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Radiation Dosimetry: X Rays Generated
at Potentials of 5 to 150 kV

1. Relationships Between Radiation Quantities and Units

For energies below 130 keV the mean free path of a
photon in water, or other material of low atomic
, ~mber, is about 1000 times the range of an electron of
-+ > same energy. Thus charged particle equilibrium will
se closely approached even in the absence of photen
equilibrium.

Furthermore, at such energies. an electron slowing
down in water loses less than 0.1 ¢ of its total energy by
bremsstrahlung production. Even in a material such as
uranium, a 130 keV electron loses only 2.6 of iis
energy by bremsstrahlung production when slowing to
rest. Tor lower atomic number materials and lower
energy electrons the bremsstrahlung losses will be sull
smaller.

In the presence of charged particle equilibrium and
the absence of bremsstrahlung losses the kerma, K, is
equal to the absorbed dose, D, in a volume element.
Tor monoenergetic photons both quantities are then
related to the energy fluence, ¥, by the equations

D=K=wi 1.1
p

where ux/p is the mass energy transfer coefficient. Fur-
ther, in the absence of bremsstrahlung losses. uy o is

equal 10 pw/p, Where ue,'p is the mass energy absorp-
tion coefficient. Thus

w?zwﬁ 1.2
P

D=K =

TWhen the radiation covers a range of energies, the
quantity u..’p must be replaced by f../p where fi/p
is & mean value of uw/p weighted according to the

- —— . e —— i GV (ray Yo S wm i e n L

spectral distribution of energy fluence with respect to
energy.

Exposure. X, relates only to the special substance, air,
and satisfies the relationship

X=é;v@g 13
T ait P Jair

or, introducing specific units, and taking W = 337
eV (te. Maife=3377°Ch

‘- ( 'y 1T
X = 115 yr . Lben/ P Ja

= ——— 14
R T m? m kgt

‘

Again, if the radiation has a range of energies, a
weighted mean value of (pen 'plai: must be used. as
indicated earlier.

The conversion of a measured exposure to absorbed
dose in & medium requires a knowledge of the ratio
(Fea’p ) mea!{ Fen/p)uir - The conversion of absorbed dose
in one medium to absorbed dose in another requires
that the ratio of the weighted mean mass energy absorp-
tion coefficients be known. When either the Compton
effect or the photociectric effect contributes nearly all
the energy absorption in both materials. this ratio is
not critically dependent on the spectral distribution of
energv fluence with respect to energy. When both
processes are contributing significantly. the spectral
distribution must be aceurately known.

Energy fluence is considered in Section 2. its spectral
distribution with respect to energy in Section 3. expo-
sure in Section 4, absorbed dose in Section 5 and mass
energy absorption coefficients in Section 6. Kerma is
not discussed further in this report because of its very
close approximation to absorbed dose in the epergy
range considered.
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Radiation Dosimetry: X Rays Generated
at Potentials of 5 to 150 kV

1. Relationships Between Radiation Quantities and Units

For energies below 150 keV the mean free path of a
photon in water, or other material of low atomic
number, is about 1000 times the range of an electron of
the same energy. Thus charged particle equilibrium will
be closely approached even in the absence of photon
equilibriun.

Furthermore, at such energies, an electron slowing
down in water loses less than 0.1 % of its total energy by
bremsstrahlung production. Even in a material such zs
uranjum. a 130 kel electron loses only 2.6% of its
energy by bremsstrzhjung production when slowing to
rest. For lower atomic number materials and Jower
energy electrons the bremsstrahlung Josses will be stiil
smaller.

In the presence of charged particle equilibrium and
the absence of bremsstrahlung losses the kerma, X, is
equal to the absorbed dose, D, in a volume element.
For monoenergetic photons both quantities are then
related to the energy fluence, W, by the equations

D~_—K=\p% 11

where ux/p is the mass energy transfer coeffcient. Fur-
ther, in the absence of bremsstrahlung losses, ux/p is
equal 10 ue/p, Where pe/p is the mass energy absorp-
tion coefficient. Thus

Dw K= whfo gle 12

P I
When the radiation covers a range of energies, the
Quantity ue;'» must be replaced by Few/p where f./p
is a mean value of u./p weighted according to the

spectral distribution of energy fluence with respect to
energy.

