

INTERNATIONAL ATOMIC ENERGY AGENCY

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

TOPICAL CONFERENCE
ON
DYNAMICAL GROUPS AND INFINITE MULTIPLETS

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
9-14 June 1969

1969
MIRAMARE - TRIESTE

OPERATOR DISTRIBUTIONS IN GROUP REPRESENTATION THEORY AND THEIR APPLICATIONS

R. RACZKA

Institute of Nuclear Research, Warsaw, Poland.

Let G be a locally compact type I Lie group and let X be a homogeneous space relative to G, with a quasi-invariant measure $\mu(\cdot)$. Let $\mathcal{H} = L^2(X,\mu)$ and let $\phi(X) \subset \mathcal{H} \subset \phi'(X)$ be a Gel'fand triplet 1. For the sake of definiteness assume that $\phi(X)$ is the Schwartz's nuclear space of functions with a compact support.

Denote by $D_{m,n}^{\lambda}(g)$ a matrix element of a unitary irreducible representation T^{λ} of G. A symbol $\lambda = \left\{\lambda_1 \cdots \lambda_n\right\}$ represents a set of eigenvalues which determine an irreducible unitary representation T^{λ} of G, whereas a symbol $n = (n_1, \cdots, n_s)$, $[m = (m_1, \cdots, m_s)]$ represents a set of eigenvalues of non-invariant operators which label eigenvectors in an irreducible carrier space of a representation T^{λ} . For simplicity of notation we assume that λ runs over a continuous set of values, whereas n(m) runs over a discrete one.

Let $g \to T_g$ be a unitary representation of G in $\mathcal{H} = L^2(X,\mu)$. Let

$$P_{nm}^{\lambda} = \rho(\lambda) \int_{G} dg \ \overline{D}_{nm}^{\lambda}(g) T_{g}$$
 (1)

Here $\rho(\lambda)$ is the spectral measure associated with a set C_1,\cdots,C_n of commuting invariant operators of G in the carrier space $\mathcal{H}=L^2(X,\mu)$. One verifies that P_{nm}^{λ} represents a mapping from $\phi(X)$ into $\phi'(X)$. One consequently the quantity P_{nm}^{λ} cannot be considered as an operator in \mathcal{H} . However, it has a natural interpretation as an operator-valued distribution (cf. Ref. 2, Sec. 2).

Using the formalism of operator-valued distributions, one derives the following properties of P_{nm}^{λ} (cf. Ref. 2, Sec. 2).

1)
$$P_{nm}^{\lambda} P_{n^{\dagger}m^{\dagger}}^{\lambda^{\dagger}} = \delta(\lambda - \lambda^{\dagger}) \delta_{mn^{\dagger}} P_{nm^{\dagger}}^{\lambda}$$

$$(P_{nm}^{\lambda})^{X} = P_{mn}^{\lambda}$$
 (2)

3) Tg
$$P_{nm}^{\lambda} = \sum_{\tau} D_{rn}^{\lambda}(g) P_{rq}^{\lambda}$$

The properties 1) and 2) of eq.(2) resemble the properties of 0-1 matrices E_{ik} , which form a basis for bounded operators in a Hilbert space. One can show that operator distributions P_{nm}^{λ} form a basis for a certain class of unbounded operators. In fact we have (cf. Ref. 2, Sec. 3):

<u>Proposition</u>. Let Z be any element of an enveloping algebra E of G and let T(Z) be its image in $\mathcal{H} = L^2(X,\mu)$ induced by a representation $g \to Tg$ of G. Let $\left\{e_n(\lambda,x)\right\}$ be a complete set of generalized eigenvectors in \mathcal{H} . Then

$$T(Z) = \sum_{n,m} \int d\lambda Z_{nm}(\lambda) P_{nm}^{\lambda}$$
 (3)

where

$$z_{nm}(\lambda) = \int d\rho(\lambda^i) \langle T(Z)^i e_m(\lambda), e_n(\lambda^i) \rangle$$
 (4)

The operator $T(Z)^{\dagger}$ in eq. (4) represents an extension of the operator T(Z) given by the formula

$$\langle T(Z)^{\dagger} e_{m}(\lambda), \varphi \rangle = \langle e_{m}(\lambda), T(Z)^{*} \varphi \rangle$$

where ϕ is any element of the nuclear space $\phi(X)$.

