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SOUND WAVES

Ultrasound radiation, which is included among Non-Ionizing Radiation
(NIR) with electromagnetic radiations such am radlofrequency,microwaves,
visible 11ght etc., differs from these because of 1ts mechanical nature.
Sound waves are produced as a result of didgturbances taking place in a
material medfum: these disturbances cause the particles from which the
medium 1s formed to be set {nto vibration. The vibration of particles is
an essential characteristic of acoustic prepagation and, for this reason,
it 18 Imposeible for mound to travel through a vacuum,

Sound propagates in waves, or disturbances whose amplitude variea with
space and time according to the wave equation. For a displacement v of a
particle this equation takes, in the slmplest case (one dimension), the
following form: 2 5
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It could be shown that eq.(l) 1s watisfied by a whole class of solu-
tions, namely by any function having an argument x+ct or x-ct, {.e.:

f(x+ct) or f(x-ct} {2)

or any linear combination of such functiona. The parameter ¢ represents

the propagation gpeed of the wave. f(xy,ty), the function at s given

point xy and time ty ,takes the same value at a later time t,+ 4t in a

point x5t A x, where Ax = * c &t (the sign depending on the propagation
direction).

Of all possible solutions of a form glven in (2), periodic functions
have special importance from a practical point of view. Consideration is
limited to sinusoidal functions without any loss of generality because
any periodic function can be expressed as a suitable combination of sin-
usoidal functions, through an analytical technique known as Fouriep
analysis.,

Consider the following special solution of eq.(1):
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u(x,t) = u, sin kix-ct) (3)

representing a harmonic oscillation of amplitude ug ; k g called wave
number, and A = 2 "/k {s the wavelength. It 1s possible to obtain direc-
tly from eq.(3) the well known expressions relating to the oscillation
period T and frequency f:

T= X/e f = c/A {4)

Thus & sinusoidal wave ia fully characterized by three independent
parametera: propagation speed, frequency and amplitude. In the following
paragraphs 1s more detail on the meaning of each of these quantities for
sound waves.

CHARACTERISTICS OF SOUND

The transmission of sound consistm of an ordered and perfodical
movement of the molecules of a medium, which may be solid, liquid, or
gas. As a consequence of an external perturbation, a number of molecules
osclllate in phase, thus transmitting their kinetic energy to neighboring
molecules. In this way, energy is transferred from one molecuele to
another, with no assoclated transfer of matter. The direction of energy
propagation may be parallel or perpendfcular to the direction of oscilla-
tion of the particles; the corresponding waves are termed longitudinal
and transverse, respectively.

Transverse waves are especially important in solids, but other waves
such as shear waves, toraion waved, flexural {or Lamb) wdaves, gurface
Rayleigh waves, and Love waves also exist. Awong these, only shear waves,
also called rotational waves, are of interest in ultrasonics. Transverse
waves travel only through solids, because liquids and gases do not
support shear stresses under normal conditionas.

Longitudinal waves on the contrary can pass through all types of
media and are more important with regard to interactions with biclogical
systems. In longitudinal waves, the collective motion of particles
creates alternate regions of compression ond rarefaction, i.e. a perio-
dical pressure variation. This variation has the same propagation speed
and frequency of oscillatfons of particles. The sound wave can therefore
be described in terms of the pPresoure p:

pix,t} = p ein k(x-t) (5)

Eq.(5) does not give the absolute value of pressure at & given point;
it gives the time varying pressure term responsible for the sound, to
which the imperturbed pressure should always be added in order to cbtain
the total pressure value. The following paragraphs address thig varying
term, which 1s called acoustic presaure.

It 18 important te point out that eq.(5) represents s special case of
vibration, namely a wave propagating in one direction from a source
(assumed to be a point). In practice, a sound wave 15 emitted from an
extended source radiating energy in all directions, and the distribution
pattern may be quite complex.

