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ABSTRACT

1 provide a brief overview of mathematical models that have beeh
developed for particular plant physiological processes, with emphasis
on the difficulties involved in taking these upscale to deal with
whole plant, crop and forest growth analyses. As the issues addressed
by physiclogists are often highly reductionist in nature, I polint out
the gap which has developed between our detailed knowledge of certain
physiological processes and our general ignorance of appropriate ways
to integrate thase processes over whole plant or cancpy scales. The
importance of accurate integration for crop and forest management is
discussed. l‘imllf. I review modals for the spread of plant pathogens,
and indicate how these may be modified to take account of the spatial
nature of plant infection and the continuum of resistance types within
a natural population.

INTRODUCTION

Mathematical models have been applied to a wide variety of topics
in plant physiology {Thornley, 1976). The majority of thesa focus on
processes that are modeled independently such as pl.mtosynthesis, fluid
transport, respiration, transpiration and stomatal response. The
general goal of thess models is to predict the effect of a variety of
environmental factors, including radiation input, humidity, wind, CO,
concentration and temperature, on tha process rates. The models tend
toc bes more general and realistic than precise, though all are
empirical at some level. Modelers have an advantage in the wealth of
physiological data which has been collected on these processes, but at
the same time this is often too much of a good thing due to a general

lack of accepted theory in the gubject. Thus it is typically not clear
what in the plethora of detailed biochemical knowledge about specific
processes should be included and what can be safely ignored or lumped
in with other components of the process under consideration.

The uncertainty of appropriate components to include in these
models becomes even more critical when dealing with questions on
longer time or larger spatial scales than those over which typical
physiological approaches operate, Much of the detailed physiological
models deal with processes on a cellular or organ [(such as leaf)
spatial scals and the natural time scales assoclated with thesge,
normally from seconds to daily. 1 have argued elsewhers (Gross, 1986}
that in dealing with plant processes, a natural breakdown of time
acales would be physiclogical (within & day or =o), acclimation
(within genet lifespan), and evolutionary (over many generations). The
appropriate time scale for many management applicaticng is the
acclimation one, and there has been much less work at this scale than
at the physiological one. My purpose here is in part to indicate the
variety of modeling approaches which have been undertaken at the
physiclogical scale, and try to indicate a number of open areas
regarding how to appropriately go to acclimation scales from these. A
similar problem regarding scaling is discussed in the last section,
namely how to make more realistic models for the spread of plant
diseases which take into account the spatial interactions which are
necessary for the disease to spread.

PHYSIOLOGICAL MODELS

The aim of mwmost physiological models is to express the
Wuilibrium rate of certain physioclogical processes as a function of
tnvironmental inputs and the current physiological state of the plant.
. general form for this would be

Ry = £30B) oo By PyseensProRy,e s R )
) (1)

Ry = 0By, o0 B Py, et BruRyu e WB )

here Rys+...R, represent equilibrium rates of various physiological
rocesses, El....,Ek represent envirocnmental factors, and Pirees,Pp
tpresent various physiological states. The physiological states could
¢ viewed as independent of the Ri's but more realistically are
mtrolled by the R.‘L" on a longer time scale than this eguilibrium



approach is meant to handle. For example, photosynthetic rate is
affected by the chlorophyll concentration within & leaf, and this may
thange over time scales of days due to changes in a variety of
reaction rates over the recent past. Thus the Ri's operate on the
above mentioned physiclogical time scale, while the Pi'l change on an
wcclimation time scale.

The form of (1) really 1is derived as the equilibrium solution of
L system of differential equations which would track the
roncentrations of blochemical components of the associated reactions.
't is somewhat rare to see a model actually applied in thiz form
owever, dus to a general lack of knowledge about the dynhamics of the
‘omponhent reactions. In fact, the vast majority of models of the form
1) are really derived as empirical fits to experimental data. In
‘eality of course, both the Physiclogical state and the environmental
‘nputs are time-varying. A typical assumption im that these change on
! slow time scale relative to that of the reaction rates, so that the
'\quilibrium solution (1) just continuously tracks these changes. For a
‘ariety of Procesges, including stomatal conductance and
hotosynthetic rates, this assumption is not Justified (Gross, 1986,
irschbaum et al., 1988).

In addition to the dynamic assumptions inherent in (1), the
pproach is also inherently a local one, for it is assumed that the
eactions guiding the process have no spatial component. That is, all
he variables of the model should be viewed as spatial averages over
hatever scale the procesi is assumed to be operating. Thus
notosynthesis models at the leaf level based on biochemical reactions
rpically assume uniform concentrations of the various biochemical
dmponents of the process over the entire laaf. The nature of the
veraging which is implied by this 1s non-trivial due to the
Mnlinearities in the models governing the process as a function of
¢ Treactants. Another assumption of these models concerns the
implifications of the biochemistry which are used in order to reduce
12 number of model parameters to tractable levels and to allow them
> be estimated from available data. Many of the sub-reactions which
‘termine the ni': are extremely complicated, and though some aspects
! them may be known in detail, typically one rapidly reaches the
irrent level of ignorance when constructing a model, Thus it becomes
‘Cessary to lump component reactions.

Before leaving the general topic of physiological modeling, it
iould be emphasized that biophysical approaches are the basis for
vestigating the effects of most environmental factors in these
dels (Nobel, 1974), This is true of water relations, in which the

volume chingel of cells iz related to external osmotic pressure
through the Boyle-Van't Hoff relation and flux of water between
various plant parts is governed by a transport egquation based on the
chemical potential of water in the parts. Similarly, mass and heat
transfer between the plant and surrounding environment ie derived from
micrometeorological approaches {Montieth, 1975}).