One can show that an operator function

$$E(\lambda) = \sum_{n} \int_{-\infty}^{\lambda} d\lambda \ P_{nn}^{\lambda}$$
 (5)

represents a common spectral function of a maximal set of commuting operators, which determine a complete set of generalized eigenvectors

 $\left\{e_{n}(\lambda,x)\right\}$. In fact we have (cf. Ref. 2, Sec. 3)

$$C_i = \sum_n \int d\lambda C_i(\lambda) P_{nn}^{\lambda}$$
, $A_i = \sum_n \int d\lambda A_i(n,\lambda) P_{nn}^{\lambda}$. (6)

Here $C_i(\lambda)$ is an eigenvalue of an invariant operator C_i (i.e., $C_i e_n(\lambda,x) = C_i(\lambda) e_n(\lambda,x)$) and $A_i(p\lambda)$ is an eigenvalue of a non-invariant operator A_i (i.e., $A_i e_n(\lambda,x) = A_i(n,\lambda) e_n(\lambda,x)$). If Z is an operator in the enveloping algebra which does not enter into a maximal set of commuting operators then expansion (3) also contains operator distributions P_{nm}^{λ} with $n \neq m$.

The operator distributions P_{nm}^{λ} might be used for a solution of certain operator equations. Let, for instance,

$$(\square + m^2) \phi = \lambda \phi^2 \tag{7}$$

be an equation in $\mathcal{H} = L^2(M^4)$, M^4 be the Minkowski space, and let ϕ be a scalar operator field which commutes with invariant operators of $\overline{\mathbb{H}}$ in \mathcal{H} . Then the expansion (3) takes the form

$$\phi = \int dM d\vec{P} d\vec{Q} \varphi^{M}(\vec{P}, \vec{Q}) P_{\vec{P}, \vec{Q}}^{M}$$
(8)

where

$$\mathbf{P}_{\vec{\mathbf{P}},\vec{\mathbf{Q}}}^{\mathbf{M}} = \mathbf{M}^{-1} \int_{\mathbf{T}} d\mathbf{g} \, \overline{\mathbf{D}}_{\vec{\mathbf{P}},\vec{\mathbf{Q}}}^{\mathbf{M}}(\mathbf{g}) \, \mathbf{T}_{\mathbf{g}}$$
(9)

and $D_{\overrightarrow{P}, \overrightarrow{Q}}^{M}(g)$ are matrix elements of the irreducible unitary representation [M,0] of the Poincaré group \mathbb{T} in the momentum basis. The operator $\mathbb{T}+m^2$ by virtue of eq. (3) can be written in terms of $P_{\overrightarrow{P}\overrightarrow{Q}}^{M}$ in the form

$$\square + m^2 = \int (M^2 + m^2) dM d\vec{P} d\vec{Q} P_{\vec{P}\vec{Q}}^{M} . \qquad (10)$$

Inserting eqs. (8) and (10) into eq. (7), utilizing orthogonality properties 1) of eq. (2) of $\overrightarrow{P}_{\overrightarrow{PQ}}^{\overrightarrow{M}}$ and comparing c-number coefficients of $\overrightarrow{P}_{\overrightarrow{PQ}}^{\overrightarrow{M}}$, one obtains

$$(M^{2} + m^{2}) \varphi^{M}(\vec{P}, \vec{Q}) = \lambda \int d\vec{Q} \varphi^{M}(\vec{P}, \vec{Q}') \varphi^{M}(\vec{Q}', \vec{Q}). \qquad (11)$$

Thus one reduces a problem of a solution of an operator equation (7) to a problem of solution of an ordinary integral equation (11). The class of solutions of eq. (11) depends on a boundary condition imposed on the function $\phi^{\mathbf{M}}(\overrightarrow{P},\overrightarrow{Q})$. The simplest solution of eq. (11) has the form

$$\varphi^{\mathbf{M}}(\overrightarrow{\mathbf{P}}, \overrightarrow{\mathbf{Q}}) = \frac{1}{\lambda} (\mathbf{M}^2 + \mathbf{m}^2) \delta(\overrightarrow{\mathbf{P}} - \overrightarrow{\mathbf{Q}})$$
.

In general, eq. (11) might have an infinite number of solutions. The operator distributions P_{nm}^{λ} can also be used for an explicit construction of Clebsch-Gordan coefficients for a locally compact Lie group (cf. Refs. 3 and 4).

We now consider a method of classifying two-particle states of two scalar relativistic interacting particles. Let $\sqrt[3]{v}$ (1,2) be a space of square integrable functions $\psi(p,p)$ relative to the measure $d_{\mu}(p,p) = d_4 p d_4 p^2$. Since we consider an interacting system we do not assume that particles are on mass shells of free particles.