In principle, the problem of an extended source of finite dimensions
could be solved by consldering it as the sum of g large number of point
sources, each emitting waves in all directions with the same incensity,

Such waves, radiating {sotropically in 8pace, are called spherical waves
and are mathematically described by an equation similar to eq.{5), but in
three dimensgions:

? ? ] L 2
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A I e e (6)
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For the symmetry, any solution of eq.(6) will be given by a functfon
taking the same value in al) points at the same distance from the Bsource.
If r 19 the radius of the surface of a sphere which 18 the locus of these
pointse, the sinusoidal solution ia:

pir,t) = B sin k(r-ct} (7)

The direction of the radius r changes from point to point on the
spherical surface., For large distances from the asource (compared to the
sound beam wavelength), the propagation axes may be considered to be
parallel for all waves within g given tegion., This corresponds to repla-
cing a portion of spherical surface with a plane and to approximating
molecular vibrations with parallel oscillations, called plane waves. In
practice, the plane wave approximation {s applicable when the distance
between wavefront and aource is much greater than the wavelength.

Sumaing the contributions from point sources is aimple in principle,
but in practice the overlapping of a virtually infinite number of spheri-
cal waves may give rfse to enormous mathematical difficulties. How teo
manage the problem of sources of finite dimensions will discussed later
in more detail. However, if the distance of the wavefront from the source
ie large enough, the latter may be coneidered a point.

Let us now consider in more detail the parameters which characterize a
sound wave, namely its propagation speed, frequency and amplitude.

a. Propagation speed

The propagation speed of mound in a mediuva depends on the physical
properties of the medium itself. For longitudinal waves, the following

relations:
¢ = Vwp/p ¢ =y 1/8p (8)

express the propagation speed In gases and in liquids, respectively,
where y= cp/cv 1a the ratio of specific heats at constant pressure and
volume, Big the 1iquid compressibility, and p 1ia the density of the
medium,

In solids, the sound speed is:

¢ .{E_.i.ﬁ_ e "JG/D (9)
8 (1+v) (1-2v)

for longitudinal and transverse waves, respectively. Here, E 1is the
Young'a modulus for the medium, G is the rigidity modulus, and v {m the
Polsson'a ratio, i.e. the ratioc of the transverse contracting strain to
the elongation strain (typical values range from 0.2 to 0.5). In a solid
rod with cross-sectional dimensions considerably smaller than the wave-

length the transverse strain may be neglected, and the first of eqs.{(9)
reduces to:

c ~JEk (10)

Because both the density and the elastic moduli vary with the tempe-
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rature, the sgound speed will alao vary, generally increasing with
increasing temperature.

The speed of sound in solids is higher than in liquids, and very much
higher than in gases. Table 1! glves the approximate values of the
acoustic speed of some commonly used materiala.

Table 1. Approximate values of the acoustic speed (m/8) of some materials
at room temperature and standard pressure

Material Longitudinal waves Tranaverse waves
Aluminfum 6400 3100

Steel 6000 2900

Copper 4700 2300

Water 1400 -
Hydrogen 1300 —_

Alr 330 —

It i8 also seen in the table that, in solids, transverse waves travel
at about half the speed of longitudinal waves. These differences in
sound gpeed give rise to noticeable affects at interfaces between dif-
ferent media, such as air gnd biological tissue.

b. Frequency
—

Sound waves are divided into Infragound (frequancy ranging between 0
and 16-20 Hz), audible sound (from 16-20 Hz to 16-20 kHz) and ultrasound
(above 16-20 kHz). The limits are not clearly defined because of the
variability in response of the human sar. This distinction is more im-
portant from the physiclogical point of view than the physical deacrip-
tion, and this i{s the rgason why one speaks of sound in general rather
than of vltrasound in particular.

in optics, light radiatfon of a eingle frequency corresponds to a pure
colour (called monochromatjc); in the same way, a perfectly minusoldal
acoustic wave corresponds to a pure tone. Whereas many sources of
monochromatic light do exist, the same is mot true for acoustic sources.
Sound emitted from a real source results from the overlapping of many
vibrations of different frequency, amplitude and duration. To quanti-
tatively describe sound is therefore an extremely complicated task, which
can be solved in an approximate way by averaging the different physical
quantities over fimite intervals of time, space, or frequency.

