.:\H‘ Q=+HQV. :mv
The corresponding amplitude for remaining in the lower state is, to second
order in the interaction,
Coyns1(t + 7) = {1 — 422 + 1)]Cona(?)
= {1 — 4g%2 (1 + DICasa(0). amn
These solutions could have been obtained, of course, by expansion of the sines

and cosines in the exact resonant solution (14.82 and 14.83). The 8.8_ density
matrix elements pa,n.am(f + 7) required in the trace of (6) are given by

Paynzam(t +7) = 2 PoCosn(t + 1)C am™®(t + 7), (18)

in which the sum over state vectors refers to Em field mixture. Hence, with
(16) and (17), we have

Pamam(t + ) = g22/(n + 1) (m + 1) Prstomi(t) (19)
Posn:bemll + T) = (I — m.w.uﬂwzv {1- ,m.wwﬂmw:v. baa..c.v

= [1 — {g%%n + m)lpan(t), ) (20)
that is, , : I
Pan(t + 1) = g2%/(n + 1) (1 + 1) Pravmsi(t)
+ {1 — 3g%%(n + m)]}pam(t).

Hence the coarse-grained time rate of change of pam(r) due to atoms initially
in the lower state |&) is

Pum{t)] 16> atoms = re[prm(t + 1) — Pamlt)] ) v> atome
= —1%%n + Myppm
+ Gf(n + 1) (m + D2 paiime, 21
where the rate coefficient
GEy = regttd (22)
Similarly, for atoms injected into the |a)> eigenstate, we have
q_uuquﬁﬁ + .Hv = : IWWN.HNAH + HVHQ*pANVu
Co,n+1(f + 1) = igrln + V2 Calr), (23}

which gives the contribution to the equation of motion for pam{t):
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264 RESERVOIR THEORY—DENSITY OPERATOR METHOD [CHAP. 16

can be qom.m:.mna as the result of spontaneous emission. This implies a buildup
of the radiation until an equilibrium is reached. In steady state, (33) yields

_ _
{n(oo)) = FH_a@m, =" (34)
in agreement (of course) with (32).
Another quantity of particular interest is the electric field expectati 1
defined by [see (14.16)] peciahion vale
CE()y = & sin Kz Tr{p(t}a + at)}
= & sin Kz Tr{p(t)a} + c.c.
=& sin Kz 3, <n|p(t)a]n) + c.c.

n=9
= & sin NN.W._,W vn pun-1(t) + c.c. (35)
Inserting the equation of motion (26) for pa,n_1and using the techniques

leading to (33), we can show (Prob. 16-4) that the positive frequency part of
the field expectation value (35) has the equation of motion

d
5 <¥a> = 3 + 1)1<ad - b {Zad. - (36)

apart from the sin Kz. Thus the average field decays to zero {dephases with
zero ensemble average) in time with decreasing rate for larger temperatures.
H—,Em does not imply that the field intensity vanishes in time; this quantity
is proportional to the average photon number 7.

In the laser theory of Chap. 17, we use an atomic beam reservoir to simulate

the finite cavity Q. For this, we suppose that the average electric field decays
according to

1y

d
T O = = 3 T — iKE@) (37)

or, equivalently, that the average photon number has the deca
» . y term — (/@)
<n(1)>. Comparing (37) with (36), we see that the Q is given by

== o0 = — = 9B — S, (38)
that is,
v o
Ry = o 9By = 0 A+ 1) (39)
In these terms, the density matrix element pp; has the equation of motion
. 1y v

Pam = IM.UHN&A:IT m+ D+ n+mpam + 0 A J/nnt pr-1m-1

+ w i+ Dln+ D(m+ D2 pprrmer {40)
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16-2. Density Operator and Quantum Fokker-Planck Equations of Motion

We now consider the system-reservoir interaction from a totally operator

“point of view. This method is often more convenient in treating more com-

plicated problems than the two-level atomic beam reservoir interacting with
a simple harmonic oscillator. We illustrate the formalism with this simple prob-
lem and then derive a corresponding Fokker-Planck equation for the
diagonal distribution P(a) of Sec. 15-3. The reader will recall that P(a) is or-
dinarily the probability density for the coherent state| a), although there exist
pathological examples for which P(a) has negative and highly nonsingular
values. The Fokker-Planck equation is fairly easy to derive with the operator
formalism of this section, although it is relatively difficult to obtain from the
photon number representation (pam) found earlier by use of the state vector.
The theory can also be used to treat the damping of a field or an atom by a
reservoir of oscillators, as discussed in Prob. 16-14.