A representation $\{a,\Lambda\} \to U_{\{a,\Lambda\}}$ of the Poincaré group $\widetilde{\Pi}$ in \mathcal{M} (1,2) can always be written in the form

$$U_{\{a,\Lambda\}} = T_a V_{\Lambda} \qquad (12)$$

The composition law in T implies

$$V_{\Lambda} T_{a} V_{\Lambda}^{-1} = T_{\Lambda a} . \qquad (13)$$

By von Neumann's theorem the operators P_{μ} of total momentum can be written in % (1,2) in the form

$$P_{\mu} = \int (P_{\mu}^{1} + P_{\mu}^{2}) dE(P, P)$$
 (14)

(This is true at least in so-called direct interaction theories $^{5)}$.) Using eqs. (5) and (1) for the translation subgroup T_4 of π , one obtains

$$dE(p', p') \cong \int e^{i(p'+p')a} T_a da$$
 (15)

The essential information on interactions is in fact contained in the time translation operator $T_{a^0} = e^{i P_0 a^0}$ with $P_0 = H_{free}^1 + H_{free}^2 + H_{int}^2$. Using eqs. (13) and (15) one obtains

$$U_{a,L} dE(p,p) U_{a,L}^{-1} = dE(\Lambda_{p}^{1},\Lambda_{p}^{2}) .$$
 (16)

Now Mackey's imprimitivity theorem states that if we have in $\Re(X,\mu)$, $(X=G/G_0)$ is a homogeneous space of G0 a spectral measure dE(x) which has the property

$$Tg dE(x) T_g^{-1} = dE(gx)$$
 (17)

then a representation $g \to T_g$ in $\mathcal{N}(X,\mu)$ is a representation of G induced by a representation L of a stability subgroup H of the space $X^{(6)}$. To use the imprimitivity theorem for a classification of admissible representations of $\tilde{\Pi}$ in \mathcal{K} (1,2) we have to split a manifold $X = \{(p, p)\}$ of all momenta onto transitive submanifolds. be any pair of momenta of interacting particles. By means of a Lorentz transformation one can transform a pair (p_1^1, p_1^2) to a pair $((p_0^1, 000), p_1^2)$ Using, further, a rotation, one obtains a "standard pair" $((p_0^1,000),(p_0^2,00p_3^2))$. A stability subgroup of this pair is the subgroup T^4 S U(1). Thus the transitive space defined by the standard pair is a five-dimensional homogeneous space $X_5 = \tilde{\Pi}/T^4$ $\equiv U(1) \cong SL(2,C)/U(1)$. Consequently, by Mackey's imprimitivity theorem, a representation $U_{\{a,\Lambda\}}$ is an induced representation defined by an orbit (associated with a given "standard pair") and a representation L of U(1). Clearly all irreducible representations of U(1) are one-dimensional, i.e., U(1) $\ni \phi \rightarrow e^{iNU}$, N = 0, ±1, ±2, ... One verifies that a representation $\{a, L\} \rightarrow U_{\{a, \Lambda\}}^{L}$ induced by an irreducible representation L of U(1) is reducible. Its

$$U^{L} = \sum_{J=|N|, |N|+1, |N|+2} T^{M, J}$$

decomposition into irreducible components has the form

where $M^2 = (p^1 + p^2)$.

One has another standard pair of the form $(p,p) = ((p_0,000), (p_0,000))$. The transitive manifold defined by this standard pair is a three-dimensional homogeneous space $X_3 = T/T^4$ s $SU(2) \cong SL(2,C)/SU(2)$. An irreducible representation L of this stability subgroup leads to an irreducible representation of \tilde{T} as in the one-particle case.

If one admits that during the interaction a particle might arise with a space-like or light-like momenta, then one obtains yet other transitive manifolds and the classes of representations of $\tilde{\Pi}$ induced by representations of corresponding stability subgroups.

REFERENCES

- 1) K. Maurin, "General eigenfunction expansion and group representations," Warsaw 1968.
- 2) R. Raczka, "Operator distributions in group representation theory and their applications," Chalmers Technical University, Göteborg, 1969, lecture notes.
- 3) R.L. Anderson et al. "Clebsch-Gordan coefficients for coupling of Lorentz group," J. Math. Phys. (in press).
- 4) R.L. Anderson and R. Raczka, "Clebsch-Gordan coefficients for locally compact groups," preprint, Inst. for Nuclear Research, Warsaw, 1969 (in press).
- 5) T. Jordan, A. Macfarlane and E.C.G. Sudarshan, J. Math. Phys. (1969).
- 6) G. Mackey, cf., for instance, lecture notes, Chicago, 1955.