For practical reasons the whole spectrum of acougtic frequencies is
divided Into frequency bands. If fyand fyare the lower and upper limit of
each band, the particion into propotrtlional bands occurs where the ratio
f2fflis the same for each band. Limiting frequencies are in a geometric,
rather than arithmecic, progression. This criterion allows one to cover
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an extremely wide frequency range with a limited number of bands and,
what 1s most important, corresponds to the physiological regponse of the
human ear.

According to the geometric progression of frequencies, a centre
frequency 18 defined for each band, as the geometric mean of the limieing
frequencies, 1,e.:

172
fo= (Eltz) (1)

An octave 1g defined as an interval correaponding to the doubling of
frequency, An octave band incorporates those fraquencies between f. and f;
where f_ = 2f,. In a gimilar manner, & third oectave band 1s charac-
terized 2by f,=206 ; in general, a n-th octave band 18 such that
fom=2 f. It follows from the abave definition that the centre frequency
is 1/2n-th octave above fland below fz:

£ = 227 £y Padad £

Eqa.(12) sghow rthat any proportional frequency band {s completely
defined by its centre frequency and by n.

¢. Amplitude

As mentioned above, a gound wave 18 described by an equation giving
the acoustic pressure as a function of epace coordinates and time, so0
that the distribution of any complex sound 1s deacribed in terms of a
time-varying pressure field. Sound amplitude, or ite root mean square,
could therefore be measured in pascal. For reasons related to the phy-
slological response of the human ear, sound amplitude 1is usually ex-
presgsed through s quantity varying as the logarithm of acoustic pPres-
sure. Thie quantity, defined as:

(12)

P P
Lp- 10 log 77— = 20 log
P pref

re
1s termed sound pressure level (SPL) and 18 measured in decibels (dB),

(13)

In eq.{13) p 1s the acoustic pressure, whereas Pres 18 & reference
Pressure which must be gpeciffed when dealing with absgaute levels; the
value gengrally chosen ig 20 vwPa. However, differences between SPLe are
independent of the referance pressure, since;

P
ly- Ly = 10 log % (14)
E: 1 3]
Eq.(14) shows that equal differences between SPLa correspond to equal

ratios between sound pressures. For example, a 20 dB difference between
two levels corresponds to a ratio of !0 between rms pressures.

ACOUSTIC ENERGY

The propagation of a sound wave corresponds to an energy transfer
without a transfer of matter. Thig can be deduced from the wave equa-
tion (5). It is an expression of the energy conservation principle, and
may be regarded as the equivalent in acoustics to Poynting's theorem of
electromagnetic radiation. If w is the acoustic energy denseity, i.e. the
energy per unit volume, eq.(5) may be expressed aa:

aw - >
58 tvi-o0 (15)

- - -
where [ = py, and v 1g the velocity of particles.
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The vector T represents the energy flow per unit time through the unit

surface perpendicular te the propagation direction, and 1s termed
acoustic energy flux or, more frequently, acoustic intensity. This quan-
tity 1s of fundamental importance in acoustics. Using the enalogy of
other branches of physics, we can define a field as an intermediary in
interactions between physical systems (whose properties are functions of
the space coordinates and time). The "acoustic fleld" (or "ultrasonic
field", in the case of ultrasound) can be expressed in terms of acoustic
intensity.

From the fundamental equations of fluid dynamics, it can be shown that

the energy density w is made of two terms;
1 2 pz
we=—Jg v + I_ (16)
2 pc

the first of which 1a called the acoustic kinetic energy, the second the
acoustic potential energy.

The interpretation of eq.(15) as an energy conservation law 18 more
immediate if 1t is Integrated over a finite volume. If W is the total
acoustic energy enclosed in the volume, we obtain:

aw d + * +
a?'af{fwdv-—fl-nds--os(l) (L7)
v s

This ahfws that the varfation of HAper*unIt time equals the flux of
vector through the external surface (n 18 the unit vector outgoing
perpendicularly from the surface element ds).

Eq.(15) may be interpreted in terms of another important physical
quanticy, namely the acoustic power, which 18 defined as the energy
variation per unit time:

P- avsae (18)

If & volume V encloses g sound source, then the acoustic energy flux

through the limiting surface gives the instantaneous power of the HoUrCce.