Exposure, X, relates only to the special substance, air,
and satisfies the relationship

X=é;weﬂ 13
Wair P Jeir
or, introducing specific units, and taking T,;. = 33.7
eV (le. M /e = 33.71/C)
X = ¥ (#m/‘p)nr
— =11 R L AR 14
R T m*-kg™!

Again, if the radiation has a range of epergies, a
weighted mean value of {pen p)eir must be used. as
indicated earlier.

The conversion of a measured exposure to absorbed
dose in a medium requires a knowledge of the ratio
(fien/P) mea/(fien/p)uir - The conversion of absorbed dose
in one medium to absorbed dose in another requires
that the ratio of the weighted mean mass energy absorp-
tion coefficients be known. When either the Compton
effect or the photoelectric effect contributes nearly all
the energy absorption in both materials, this ratio is
not critically dependent on the spectral distribution of
energy fluence with respect to energy. When both
processes are contributing significantly, the spectral
distribution must be accurately known.

Energy fluence is considered in Section 2, its spectral
distribution with respect to energv in Section 3. expo-
sure In Section 4, absorbed dose in Section 5 and mass
energy absorption coefficients in Section 6. Jierma is
not discussed further in this report because of its very
close approximation to absorbed dose in the energy
range considered.



3.1 Determination of Primary and Secondary Photon Spectra + + + @

of the present report refers to new work since the com-
pletion of Report 10b, including two additional ap-
proaches: (iv) spectrometry with gas proportional
counters, and (v) lithium-drifted germanium detectors.
The significance of less complete quality specifications
will be considered in Section 3.2.

Spectra appearing in the literature are not always
directly comparable due to the various forms in which
thev are given; thus, they may be expressed in terms of
energv fluence rate against energy, photon fluence rate
against energy, exposure rate against energy. exposure
rate against wavelength, etc. Although photon fluence
rate is readily converted to energy fiuence rate by multi-
plving it by the corresponding photon energy, and ex-
posure rate is converted to energy fluence rate by di-
viding it by (pen ‘plair-e/TT, special care is needed in
converting distributions against wavelength into dis-
tributions against energy. An ordinate in a distribution
against wavelength has to be multiplied by di dihv)
te convert it 1¢ the corresponding ordinate in a dis-
tribution against photon energy. and d)/d{Av) is pro-
portional to (kv)7".

The derivation of approximate x-ray spectral dis-
tributions from attenuation data, if either time or
facilities are not available for obtaining complete spec-
tra, has been discussed by Greening (1963). Tables are
i given which simplify the procedure of representing an
x-rav beam by three monoenergetic components when
appropriate points on the transmission curve of the
radiation in a suitable absorber are known. In another
approach, three components are fitted graphically to
the attenuation data. Such approaches have the merit
of basing the spectral derivation on measurements of
the actual beam concerned, as against emploving pub-
lished spectra for supposediy similar apparatus. Green-
ing’s tables have been designed for use with x rays
generated over a range of potentials and filtrations, in-
cluding 20 to 150 kV with aluminium absorbers.

For x rays generated at pulsating potentials of 45 to
105 kV and used in diagnostic radiology, Epp and Weiss
(1966, 1967) have reported new experimental data for
primary and scattered radiations. Using scintillation
spectrometry techniques (1966) they have determined
primary spectra in this energy range for continuous
tube currents of 3 to 5 mA. These fluoroscopic condi-
tions vielded spectra approximating those which would
be obtained with the somewhat different generating
potential waveforms of radiographic settings. HVL's
were computed from the spectra and were found to be
in close agreement with direct ionization chamber de-
terminations using the chamber designed by Garrett
and Laughlin (1939), discussed in Section 4.3.3 and
Figures 4.3 and 4.3.

Peaple and Burt (1969) have developed a transporta-
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Fig. 3.1. Speectral distributions of x ravs from a tube with

1 mm Be inherent filtration operated at 100 kV and with various
filters (measured after passage through 2 m of air}.
[Derived from Drexler and Perzl, 19686}

ble spectrometer and collimating system for the meas-
urement of photon spectra. The pulse height distri-
bution: obtained with a sodium iodide ervsta]l are
converted to photon spectra using a method due to
Scofield (1960), and the technigue has been applied to
a wide range of spectral distributions for x-ray machines
operated under pulsating potentials up to 100 kV.

