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THE CONTINUOUS BAKER-CAMPBELL-~HAUSDORFF FORMULA
AND F-ORDERINGS

. PLEBANSKI

Institute of Theoretical Physics, Warsaw University, Warsaw, Poland,

Let H(t) with t € R be elements of some associative algebra
(/4’ . In many chapters of physics and mathematics it is of interest to
possess an explicit algorithm for the "evolution operator" E(t, ty) € S
defined by:

9
"a"%" E(t: to) = H(t) E(t:t ) » E(tuto)l =1, (1)
| t=t,

in the form:
t

t
Bt t ) = explt, to) Ot to) = Z f-...fdtn---dtl H{t )+« - H(t )u(t_-et,)
n=l bty &,

(2)
The problem of finding the explicit form of w(tn- . -tl) € IR is the
continuous Baker-Hausdorif problem. Its solution is of interest, e.g.,
in S-matrix . theory, in various applications to statistical physics and,
in particular, in various applications of group theory. We obtained the
solution of (2) by considering a more general problem: Let fz), ze €

be analytic in z = 0 ; then we seek the formal power series F=1{(E-1) =

20} + 5 £1(0) (E-1) +L 01(0) @-1)2+ -+ as constructed from H(t):
t
£(E - 1) - £(0) = ---Jdt---dt H(t )+ H{t,) £+ t,) 3)
“Z‘L f / n 1 1 n 1

with functions f(tn- x tl) to be determined, We have estahlished the

general resull that:

1 dz en
) T mm— e + .
f(tn t1) 27i Sﬁ zn+1 f(z) (1+2) (4)
where =0
df
©, = Blt -t )+ 6(t,~t;) ;@ =0 (5)
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with 6(t)=1 for t> 0 and = 0 for t< 0 , This specialized for
f(z) = In{l +z) yields:

t t
“1- 1yE
A, ) =Z ff dt - oedty Ht ) Ht) ()70 L (ré:) ©
n=l % _% "

Knowing that € is a Lie element and applying Dynkin-Specht-Weaver

identity, one can represent (6) in the form:

n-1- @ -1
At, ) = 7 f F/‘dt e dty H(t Jo o o H(t )} (‘?) (7)
n

ne= 1."0 [}

where { ‘e } denotes the multiple commutator symbol, The result

of course contains the 'discrete'' BCH formula, One obtains the algo-
rithm on i(x, y) defined by _ez ="e*.e” in the form z = §(1,-1) with
H(t) = @(t}x + 6{t)y which can be considered an integral representation
of Dynkin's explici’i form of the BCH formula. An an immediate appli-
cation of (7) a-closed formula for the phase shifts GI(K) in the non-
relativistic theory of scattering was obtained, The more general result
(3), (4) can be interpreted in the spirit that each analytic function f(z)

induces f{E-1) in the form of some ordering operation acting on

noo-

E = T exp fH(_tl) dt1 . Indeed, let =x =(1 veed

)E Z be understood
n .1

as an element of the natural algebra of Zn ; one defines 7 acting on

H(tn)- .. H(tl) as H(ti Yoo H(ti )} ; then in the subspace spanned by
n 1

H(tn)~ .o H(tl) one defines the ordering operation _On(F) according to

on(F) - 2#1 Z

neZ,,

9,.\(1)

I (8)

We hope that x in the coefficient is not confused with r under-
~i ) i
5 il) . 00( ) is

to be understood as muiltiplication of the number by f{(0) ., With these’

— . s $oeeefli
stood as permutation; @n(vr) means 9(1n ln-l) e(i

rules, understanding the orderings as operations which have to be executed

before integrations, one can rewrite (3) in the form:

-43=~



F=fE-1)= O(ME, (9)

The F-orderings can be composed according to the rules of the natural
aigebra of the group En (in the Subspaces one defi;;es the‘ ordering
O(F)O(G) as On(F)On(G)). One can show that L = O(f) is idem-poient
operation, LZ= L, More generally, the orderings O(2?™/m!) re-

present idem-potent orthogonal operations,

Basic results presented here were published as Ref.1 where the
proofs are given based on a technique which works with some resolvent

2)

function. A more complete paper ' where, in particular, new results
concerning orderings and their composition will be presented, is prepared

for publication.
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