Eqs.(15) and (16) become simpler and more meaningful in the case of
plane waves. Here the velocity v of particles 1s related tao the sound
propagation speed ¢ by the expressaion;

vep/pec (19}
and one obtatins:
1 2
—OVZ-—I--E-T-lv I = cw (20)
2 2 pe 2

The first of eqs.(20) states that in a plane wave the kinetic and
potential energy are the Bame, the gecond that the acoustic energy
travels vith speed ¢ along the propagation direction,

Unita for the acoustic power and intensity are respectively the watt
(W} and the watt Per square meter (W/m?). A sound intensity level Ly and
a gound power level L" are algo defined, respectively, ag:

Ly = 10 log -t L, = 10 log ¥ (21)
ref ref

Commonly used reference values are | picowatt (1 pW = 10-12 W)} and 1
plcowatt per square meter, respectively,
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CONTINUOUS AND PULSED WAVES

An ldeal wave, defined by eq,(7), is characterized by a gingle fre-
quency, fixed smplitude and unlimired duration. Such a wave is called a
continuous wave. In reality a wave can be considered continuous when ire
amplitude variation 1s lower than a given value (e.g. 5%) and 1its
duration is very long with respect both to its period and to the responae
time of any interacting system.

Non-cont {inuous waveg may be amplitude modulated waves or pulsed waves.
In the first case the amplitude varies periodically in time, whereas in
the second it periodically goes to zero.

Pulsed waves are characterized by several parameters. The time
duration of each pulse is known as the pulse length or pulse width. The
pulse repetition perfod (or pulse period) is the time interval between
tWwo consecutive pulses, and the pPulse reperition frequency (or pulse
frequency) 1¢ the number of pulses propagated per second. In Reneral, the
pulse period 18 much longer than the wave period. Finally, the ratio of
the pulse width to the pulse period, i.e. the fraction of pulse period
where the amplitude differs from zero, 18 termed the duty cycle, or duty
factor.

In order to obtain pulses of finite width, the source muet be damped,
80 that the oscillations digappear after the required number of waves has
been propagatsd. As shown in Fig.l, the heavier the damping, the further
are the waves from the condition of a pure tone, and the larger 1s the
number of components involved in the Fourler analysis. Therefore, pulsed
waves are constituted by oscillations which do not take place at a single
frequency, but at frequencies extending over a continuous range, known as
the frequency bandwidth. Any increase of the damping regults in an
increase of the frequency bandwidch.

L—————uh PULSE REPETITION PERWID —————of

PULSE
WIDTH

WV~

Fig.1 - Example of pulsed waves having the same pulse period, but
different dampings.

SOUND PROPAGATION
Since both optics and acoustics deal with wave propagation, the corre-

sponding physical laws are 1in many respects analogous. Some differences
exist which are related to the different nature of physical systems and



to the wavelength (for sound it is several orders of magnitude longer

than for light). The latter 1ig responsible for the fact that in acoustice
the concept of "ray", and the "geometric" representation of sound pro-

pagation are seldom exploited, It 18 well known that such representation
is satisfactory only when all physical systems linteracting with the ra-

diation (obstacles, limiting surfaces, slits) have linear dimensions much
greater than the wavelength.

Aa shown in Table 2, human dimensions are much larger than optical wa-
velengths, but are comparable with acoustic wavelengths. For ultrasound,
the case may occur where the ratio of the dimensicns of objects of inte-
rest (in particular the human body or 1ts parts) to the wavelength is
such that geometric laws are satisfied to firsc approximatjon. In this
case one can speak 1n terms of sound rays, or beama, propagating in
straight lines and obeying laws similar to those governing geometric
optics.

Table 2. Typical wavelengths of some acoustic and optical radiations
propagating in air (meters)

Grave tone (audibility limit) 16

Shrill tone (audibility limit) 1.6 x 1072
Ultrasound in medicine 2x IO-5 ~3x 10_5
Red light 8 x 10”7
Violet 1ight 3.5 x 1077

The propagation of a gound beam may be described rather simply at
large distances from the source, but 1s complex in its proximity becauce
of the finite dimengiong of any transducer. To better understand this
point, let us consider in some derall the ultrasonic field of a
transducer, represented for the make of simplicity as a cylindrical
oscillating piston (Fig,2a). As already mentioned, the ultrasonic field
may be described as ths overlapping of elemental spherical waves emitted
in phase from each point of the piston bage. This overlapping gives rise
to incerference of sound waves 1n the surrounding space: moving along
the piston axis, 1.e, along the ditection of the sound beam, points are
encountered where intarference gives rise to a maximum in intensity, and
points where the intensity is reduced to zera.