Drexler and Perzl (1967, 1968a,b) have emploved
lithium-drifted germanium detectors for spectral meas-
urements. Figure 3.1 illustrates some of the results
achieved. A catalogue has been prepared (Drexler and
Gossrau, 1968) containing 87 spectra for tubes operated
at potentials of 23 to 300 kV (62 of these below 1350
kV), with a range of Al, Cu, Sn and Pb filtration.

Epp and Weiss (1967) gave results of measurements
of spectral distributions of scattered radiations ob-
tained by scintillation spectroscopy over the diagnostic
range of 70 to 150 kV, Spectra were obtained at depths
in water ranging from 2 to 10 em for irradiated surface
areas of 50 to 500 em?. Tables of values of spectral flux
density expressed as a function of x-ray beam quality,
beam area and depth in water were derived for combined
scattered and primary radiations. Figure 3.2 illustrates
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4.10. Quality Assurance Programs

The purpose of quality assurance (Q.A.) programs in diagnostic radiology is to establish
procedures for monitoring periodically or continuously the performance of radiological

facilities with the aim of obtaining optimum diagnostic information at minimum cost
and with minimum radiation dose to individual patients.



stimated worldwlde diagnostic x-ray examinations and machines 1in 19817

(numbers 1in parentheses indicate per cent of total)

Level Diagnostic Diagnostic Approximate
of Population X-ray examinations examinations

health in millions machines in millions per

care in thousands machine

I 1300 (26) 330 (76) 1040 (75) 3000

[ 1750 (35) 88 (20) 260 (19) 3000

ITI 1220 (24) 15 ( 3) 61 ( 4) 4000

IV 7130 (15) 4§ (1) 22 ( 2) 5500

Total 5000 (100) 440 (100) 1380 (100)




Fopulation per physician

Ll ayrib= L1l o

«7hay €examlihatlicns 1n ditterent countries

Level Annual Population
of Country examinations per x-ray Year
health per 1000 machine
care population
I Argentina 2800 1978-1982
< Canada 1016 3200 1980
S Finland 958 - 1984
~  France 820 2700 1987
€ Germany, Fed. Rep. 836 - 1978
£ Italy 749 - 1983
+  Japan 1314 1979
g Libyan Arab J. 8000 1977
s Netherlands 648 1980
—  Norway 641 1983
Spain 490 4400 1986
Sweden 100 1977
United Kingdom 496 1983
United States 790 1800 1980
USSR 958 1981
Il Bolivia - 271000 1978-1982
o Brazil 179 13400 1982
> Chile 166 13000 1982
£ China 259 16400 1980
; Colombia 2N 14300 1978-1982
. Costa Rica 210 19200 1981
S Cuba 139 11000 1978-1982
~  Dominican Republic 20 80000 1981
Equador 36 - 1981
Iran 180 - 1881
Mexico 70 15000 1980
Nicaragua 517 - 1981
Paraguay - 41000 1978-1982
Peru - 12000 1978-1982
Turkey 80 - 1978
Uruguay - 8800 1978-1982
Venezuela - 10000 1978-1982
111 Kenya 36 100000 1970
g India 23 65000 1977
g Liberia 80 710000 1977
Singapore - 60000 18717
' Sri Lanka 21 - 1979
g Sudan, Rep. of 150000 1984
3 Thailand 34 - 1077
c
IV £2 Ethiopia 300000 1977
+ =S Ghana 22 100000 1977
U -, Ivory Coast 40 190000 1977
évﬂ Nigeria 25 90000 1977




Annual frequency of diagnostic nuclear medicine examinations
(per 1000 population)

Country 1970-1972 1973-19175 1977-1979 1980-1982

Australila 4 8
Austria 18

Bulgaria 13
Burma 0.1 0.2

Canada 49
China 0.6
Cuba . 0.8 0.8

Denmark 8 14 14 a/
Finland . 18
France : 9
Japan 5

Poland 2
Sweden 8 12 15 15
uUnited Kingdom 1
United States b/ 16 11 29 3]
USSR 4

a/ 1985 value.
b/ Earlier value; 4 (1966).



