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OPERATOR DISTRIBUTIONS
IN GROUP REPRESENTATION THEORY
AND THEIR APPLICATIONS

R. R4CZKA "

institute of Nuclear Research, Warsaw; Poland.

Let G be a locally compact type I Lie group and let X be a
homogeneous space relative to G , | with a quasi~-invariant measure u().
Let § = LZ(X, #) and let ¢(X)C ) C ¢'(X) be a Gel'fand tripletl).
For the sake of definiteness assume that ¢(X) is the Schwartz's nuclear

space of functions with a compact support.

Dénote hy D?n, n(g)l a matrix element of a unitary irreducible
representation ™ of G . A symbol A= {Jtlo . -ln} represenis a

set of eigenvalues which determine an irreducible unitary representation
T of G , whereas a symbol n = (nl, .o -,ns) ,[m = (ml, cee ‘ms)] re-
presents a set of eigenvalues of non-invariant operators which label
eigenvectors in an irreducible carrier space of a representation T>t .
For simplicity of notation we assume that A runs over a continuous set

of values, whereas n(m) runs over a discrete one,

Let g —>Tg be a unitary representation of G in }f = LZ(X, M) .
Let '

P = o) 4 g D, () Ty . | 1)
Here p(A)} is the spectral measure associated with a set Cl' ree, Cn of
commuting invariant operators of G in the carrier space y S Lz(X,u) .
One verifies that P;m repr;sents a mapping from ¢(X) into ¢'(X) . 2)
Consequently the quantity an cannot be considered as an operator in
j(, . However, it has a natural interpretation as an operator-valued dis-

tribution (cf, Ref, 2, Sec, 2).

Using the formalism of operator-valued distributions, one derives

b
the foliowing properties of an (cf, Ref, 2, Sec,2),
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The properties 1) and 2) of eq.(2) resemble the properties of

6-1 matrices Ei , which form a basis for hounded operators in a

k
. . A

Hilbert space, One can show that operator distributions an form a

basis for a certain class of unbounded operators, In fact we have (cf.

Ref, 2, Sec, 3):

Proposition. Let Z be any element of an enveloping algebra E of G

: 2
and let T(Z) be its image in ﬂ = L. (X,u) induced by a representation
g > Tg of G . Let {en(h, x))S be a complete set of generalized eigen-

vecfors in M/ . Then
o X
1(2)-2 f axz__ (P (3)
where h, "
2m® = [ 3ONCT@ e (), e 0> (4)

The operator T(Z)' in eq.(4) represenis an exiension of the operator

T(Z) given by the formula
(T(2) e (o) = <o, M, T(Z) 0

where ¢ is any element of the nuclear space ¢(X) .

One can show that an operator function
A
/" A
E() = dA P (5)
J nn :
n -co

represents a common spectral function of a maximal set of commuting

operators, which determine a complete set of generalized eigenvectors



{en(l, x)lj . Infact we have (cf, Ref, 2, Sec, 3)

- Zfdlci(l) P::n , A;Z fdJLAi(n,k) Pin . (6)
n n

Here Ci(?t) is an eigenvalue of an invariant operator Ci (i.e., Ci en(?t, X) =
= Ci(h) en(l, x)) and Ai(p}t) is an eigenvalue of a non-invariant operator

Ai (i.e., Ai en(k, X} = Ai(n, A) en(l, x)). I Z is an operator in theen-
veloping algebra which does not enter into a maximal set of commuting
operators then expansion (3) also contai‘ns operator distributions P;'m

with n# m .

The operator distributions Pim might be used for a solutio: of

certain operator equations., Let, for instance,

(D+m $= A (7)

be an equation in ’% = Lz(M4) , M4 be the Minkowski space, and let
¢ be a scalar operator field which commutes with invariant operators of

T in }‘v . Then the expansion (3) takes the form

_ - = M=> > M
¢-fdePqu> (F.Q P33 (8)
where .
P§6=M-1Idg-ﬁl§’d@) Tg (9)
. :

and Dg;[ a(g) are matrix elements of the irreducible unitary representation
[M, 0] of the Poincaré group T| in the momentum basis, The operator

O+ m2 by virtue of eq. (3) can be wriiten in terms of P%/[Q in the form

D+m2=f(M2+m2)de§daP%JQ . (10)