The intensity distribucion pattern i{s as shown In Fig.2b. The position
of the last maximum depends on the piston diameter I and on the wave-
length through the relation:

2

2

and divides the space into two regions, The one nearer to the aource,
vwhere interference effects occur, is called the near field, or Fresnel,
reglon; the farther one is called the far fleld, or Fraunhofer, region.

In the far fleld region the sound Intensity, measured along the pro-

pagation axis, attenvates (apart from possible absorption and obstacles)
because of the diffraction. This effect causes the sound beam to spread

20
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Fig.2 = The ultrasonic field produced by a c¢ylindrical mource (a) and 1ts
intensity vs.diatance (b}.

out or diverge; apsrc from a number of lobes of very much reduced
intensity, che main part of the beam travels within 4 cone whose aperture
18 called the divergence of the beam. The divergence depends on the di-
ameter of the transducer and on the wavelength through the relationship:

siné =~ 1.272 A/p (23)

Thus 1f the diameter is small compared to 2 + then the waveg diverge
At very ghort distance from the source, glving rise to spherical waves.
On the other hand, when the diamater of the transducer 18 a large number
of wavelengths, the beam is highly directional and keeps nearly parallel
over long distances.

Since the cross-section of a cone 1s proportional to the square of itsg
height, the beanm intensity in the far fleld attenuates with distance
accotding co the classtcgl inverse-square dependence,

PEAK VALUES AND AVERAGE VALUES

It ham been shown that gound intensity, as well ag other acoustic
quantities, depands on 8pace and time variations, sometimes in g very
complicated way. Thus one frequently resorts for Practical measuremencs
to space and/or time averaging. One can define and Deagure a spatial peak
Intensity I(SP) as the intensity measured along the beam axig or a
spatial average intensity I(SA) ag the ratio of the toral beam power to
its area of cross 8section. With regard to time, one distinguishes between
a time peak intenaity I(TP) and 8 time average intensity I(TA); the
average 1s performed over a time interval much greater than the wave or
pulse perfod. In the cage of pulsed waves, time average may be referred
to a single pulse and rhe sound intensity 1is therefore referred to as
pulse average intensity I(PA),

In practice one specifieg both characteristics for any intensity
measurement, indicating for example T(SATA) an intensity averaged over
both space and time, or 1(SPTA) the time averaged axial peak intensity,
etc. When thia specification is migsing, it is generally gssumed a time-
and space-~averaged intensity, 1,e, I(SATA).



REFLECTION AND TRANSMISSION AT A SURFACE

When a sound wave strikes a surface, it gives rise to refle;tio:i::i
refraction phenomena very similar to ;he welﬁ kﬁ?u:q::f:cizeoinggdence
ion; In particular, the reflection angle A
:::iztifn;here:s the refractien angle t dependu'on tﬁe values of sound
speed in both media through the well known Snell's law:

clisin 1= c,fsin t (24}

for which t is equal to 90
> a criticel angle I, exists,

deg:::: For i;cidence angles greater than 1., no refracted wave c::ipais
through'the second medium, and the beam 1is fully reflected. The critica
angle 1s immedliately deduced from eq.{24):

sin 1, = c,/c, (25)

different, as in the came of an
Since cjand ¢; may be significantly
air-solid interfgge. total reflection may occur even at small {ncidence

angles.

The extent to which the sound inteénsity 1s reflected or t::::m::;ege
depends on the characteristics of both medfa: the intensi:zir: iion b
expressed Iin terms of a quantity characteristic of each medtium,
called acoustic impedance and is defined as:

Z=p/ve=pc (26)

d the sound propagation

and ¢ are the velocity of molecules an

:2::; rn the medium, respectively. The acoustic impedance is much ﬁ:ea;er
in liquids than in gases, and even greater in solids, aince both the
density and the sound speed are progreasively greater in the three cases.
Some typical values, both of bilological and inorganic materials, are
listed in Table 3.

