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3 -~ Quantum Optics : Colierent resonant spectroscopy

3.1 Introduction

In this Part we survey the relevant spectroscopic effects

induced by a coherent Field near resonance to an atomic or molec-

ular transition.
The main outcomes are
1) precise ammmzwmamzﬂm.om electric dipole strengths
A= L2eT {1
2) 1ifetime measurements (spontaneous; collision broadening
and its behaviour versus gas pressure which sheds light
on interatomic potentials)
. 3) absolute positioning of atomic levels (new wavelength
standards, accurate measurements of isotope shifts)
4) fine and hyperfine structure (f s , h F s) : Landé fac-
tors, Lamb shift, tensor polarizability
5) amwuowom< : new accurate values for « , Ry , ¢ (Ffiner
structure constant, Rydberg constant, light velocity)
6) preparation of particular atomic states (coherent excit-—
ation) or field states (modulation)
We shall cover the following subjects:
"i) coherent resonant effects local effects
propagation effects
ii) non linear spectroscopy : saturation and two-photon

iii) perturbed Ffluorescence spectroscopy.

-.-Wm —

3.2 The interaction model

Let us consider an e.m. field and a set of atoms confined in
a cavity. We discuss how to go from a physical Hamiltonian as

: = x
fiexd * mmﬁosm + xm - a '

ﬁ:mum Hy 0= ..N\m‘ zhcm. bmxru __vp

. .. . |o
X, dmwbmﬂsmmprnHOBOmmﬂoap.> AMHV n:m<wwsmomn:m<mnﬂ0H

vOnmbﬁwmwmn xw m:m Py ﬁSmaoamunzsomﬂwmwlﬁ:mpmnﬂaobnowm:wwl

able Hamiltonian .

—»
We expand the field in plane waves as (take 4 as a scalar)

Ln —ufeo, b -k x) y

D x..mdn M\ Qe + C.C
ﬁ w Ze CC< “

. ° “
(V = cavity volume ; mks system used) and consider mw and the con-
Jugate m+w as Hose operators

%'

om0 B

For simplicity, we mevamnﬁow relations and give a scalar theory.
Ew,msﬂ k are related by“dispersion relation

EK"OW

We consider the atoms as two-level atoms, so that the Hilbert

space of a singie atom is fully described by the identity operator I

- plus the three Pauli operators

+ -
¢ & qﬂ

R S e

It is then a straightforvard matter to obtain the following model
Hamiltonian
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3 he two-level at [ 2 2 A
+3 The two=level atom _ .
. 3p - 3s F3/a ma\w 5890

Under what conditions can a real atom be approximated E_..m
two-level atom ? Consider e.g. the allowed electric dipole Dlines mm._\m _ mmJ\m 5896 m
of Na atom

T-23,

\ In dilute gas Aﬂoam atoms / oau ) the colliczion time is -~ 1077 sec.
Rl el —
F- H + u ' The associated homogeneous linewidth is
3 2 o Sw o~ 108 s
.H.m <
oﬁ 53¢ MH= )
3 2 Further, there is an inhomogeneous Doppler broadening which is
MN , < . typically .
\\ 355
/ 1
/ 175 " 1 © 4 )
/ B F=0 _— = m [T% ] —~ 10
— [
}
2
F -2 -
189 MHz

1222 Miz

i

Fig. 3.7a
_ Fig. 3.1b
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'
3.3 The two-level atom ) _ mm °
. 3p - 35 mw\m 1/2 3890 A
Under what conditions can a real atom be approximated by a
two-level atom ? Consider e.g. the allowed electric dipole Dlines 2, s - 24 y 5896 A
1 1/2
of Na atom
I- 34 | 2 : e e e T
e s — In dilute gas {10 ~ atoms / cm” ) the collicion time is ~ 10 ' sec.
ﬂ = H + u ' The associated homogenecus linewidth is
3 2 2 fw o~ 10f &
.H_m <
25 59¢ MH=
3 % Further, there is an inhomogeneous Doppler broadening which is
typically
l.\Ml. = me..v ~~
— -3
!
2
4 -
..._lﬁ
&
L
T,
e

Fig. 3.1a
Fig. 3.1b
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which will yield as solutionsgJacobi elliptic functions, In partic-

ular we may have a hyperbolic secant solution, We emphasize the

role of the cooperation time t

[ . =M (s.47)"
[ e

]
_ <

It is the characteristic time of rad. - atoms interaction.