We consider in general a system denoted by A interacting with a reservoir
denoted by B. The combined density operator is denoted by pas(?), and the
system reduced operator is given in extension of (6) by the trace over the
reservoir coordinates:

pat) = Tra{pan(t)} = 2.<B | paB(2)| B (41)

At the initial time #, the system and reservoir are taken to be uncorrelated,
and hence the initial value of p4p(?) is given by the outer product [like(5)}:
pap(t) = pa(t) @ psl1). 42

For the atomic beam problem of Sec. 16-1, we derived a coarse time rate of
change for the field-atom combination by writing an appropriate pap in terms
of a superposition of state vectors whose time evolution was known from cal-

culations in Sec. 14-3. Here we determine this time development for papitself.
Specially, in the interaction picture, the equation of motion for pag(t) is

pa(t) = — 5 [Vas(t), past)] @3

Solving this through iteration as indicated in Sec. 7-4, we obtain pa(t + 7)
by tracing over the B subsystems:

palt + 7) = Tra{pap(t + D} = Tre{pa(t) ® ps(t)
iVttt 2] .Y
+ Mﬁlih dty i dz . . .h dis

X [, [ (), - . (70, pa() @ pa(t)) - - (11} (44

It is instructive to write the lowest-order terms explicitly:

pa(t + 1) = Trelpalt) ® palt lm.ﬁ:& 177, pat) @ pst)) + - - ..w
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9.
da
for typographical simplicity. These relations follow (Prob. 16-8) from the
formula

(56)

mn“

|a><{a| = exp(—aa*)exp(aa!)|0><0], (57)
which, in turn, follows from Eq.(15.11)for the coherent state |a). In partic-
ular, we find in Eq. (53) that

atala><a| — a|a><{a|at + adjoint
= ata|ay {a| — a|e) {a]at + adjoint
= [a(d. + a*) — aa¥]]|a)> <{a] + adjoint
= ads|a) {a| + adjoint (58)
and similarly that
aat|ay<{a| — at|a><{ala + adjoint
= — [ada + 3.0.%]]a> <{a| + adjoint. (59)

We E.w: to substitute (58) and (59) into (53) and integrate the result by parts.
In doing so, we encounter integrals like

{ d%a Padala3<al = %_av@; ﬁ ~ [d%adaP)la><al.  (60)
The distribution P(a, ) vanishes at the infinite limits, and therefore (60) be-
comes

.?wm?mn_nvﬁ_ = ITN&p @P)la><al.

.H:.n Oa0a* term requires two such integrations (yielding two minus signs).
With these considerations, Eq. (53) becomes

[@2aPla><a| = - g. d2a (}(Fa — Gy) [0aaP) + c.c]

— FaBda(P)|2><al},

s;.ann we oc.ﬂmms a complex conjugate from the adjoints since P is real. Identi-
fying coefficients of {a><a| in the integrands, we have the equation of motion
for P(a,t):

Bla, 1) = -4, — Fp) %m laP(a, 1)) + n.n._

8*P(a, 1)

+ T (61)

. In the next section we discuss a classical version of such an equation, which
is called the Fokker-Planck equation. For the present we simply note that (61)
can be used to calculate the time rates of change of various expectation values,
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much as (26) for pnm (1) was used. In particular, therate of change for the
complex electric field value &a is given by

%Am.nv = ,_.mnnmﬁw@. )= —HFHs — F) & .—.&Nnnﬁ%m.?huv + n.n;

= — KRy — Ra) m%%p aP

= —% 9 + 1) KE . (62)
in agreement with the density matrix calculation of Eq. (36).
In terms of a cavity Q (38), the Fokker-Planck equation (61} reads

v 2 .
mmﬂ Ew?c: n.o._ + mm 9 %nwm*: (63)

Pa, 1) uw.m

16-3, The Fokker-Planck Eguation

Having seen the Fokker-Planck equation in the preceding section on the
damped oscillator, let us consider here how this equation arises naturally in
stochastic problems and interpret its time evolution. The simplest problem is
that of random walk along a line. The coordinate on the line can be, for ex-
ample, a position or a velocity, We consider two possible methods, one involv-
ing discrete, small position changes, and the other involving {one-dimensional)
velocity changes.