Table 3. Acoustic impedance of some materials (kg/me)

Steel 4.7 x 107
7
0
Aluminium 1.7 x 1
3.2 x 10°
Perspex
Bone 7.8 x 10°
6
. 1
Muscle 1.7 x 10
Hater 1.4 x l06
Alr 430
Hydrogen 110

At normal incldence, the intensities I, ,1f and Ty of incident,
reflected and transmitted beams are related by the expressions:

2%

(o 2 .
T, (7y-zy) T bz, 7,

t

(PR TR [P T @n.

The reflection 1a high 1f the impedances of the two media are very
different, and 1s zero 1f they are equal. The opposite is true for the
trangmigsion. This is especially important in the case of aflrborne
ultrasound beams, which are almost completely reflected by the surface of
any solid or liquid. Only about 0.1% of the atrborne ultrasound intensity
18 transmitted into the human body.

The practical importance of eqs.(27) is evident. Impedance matching 1s
needed to transfer eénergy from a transducer into a medium, in particular
into a biological tissue. In practice, good contact between the surfaces
of the transducer and of the absaorbing body is difficult ro achieve,
since a layer of air séparates them. This results 1in very little sound
energy being transmitted. To overcoms this difficulty, a commonly used
technique 1s to 1insert between the transducer and the body a thin layer
of a material with auitable Impedance (a gei, oil or water}, in order to
maximize the energy transfer.

degree of precision in determining the layer thickness. Moreover, the

transmiseion does not take place at a single frequency, but over a band

of frequenciesn, which extends to both sides of a centre frequency and may
be very wide, especially for pulsed waves. Under thege conditions, a

perfect coupling 1s impossible, since a glven thickness will be equal to

an exact number of half-wavelengchs for only one of the frequencies in

the band. However, where the (requency band 1s quite narrow and the

Impedance of the intervening layer 1s close to the value of those of the

outer media, a departure of net more than one or twe decibels from the

ldeal case my he expected,

A very interesting phenomenon 1a observed when a beam of longitudinat
waveg strikes the interface between a fluid and a solid at an oblique
angle {. In this case part of the beam 18 converted into transverge
waves, which propagate 1n the solid. This effect 1g useally called mode
conversion, and may give rige to a double refraction or a double re-
flection when the inci{dent beam travels in the fluid and in the solid,
respectively. In the firge case, since in a so0lid the speed of transverge
waves {5 always less than the apeed of longitudinal waves, Snell's law
leads to different refraction angles. Referring to Fig.3a, we have:

cllsin i czlsin r= c'zlsln r' (28)

Here, the subsacripts | and ? refer to the solid and the fluid, Tespec-
tively, and the prime indicates the transverse waves. Two distinct beams
are therefore transmitted into the solid, the longitudinal waves belng
refracted away from the normal more than the transverse waves. The
critical angle 1g obviously different for either beam. If the incidence
angle is greater than the first critical angle 1. ., only tTansverse waves
can pass through the golid. Increasing the incideﬁce angle stil] further,
the second critical angle 1., 18 reached, for which the transverse waves
are refracted at an angle of 90 degrees: in this case surface wiaves are

el ]



Fig.3 - Mode converaion at a fluld-solid interface. LongltudinAIdwaziz
are.pnrtially converted into transverse waves giving rise to a doul
refraction (a) or to a double reflection (b).

hose of bulk waves, For
opagated, whose properties differ from ¢t
E;cidgnce ;nglea more than 1cf no wave propagation in the sclid occurs,

In the case of a longitudinsl wave travelling 1n & solid snd itri?i:%
a boundary with a fluild at an Iincidence angle i, a beam of 1:n§”tuhe?ms
waves passes into the fluid at some angle r to the normal, anfl :1gndand
are reflected back into the soclid (Ffg.)b). The incidence, re. ec
refraction angles are related In thia case by the expressfons:

cllsin 1= c'llsin {' - czlsin r (29)

Because of the different sound speeds, the beam of transverse waves {s
always closer to the normal than the incident beam.