For a linearized problem (w = - 1 = cont ), (3.17) reduces to
6= -QR'¢

where now

2z 2 - "
25 N | (3:17)
e )
is the usual plasma Frequency Ffor a gas of Lorentz oscillators,

Here, m is the electron mass, and Hr has been replaced by the clas-
gsical cross section for free electrons,
In preopagation, we transform to a coordinate frame moving at

velecity V, and look for undistorted pulses or solitons ( WM =0).

2

{(z, t) IwhWnNYNuﬁ.ﬂmv {3.18)

From {3.14) it is an easy matter to obtain (3.19) and hence (3.20).

(3.19)

Tocpp) DE - 2 Np oy
(el b = e

L S (3.20)

-Imw.l

The hyperbolic secant solution of the soliton equation (3.20) implies

the following constrain between the pulse velocity V,and the veloc-

ity ¢ in vacuum, the linear attenuation & and the pulse duration Tt
d.l.v?

+.A .. C.m:
M;L Ww

4
- Lo ol Mo

Further, it is easy to prove

< |

1)} the area of the radiation pulse obeys the space propagation eq.
Lo0
0. | Acit . @imnlmimﬁwg (3.22)
+ / muw 2

-_—0

vhich gives solitons for 271, 4T etc.

ol

Fig, 3.4
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Many approaches to lasers are based on (3.24). On the other hand,
if the escape time of the field is faster than ed R am )
~Ne solve {3.23) at steady state, replace in (3.22), neglect atomic

losses and get

Amw = LA|: Wﬂs.mw . {3.25)
K\ﬁﬂ .

whose solution is

| Am ~ ms.%..ﬁ,ﬁ- T v | (3.26)

Tq
Kt = \ﬁwl Mﬁhmlr M_.shﬂt_.&?u
N g
T - [ oan (ptse detay) (3.28)
3 .
Mere, time € = t -2/ is the local timc. We have a soliton . Fig. 3¢5

solution or T pulise. . .
In this figure we compare spontaneous uncorrelated (Weisskopf -

If no applied field is present but the atoms are prepared in the . ..
Wigner) and correlated emissions.

excited state, we have spontaneous U pulse (superradiance} after

a time d:.

T

™ ,ﬂ._ ~ M o Hae spomtamtous Gfe Time, T was give

; Ahi, Lo
in .FA H.w.ﬁ.ﬁyﬁ / K yq.n.T*DniL. fu n\—l
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3.7 Two photon Spectroscopy. maavmaumo: with saturation

A transition between twe levels of equal parity, as 3 s r—p
4 s in Na , forbidden For one photon, becomes allowed For the sim-
ultaneous absorption of two piotons. IF two lasers are shined in
epposite directions into a cell, the Doppler shifts cancel and we

have a resonance exactly at the same frequency:

Er.s_.u WV
+W-kV=
= 8t

Fig. 3.9

we show a comparison between the two methods, and list the ap-

plications,

- 76 -

Table 3, 2

Two _photon spectroscopy

vs. saturation

contrast 100% :
no saturation broadening
level shifts (a.c. wnwuwv
ne recoil

nd

2 order boppler (red shift o< (_m

)

Table 3,73

Applications

fs , hfs

splitting in low B , E fields {Zeeman, Stark)
collisional broadening & shift at low pressures

selective population of single level within Doppler
line

Isotope shiff

precisa position levels . metrological standards
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3.9 Dynamic Stark shift

Spontaneous Fluorescence after laser excitation is predicted

to have a three peaked spectrum
_ Semiclassical (<& E™> ~ <ETDCETY &
e b -2 ,.mﬁ . +)
Hm& e e vie. a \r (3.31)
h <

- Quaptum.Above a threshold

£
Gl ARG 352

Z
There are stationary correlations given by a power spectrum (see

£ig, 3.12) ﬁa\ ,Evm
AR

\._.. ﬁcou .»N\ Ew o de . (3.33)
| -mqiﬁ;\w&f
u t+ fe

nﬂ.r..sL. wengp

mbiop,uf.hnhr. Erancient

skatisnarvly .
” (&»/7) Fig. 3.12

- BO ~

— This last equation suggest correlation spectroscopy as an altern-—

ative to ordinary spectroscopy.

The corresponding outcomes are depicted in fig. 3. 13

G™(e)
(em¥ ~
betlow Hesbwry- ~Brown
Hoach et Twissc -xn..-.v
i t
A atowm
‘Drﬂg\h
\( below
?’a}u
atemg
above
Fig. 3. 13