For the first method, we suppose that there are many positions of a line
(Fig. 16-3) which are occupied with the probability P(xs, t). We desire the

Figure 16-3, Discrete positions on a line which might be occupied by a pariicle.

equation of motion for this probability. We further suppose that the particle
hops with a probability p, one positionata time, that is, X5Xn43. The change
in probability of being at x» in the time interval 4t is then given by
P(xn, 1 + A1) — P(xn, 1) = —(p+ + p-) Plxn, 1)
+ p-P(xni1, 1) + paPlxa-1,1). (64)

The reader will note that this equation is quite reminiscent of the photon rate
equations in Sec. 16-1 and hence that a similar analysis can be applied to that
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272 RESERVOIR THEORY—DENSITY OPERATOR METHOD [CHAP. 16

distribution to shift or “drift”” toward larger values of v if M1 is positive and
toward smaller values for M) negative. Mathematically, this is represented by
the fact that the average v value has the equation of motion

2L oty = My, (3)

which is the content of Prob. 16-9. The first moment M 1 is consequently called
the *drift term.” In Fig. 16-4b we show how the distribution spreads or dif-
fuses. In fact, the mean-square deviation

> — 1) (76}
has the nncmﬂo: of motion [I" = My/{v>]

3 2 KAO> — G = —TIHO> = DI + My, (T7)

as the reader can show by solving Prob. 16-10. For My = 0 (I" = 0), as may
occur in (66), the distribution diffuses with the values

LxTy — a2 = 2Mat.
Hence M is called the diffusion term. For M; < 0(F > 0), (77} has the
steady-state value

QA — <yt = 22

in which the spreading speed is limited by the damping. We returnto a
discussion of this in Sec. 19-1 on Brownian motion.

The Fokker-Planck equation (63) for our atomic beam reservoir problem
is a two-dimensional extension of (66). In it the complex variables a and a*
are independent. It is often convenient to use instead Cartesian or polar coor-
dinates. We consider the latter here and leave the Cartesian representation to
Prob. 16-11. With

a = rexp(id), (78)
we transform to r and 6 by writing
= aa*, 8 = %iIn{a*/a). 9
These give the partial derivatives
2] 1a* ,
mm = = fexp(-i), (80)
a8 . @ln 11 1 ,
3= —H maﬁc =—3.=" wwﬂxﬂlumv, t3))
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i d
= lexp(—i6) ﬁl - %u (82)
The partial 3/a* is given by the complex conjugate of (82):
d i 0
MMM = wﬂﬁcav A ﬁ wl m'm? ﬁmwv

which with (82), gives the second derivative (note that the ?.z.n_w imaginary
terms have to cancel)

& ye 18 @
=4 )

da da* orz T rar " a2
1/6 @ 92
= Jﬁﬁ%ﬂw %& ﬁw&v
Noting that
G- 9 1,8 ;8 118, 4.0
o=l tag =l —dg=i5 "~y ®3
we obtain the transformed Fokker-Planck equation:
lv 8 1(v/Q)n a2
Z— Zip2 - p— —
= 4 pr.6,1) = 55 T PG, 6, L - A_, 2_19 + %L (86)

16-4. Generalized Reservoir Theary

We have dealt with the atomic beam reservoir problem at some length,
since it illustrates the reservoir concept and the coarse-grained time derivative
in a simple manner. We have considerable use for these concepts in Chap. 17
on the quantum theory of the laser. We now turn to the problem of two in-
teracting systems in a more general context in which both systems are treated
on an equal footing and emphasis is placed on the correlation developed be-
tween the systems. We apply the theory to the spontaneous decay of an excited
two-level atom.

Consider two systems interacting with energy 7 (7). As in Sec. 16-2, the re-
duced density matrices p4 and pg for the 4 and B systems, respectively, are
given by traces over the complete set of states of the other system, that is,

pa(t) = Trp{pas(t)} = w“ <{B|pas(t)| B>, (87)
25 <A pas(t)| 4. (88)

Equations of motion for p4 and pg are then, from (44) (in the interaction
picture),

pe(t) = Tralpap(t)}

i m|| palt) = Tre{7 (1), pas(t)l, (39)
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276 RESERVOIR THEORY-—DENSITY OPERATOR METHOD [CHAP. 16

pa(t) = patt) . (104)
in the integrand of (103). This is called the “Markoff approximation.” The
models we treat immediately below allow us to work out the interaction-in-
duced correlations explicitly and hence to note to what degree the Markoff
approximation is valid. Note that (103) with (104), is obtained from the
second-order approximation of (44) by letting the difference t = r — to be
small (Prob. 16-14). '