The phenomena of peflection and refraction are exploited to creat:c
acoustic images of objects which are ppaque to light by means of ac?ust{
mirrors and lenses, 1.a. eelected materials shaped to reflect or refrac
sound waves in sultable directions.

STANDING WAVES

When a beam of gound waves strikes at normal incidence a bounda:y
between two media, part of the waves are reflected backwarda alnng the
same axis of the incfdent beam. If the incident and reflected beams ?re
continuous, they will interfere glving rise to standing waves (a Eo
called stationary waves). These waves correspond to a solutlon of ¢t ;
wave equation built up with twe terms, describing waves travelling in the
positive and negative direction, respectively.

In terma of displacement of the particles, we have:

u*® u, sln k(x-ct) + u sin k{x+ct) {30)

1

In the gpecial case of perfect (lU0 per cent) reflection, this corre-
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sponds to ur - u1 and may be writren as:
U= 2“1 cos kx sin kct = u(x) sin kce (1)

This expression describes a gltuation where each particle of the
medium oscillates slnuscidally with time, the amplitude of the oscil-
lation being time-independent and sipusoidally distributed along the
x-axia: waves do not propagate in either direction. The same is true also
in the case of partisl reflection ("r< ui). although the mathematical ex~
pression of the resulting wave is more complicated than eq.(31).

Standing waves are characterized by the appearance of fixed and
equally spaced positions of minimum and maximun amplitude, cailed nodes
and antinodes, respectively (Fig.4). The waveform varies with time, but
always lies within the envelope shown in Figure 4. Perfect nodes of zero
amplitude would appear only in the ideal case of [00 per cent reflection
and n¢ absorption; corregpondingly, the amplitude at the antinodes would
be twice the amplitude of the ifncident travelling wave, In practice,
there will always be some finite value of amplitude at the nodea, and
Goms reduction at the antinodes; the displacemant from the ideal condi-
tion is expreased by the standing wave ratio (SWR), defined as the

Fig.4 - Structyre of standing waves in the case of perfect reflection
{N:nades, A:antinodes).

amplitude at an antinode relative to that at a node:
SWR = (u1 + ur)l(u1 - ur) {32)

It 18 seen that the standing wave ratio can never be less than unity.
A value of ) for the SWR would cotrespond to no reflection, a value of
infinity to 100 per cent reflection,

For longitudinal waves, the SWR can also be expressed in terms of
pressure:

SWR - (pi + pr)l(pi- pr) (33)

It 1s interesting in this case

to note that nodal positions of
pressure correspond to antinodes of di

splacement, and viceversa.

Standing waves are actually found in any medium of finite size.
reflections at the end boundaries



SCATTERING

An obstacle 1in the path of a gsound beam causes reflection and
refraction as described above, only if its dimensions are large relative
to the wavelength. When, however, the obstacle dimensions are comparable
with or less than one wavelength, scattering takes place, and secondary
sound spreads out in all directions,

Scattering may be caused by particles diffused in a liquid or a gas:
an important example is given by red cells in blood. Scattering 1s also
responsible for the spreading of a sound beam which reflects from a rough
surface. In particular, at high ultrasonic frequencies, acattering may
take place in a solid having a polycrystalline structure, {.e. a molid
consisting of a large number of tiny single crystals tightly packed
together and oriented at random.

Scattering causes energy to be diverted from a sound beam, so that ite
intensity attenuatea. In low-frequency scattering (or Rayleigh acatter-
ing}, when the dimensions of the obstacle are much smaller than the
wavelength, the amplitude of the scattered wave is pProportional to¢ the
aquare of the frequency. The scattered intensity 18 therefore
proportional to the fourth power of the frequency, Thus scattering
increases significantly with increasing frequency.

ABSORPTION

In addition to the energy losses due to reflection, rvefraction,
divergence, and scattering effects, the intensity of & mound beam
attenuates becauge part of the vibratfonal energy of the particles is
converted into heat. This absorption of energy takes place through a
variety of mechanisms, mainly by viscous lons and relaxation processes.