Procedures to reduce collective dose equivalent

in dlagnostic x-ray examinations

Area

Procedure

Reduction
factor

All types

Radlography

Pelvimetry
fluoroscopy

Digital Radiography

Computed tomography
(head)
Mammography

Elimination of medically
unnecessary procedures

Introduction of quality
assurance programme (general)

Decrease in rejected films
through QA programme

Increase of peak kilovoltage

Beam collimation

Use of rare earth screens

Increase of filtration

Rare earth filtration

Change from photofluography
to chest radiography

Use of carbon fibre materials

Replacement of CawW04 screens
with spot film technique

Entrance exposure guidelines

Gonadal shielding

Use of CT topogram

Acoustic signal related
to dose rate

Use of 105 mm camera

Radiologist technique

Variable aperature iris
on TV camera

Change from chest fluoroscopy
to radiography

High and low dose switching

Decrease tn contrast resolution

Use of pulsed system

Gantry angulation to exclude
eye from primary beam

Intensifying screens

Optimal compression

Filtration

2-10 (to

2
1.3

1.2

-

1.5
gonads)
5-10
1.3

2
1.5
2-3
2

2-4 (to eye)

-5
1.5
3
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rTable I Exposure parameters considered optimal for good radiographic
techniques and simulated in the calculations. a.p.=anteroposterior;
U.b.uﬁOmnmnomsanWOnmmmcnmoncm to film distance

Voltage (KVP) FFD(cm)

Range Typical Range Typical

value value
Thorax p.a. 110-150 125 150-200 180
Thorax lateral 110-150 125 250-200 180
Skull p.a. 65- 85 70 90-150 115
Skull a.p. 65- 85 70 90-150 115
Skull lateral 65- 85 70 90-150 115
Lumbar spine + sacrum a.p. 75— 90 80 90-1290 115
Lumbar spine + sacrum lat. 90-100 90 90-120 115
Pelvis a.p. 70- 90 75 90-120 115

Bladder a.p. 65- 90 75 90-120 115



Table II Organ doses for the female phantom normalised to dose
at the image receptor in Sv/Sv for a thorax posteroanterior
examination. FFD=focus to film distance

VOLTAGE (KVP) 110 110 150 150 125
FFD (cm) 150 200 150 200 180
Breast 7.87 8.00 7.31 6.75 7.20
Colon asc.+transv,. 0.26 0.31 0.30 0.30 0.29
Lense of eye 0.23 0.16 0.18 0.17 0.17
Lungs 32.08 31.89 26.74 23.72 26.60
Red bone marrow 7.22 7.50 6.41 5.99 6.42
Skeleton 17.62 18.40 13.65 12.82 14.49
Thyroid 3.52 3.99 3.71 3.70 3.59
Uterus 0.04 0.0% 0.06 0.06 0.05
Total body 7.55 7.89 6.21 5.81 6.42

Surface entrance 70.50 66,11 53.29 42.04 49.66
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The effective dose equivalent HE

iIs the summation

of the product

of the weighting factor w

T
and related

mean dose equivalent HT

for all the relevant

organs or tissues

H

The effective dose equivalent
as defined in DIN 6814 T 5 ,

11088



The risk coefficients (ICRP 26 8 38)
are age and sex averaged,

which means

The organ dose HT

for the determination of HE is defined as

oTHe) Qu®
a. H.r +a.r HT

H.(ICRP 26)=

. d Q
a. +aT

The organ dose H
11988




AV

risk role, 10" rem™’

)

.

M

cC 30 -0 O 18,

ore

tH

’\.'