Inserting eqs. (8) and (10) into eq. (7), utilizing orthogonality pror‘,rties
M
1) of eq.{2) of P-»a and comparing ¢c-number coefficients of PPQ’

obtains

01+ m?) o B, Q) = & [aQoM(P, Q0 oM@ T . (11)

-



Thus one reduces a problem of a solution of an operator equation (7) to
a problem of solution of an ordinary integral equation (11). The class
of solutions of eq, (11) depends on a boundary condition imposed on the
function q)M(l?, 6) . The simplest solution of eq. {11) has the form

M > —

9 (P, Q) = 2

(M2 + m?) §(B-G)

>

In general, eq,{11l) might have an infinite number of soluiions, The

A
operator distributions an can also be used for an explicit construction
of Clebsch-Gordan coefficients for a locally compact Lie group (cf,

Refs, 3 and 4).

We now consider a method of classifying two-particle states of
two scalar relativistic interacting particles., Let Y (1,2} be a space
of square integrable functions (p(pl pz) relative 10 the measure
du(pT, pz) = d4 p1d4 pl. Since we consider an interacting system we do

not assume that particles are on mass shells of free partiicles,

A represeniation {a,A} - of the Poincar¢ group TT in

‘ U{a,A}
3{; (1,2) can always be written in the form

U{a,AzzTa VA . 'HE;

The composition law in T implies

-1 R
VATa VA _TAa . VL3

By von Neumann's theorem the operators P,u of tota. :nomentum can be

written in % (1,2) in the form

L z * .
P = P + 2% dE@P,P) . 4
’ f(u %) dE(P] F) (4)

. ) . .9 .
(This is true at least in so-called direct interaction theories 2) Using

eqgs, (5) and (1) for the translation subgroup T4 of 7| ,one obtains

L d
Ty w +
dE(p, p) * f AB*Pla T, da

i
[ ]
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The essential information on interactions is in fact contained in the time

ip a° 1 2
translation operator Ta° =g 0 with P0 = Hfree + Hfree + Hint .
Using egs, (13) and (15) one obtains ‘
1 -1 - 1,2
U{a, L}.dE(p,ﬁ) U[a, L dE(Ap,Ap) . (16)

Now Mackey's imprimitivity theorem states that if we have in ﬂ, (X, u) ,
X-= G/G0 is a homogeneous space of G) a spectral measure dE(x)

which has the property
-1
Tg dE{x) Tg' = dE{gx) (17)

then a representation g - Tg in N X,u) isa represéntatioh of G
induced by a representation I, -of a stability subgroup H of the space
X 6) . To use the imprirﬁitivity theorem for a classification of ad-
missible representations of ﬁ' in sz (1, 2) we have to split a manifold
X= {(p“, pl)ll of all momenta onto transitive submanifolds, Let (pl, pz)
be any pair of momenta of interacting particles. By means of a Lorentz
transformation one can transform a pair (p1, px) to a pair ((p10, 000)2

{plopip;p;» Using, further, a rotation,one obtains a '"'standard pair"

((p}), 000), (p’é, OOp;)). A stability subgroup of this pair is the subgroup

T4@ U(l) . Thus the transitive space defined by the standard pair is
a five-dimensional homogeneous space X5 = ﬁ’/T4 [8] U(1) = SL(2,C)/U(1).
Consequently, by Mackey's imprimitivity theorem,a representation U {a, A
is an induced representation defined by an orbit {(associated with a given

"standard pair'') and a repre sentation L of U(l). Clearly all irreducible

representations of U(l) are one~dimensional, i.e., U(1) 2> ¢ - e1NU .
N=0, %1, %2, ,.. One verifies that a representation {a, L} — UI{"a A}

induced by an irreducible representation L of U(l) is reducible. Its

decomposition into irreducible components has the form

ol - oM, I

J=An| Intes, Ve 2

where M2 = (pt +p) .
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One has another standard pair of the form {p,p) = ((pz), 000),

(pa‘, 000)). The transitive manifold defined by this standard pair is a
three-dimensional homogeneous space Xq =TF/T4 (8] SU(2) # SL{2, C)/SU(2).

An irreducible represeniation L of this stability subgroup leads to an

irreducible representation of ]| as in the one-particle case,

If one admits that during the interaction a particle might arise

with a space-like or light-like momenta, then one obtains yet other

transitive manifolds and the classes of representations of TT induced by

representations of corresponding stability subgroups.

1)

2)

5)

6)
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