The occurrence of absorption can be accounted for by introducing an
absorption coefficient in the solution of the wave equation:
p(x,t} = pg e ™ atn kixz-ct) (34)
@ is called the amplitudes absorption coefficient. The attenuvation of
intensity may also be expressed In terms of a; an intenaity absorption

coefficient 18 however frequently used, whose value is twice the value of
[

ey e 28X g Ux (35)

The absorption coafficients of a material fncreage with increasing
frequency. If viscosity is the only mechanism responsible for absurption
of a plane longitudinal wave, then o and U are proporticnal to the square
of the frequency. In the most general cage, the absorption coefficients
vary according to the general expresaions:

a=a, (£/f,)" weuy (£/g T (36)
where f,is an arbitrary reference frequency, and n is 8 parameter which
in turn depends on frequency. Within limited frequency ranges it may be
asgumed as a constant, ranging for moat materials between 1 and 2.

The unit currently used for absorption coefficlents 1a the decibel per
centimetre (dB/cm).
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THE DOPPLER EFFECT

The Doppler effect consists of a frequency {and consequently of a
wavelength) shift of the waves emitted by a source moving relative to the
recetver, with a non-zero component of velocity along the axts of the
gound beam. The observed frequency 1increases when the source and the
receiver approach each other, and decreases when they move away. The
effect 15 easlly explained {F we consider that in the first cage
compression and rarefaction waves arrive at the receiver at a higher
frequency, and in the gecond at a lower frequency, with regpect to the
condition where the source and the recelver are stationary. Motion of
elther causes a decreasing or increasing path that each wave must travel.

The phenomenon ig clearly depicted in Fig.5 for a moving peint source
radiating spherical waves. The successively generated spheres are cloger
together ahead of the source, and farther apart behind {t. Since the
frequency 13 determined by the oumber of waves passing a statfonary
recelver per unit time, it is clear that the frequency is higher ahead of
the source and lower behind 1t. By simple geometric congiderations, 1t
may be deduced that, if a source moves relative to A receiver with
velocity V, the percetved frequency f 18 related to the cmitted
frequency fo by the relation:

foc

£= c-V cosg 373

-

where 8 iz the ongle between the direction of the velocity vector V and

the vector joining the soyrce and the receiver. The frequency sghift the-

refore depends on the velucity component directed towards the receiver.

The Boppler shift at a glven time and position only depends on the source
velocity and frequency at the instant of generation of the wave.

In clinical disgnostic applications the Doppler effect 1y used to
determine the speed of a moving target, such as flowing blood.

Recoiver
8

..
\-'--_-_ _..-—;’

Fig.5 = The Doppler effect, Frequencies experienced at recelvers A and 3

are regpectively higher and lower than the frequency emitted by the
source,



Sound waves recelved from a source are subsequently reflected back
towards the receiver at rest relative to the source. Under these condi-
tions, & double frequency shift occurs: the first during transmission,
with the targec acting as a recelver, and the second during reflection
from the target, when it acts as a source.

CAVITATION

In fluid mechanics, the term cavitation indicates the formation of
gas— or vapour-filled cavities in a liquid by mechanical forces. A
typlcal example is observed in boiling water. Cavitation is in responae
to an alternating preasure field. From an acoustic fleld, 1t 18 called
acoustle cavitation,

During the rarefaction phasa of the acoustic cycle, the local pressyre
becomes lower than the ambient pressure, and any bubbles preexisting
(called "nuclei”) in the l1quid may begin to grow; during the next haif
of the cycle the local pressure rises above the amblent pressure, and
the bubbles growth reverses. The degree of growth, and the 1lifetime of
bubbles depend on several factors: the acoustic pressure amplitude, the
value of the amblent pressure, the frequency of the waves and the duty
cycle (1f pulsed), and obviously the characteristics of the liquid ang
the dissolved gases,

Where the acoustic pressure ig sufficlently high, the bubbles will
collapse suddenly on compression, and will release 5 large amount of
energy almost istantaneously. The minimum acoustic intensity required for
the onset of this collective phencmenon 18 called the cavitation
threshold (or threshold intensity). The cavitation threshold incresases
with Increasing frequency and ambient pressure. It also varlea with
temperature, because of the temperature dependence of the surface and of
the saturation vapour pressure of the bubbles.
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