FiG. 4. Variation with age and sex of risk (somatic
+ genetic) relative to nominal value of 1.65 10~ rem"
adopted for radiation protection purposes by ICRP, this
value being made up of 0.4 10~ rem-) genetic, and
1.95 10~ rem-! as the mean value between that for males
(1.0 10~ rem-!) and females (1.5 10~ rem-}) for a
complete expression of carcinogenicrisk.
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Reference Termg for Estimates of Radiation Dose for
X-ray Mammography

X-ray mammography is being used increasingly and, in many
countries, efforts have been made to undertake risk-benef it and
cost-benef it studies for x-ray mammography applied to various age
groups. At present there is considerable variation in the way
the radiation dose is expressed and there 1is a need for
standardisation so that an adeguate assessment of radiation dose
may be made, and for such estimates to be comparable from country

to country.

The female breast is a composite of adipose and glandular tissues.
The glandular tissue, including the acinar and ductal epithelium
and associated stroma, is more vulnerable to radiation
carcinogenesis than the ekin, adipose tissue, oI areocla.
Therefore, the average absorbed dose in the glandular tissue,
excluding the skin layer, is the preferred guantity for assessing .
radiation risk from x;ihy:mammography;. Other quantities, such as
average absorbed dose in the whole breast, in the skin, or in a
emall volume of tissue at the midplane of the breast, have been
used in the past as a convenience, in the absence of specific data

on average absorbed doses in the glandular tissue. There are now
extensive data available that permit calculation of average

absorbed dose in the glandular tissue (29, 21)  and therefore the

use of the preferred quantity can be implemented readily.



Most women undergoing routine x-ray mammography without symptoms
are 40 years of age oI older. Therefore, the reference breast
should have a tissue composition with substantial adipose content
to take account of this. A composition of S50% adipose and 50%
glandular tissue distributed uniformly in the breast has been
adopted by investigators in the field (20,22,23,24),

The critical dimension'affectingAbssgéed-doee to the breast in x-
ray mammography 18 thickness of the breast. In x-ray
mammography, the breast is compressed to achieve better images.
either by firm compression to a nearly uniform thickness, or by
jess compression which results in a conical geometry. A uniform
breast thickness after firm compression has been adopted as a

reference dimension (20,22,23,24)

The Commission thercfore recommends that the usual reference
terms for radiation dose estimation from x-ray mammography be the
average absorbed doge in the glandular tissue (excluding skin) in
a uniformly compressed preast of 50% adipose, 50% glandular
tissue composition. The reference breast thickness should be

specified.
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Maximum variaticn of resronse on the variation of an
influence quantiiy within its nominal range
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Average dlagnostic x-ray examinations

by level of health care

Level Annual Population
of examinations per x-ray

health per 1000 machine
care poputation

[ 800 4000

[ 150 20000

II] 50 80000

IV < 30 170000
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PROPOSAL OF AN OUTLINE CON A GUIDELINE FOR
DOSIMETRY IN DIAGNOSTIC RADIOLOGY

(Elaborated by a group of experts
of the Commissicn of the European Communities)

INTRCDUCTION: Task cf the Dosimetry in Quality Assurance in
Medical Diagnestic Radiclogy

1.1. Acceptance testing

1.2. Repair and maintenance testing

1.3. Constancy testing

Reguirements ON Dosemeter-Measurement Requirements
2.1. output and output rate
2.2. Area-expcsure-product meters

2.3. Dosemeters for measuring dose per optical density (about 1)

Reguirements on AcCcCuracy, Limits according to Clinical Needs
(specification of radiation-quality, dose rate and dose ranges)
3.1. Output-dose and output-dose rate
3.2. Area-exposure dosemeters
3.3. Dosemeters for measuring dose and dose rate at the
image receptor
Available Dosemeters and Measuring Methods
4.1. Ionisation dosemeters
4.2. Thermoluminescent dosemeters
4.3, Other dosemeters

Calibratfon Laboratories

5.1. Standard laboratories

5.2. Secondary standard laboratories

5.3. Other secondary calibration laboratories

Necessity of Intercomparison-Methods and Programs

6€.1. Intercomparison of radiation measurements in radiodiagnostic

services
6.2. Intercomparison of radiation measurements in quality-
assurance and ~-control (Acceptance maintenance and constancy)

perspective for Future Development in Dosemeters and
Measuring Methods

Guidelines for Appropriate Measuring Methods and Desing
of Instrumentation including Dose Ranges, Ranges of Radiation,
Justification, Accuracy and Evaluation of Uncertainties