16-5. Field and Atom Damping by Simple Harmonic Oscillator Reservoir

In this section we apply the generalized reservoir theory of Sec. 16-4 to the
damping of a simple harmonic oscillator and of a two-level atom by a reser-
voir of simple harmonic oscillators. The field damping provides an alternative
model for a laser cavity Q and is, in fact, the model used laterin the Langevin
treatment of laser oscillation (Sec. 20-2). The atom damping is just the Weiss-
kopf-Wigner problem of Sec. 14-4, here treated with density operator tech-
niques. In Prob. 16-14 this phenomenon is analysed with the perturbation
method of Sec. 16-2.

We describe the single-mode field by the annihilation operalor a, creation
operator at, and frequency 2. We describe the simple harmonic oscillators
of the reservoir by annihilation operators by, creation operators bit, and
densely distributed frequencies . The interaction energy is then given by

7@)=" W“ grabit exp[—i(Q — wi)t) + adjoint, (105)

where we have made the rotating-wave approximation as discussed in Sec.
14-3. We assume that the reservoir variables are distributed in uncorrelated
thermal equilibrium mixtures of states. Hence the reservoir reduced density
operator is the multimode extension of the thermal operator (15.38), namely,

pe = Tl exp(—hwgbatbuf/knT) {1 — exp(—fiwifksT)} . (106)
k
In Prob. 16-13, we show, using (106), that
Trp(batbipp) = fig Oy, (107)
where the thermal average boson number
fiy = ! (108)

"~ exp(hanfksT) — I
We further show that
Tra{bebstps} = (Aix + 1oy, (109)
Tra{bibsps} = Trp {balbytps) = 0. (110)

Hence insertion of the interaction energy (105) into the equation of motion
(103) for pa(t) yields
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palt) = — h “&, 5 get {atap (e )ie + 1) explit@ — wple — 1)

+ aatpa(t’yiy exp[— 2 — wi){t — 1)

— atpatDya(Fe + Dexpli(2 — wdr — 1)

+ apa(talir exp[—i(Q — wi) t — 1)]} + adjoint. (110
We now carry out the same procedure as was used in the Weisskopf-Wigner
theory of spontaneous emission (Sec. 14-4). Specifically, we change the sum-
mation over k in (111) to an integration over frequency

112
> % Dlw)dew, (112)

where D{w) is the density of reservoir oscillator states. Furthermore, we re-
place the resulting D{w} fi(w) g2(w) by D(Q) 7(2) g2(L2), mummE.cor as this
product varies little in the slowly varying region of the exponentials. Finally
we set

h,&;ﬁﬁﬁb — W)t — )] = 76 (Q — w), (113)
0

where we neglect the principal part, as discussed in Sec. 14-4. In these ap-
proximations, Eq. (111) becomes :
b4ty = —dy{filaatpa(t) — atpat)a)l + (7 + Dlatapa(t) — apat)at]}

+ adjoint, (114)
where y = 2 nD(Q)g*€) is the Fermi golden rule rate constant derived in Eq.
(14-105) and 7 = A($2). Equation (114) with y replaced by v/Q is the same as
(52), obtained in Sec. 16-2 for a two-level atom reservoir. Thus the explicit
model of a reservoir in thermal equilibrium does not affect our current re-

sults.

The equation of motion for a two-level atom damped by a reservoir of
simple harmonic oscillators (spontaneous emission problem) can literally
be obtained by the replacement of 2 and at by ¢ and ot, respectively, in the
interaction energy (105), in the intermediate result(111), and hence in Eq.(114).
The explanations for the derivation are identical. We thus find for the two-
level atom density operator pawm(t)

EﬁbE = - hwr% queébpnoﬂ - n#%mﬁon.a.u
+ (7 + 1) [o10patom — Gpstomat]} + adjoint.  (115)
In particular, for zero temperature (i = 0) and an initially excited atom
[pae (0) = 1], Eq. (115) implies
h.anﬁv = — ¥YPaa, Cumv

which is just the Weisskopf-Wigner result derived in Sec. 14-4 with the use of
the state vector. We return to this important problem in the Heisenberg pic-
ture in Chap. 19,
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