Whole Plant Processes

How are physioclogical processes scaled up to the whole plant?
Though there are a variety of approaches, none are entirely
satisfactory. One method is to use a macrodescriptor which is
essentially empirical. For example, a frequently used estimate of
whole plant respiration over a day 1i»

R = kP + oW

where R 18 respiration, P is gross photosynthesis during the light
period, W is plant dry weight, and ¢ and k are constants. This was
originally obtained from data on clover (McCree, 1970), but has since
been applied in many simple growth models. Similar whole plant
descriptors have been used for photosynthesis ‘as a function of
incident radiation and temperature, for transpiration as a function of
these along with wind speed and humidity, and for a variety of other
Plant processes. These will gometimes have a mechanixtic basis, but
more typically use a regression approach to determine the interactions
of the variety of factors affecting any of the processes of cohcern,
There are hosts of plant growth curves derived along thesme
empirical lines, viewed as describing the time course of whole plant
or community growth (Hunt, 1982}. The difficulty is that, without the
data to decide which curve is appropriate, one must proceed in an ad
hoc manner in choosing a curve. If the data are available, then cne
really doesn't learn much new from the curve anyway, the typical use
being interpolation. It also isn't clear how the growth curve should
be modified by considering a plant in somewhat different conditjons
than those for the data from which the curve came. When large amounts
of data are avajlable, for example on crop varieties that have been
Planted in many different conditions for many years, these regression
approaches work extremely well in predicting harvests, In fact, they
are much better predictors than very complex mechanistic models such
as those mentioned below. This is Just a special case of the rule
that, conditional on the availability of adequate data and ignorance



of the exact mechanism of a process, statistical techniques provicde
far more accurate process prediction within the range of conditions
included in the data base than mechanistic approaches with poorly
understood functional forms or parameter values.

Alternative to descriptive approaches, one can build up to the
whole plant level using brute force, meaning that one simply
integrates the process of concern over the entire plant surface. For
example, to estimate whole plant photosynthetic rate from a model for
the rate of individual leaves

P = F(Ey, ..o Fy)

where P is photosynthetic rate per unit leaf area and the Ei'l are
environmental factors, one meraly sums

Poot = F(E (x),...,E IX}) A(x) 8x (2)

where Peot is the photosynthetic rate for the whole plant, Ei{x) is
the value of environmental factor i at position x, and A(x) gives the
amount of leaf area at position x. Here x will in general be in three
space, and it may be very difficult to predict the spatial variation
of environmental factors throughout the plant. In fact there are very
sophisticated models to describe the spatial patterns of radiation
throughout plant canopies, based on the architecture of the canopy,
transmittance and reflectance of the leaves, gquantity of branches,
etc. (Ross, 19B1).

Typically (2) is solved in a discrete manner, by breaking a
cancpy into layers and simply considering the fraction of leaf area in
each layer subject to direct beam versus diffuse radiation. Although
tests have been done of the radiation penetration portions of these
{Baldocchi et al., 1%85), tha photesynthetic rate predicted from (2)
hasn't been adequately tested yet, This is dus to the difficulty of
measuring whole canopy photogynthesis in field conditjons. Note that
{2) iz really a simplification because the Ei{xl's are time-dependent
and the functional form of F will change with position in canopy.

Although approaches gimilar to (2) can be carried out for many
physiological components of plant growth, the vast amount of variation
of both environmental factors and physiological state throughout a
plant canopy {I'm speaking here of commercially important crop and
forest plants) 1limits the technigue. One alternative is to use a
highly simplified form for the variation in these factors, and derlve

from (2) a general relationship which might indicate how changes in
basic parameters affect the process. For example in the photosynthetic
case, the Monsli-Saekl theory says that light extinction in a canopy
may be approximated by an exponential decay with depth (measursd in
units of leaf area per unit ground area, the leaf area index L] from
the top of the canopy. If F(I) gives photosynthetic rate at irradiance
I, then (2) becomes

Pice ™ F{K exp(-cL}) dL {(3)
0

where ¢ is an extinction coefficient, LT is the total leaf area index
of the canopy and K is & species-specific constant which depands on
the transmission of a leaf as well as the irradiance at the top of the
cancpy [(see France and Thornley, 1984, chap. 7, for more details). One
advantage of thiz method is that it allows one to derive at least
qualitative conclusions as to how changes 4in basic plant
characteristics will affect the process. It provides a more
mechanistically-based descriptor of whole plant processes than a
purely empirical approach,

GROWTH AND YIELD MODELS

Just as there are several methods to move upscale from cellular
level phenomena to the whole plant, there are a varisty of techniques
to model growth at the plant, canopy and community level. Descriptive
approaches wers already mentioned above, but it should be pointed out
that some of these seem to be fairly general. For example there is
strong evidence from both crop and forest data that annual biomass
production for a crop or stand im given by

B = al 4)

#here Q 1s the annual interception of photosynthetically active
radiation by the crop {MecMurtrie, 1985). The constant of
sroportionality @ will of course vary with specles, nutrient and water
conditions at the site, and probably stand history as well. However,
estimates of the constants ¢ and K in (3} are available for a wide
tariety of forests (Jarvis and Leverenz, 1983) from which it is
085ible to estimate Q. If a time series of data are available to
tstimate how a varies with time, it is possible to iterate (4} on a
:ime scale shorter than that over which a changes significantly to



timate the time course of B, and this has been done for a number of
ops (Charles-Edwards, 1982), This is an illustration of a top-down
proach to growth modeling, in which the details of the physioclogy

e lumped into a single parameter (here a). One could proceed from

re to derive a physiologically based mcdel for how a depends on
vironmental factors, a method which is utillzed in some way in many
pwth models (Landsberg and McMurtrie, 1985).

Alternative to approaches based on (4), compartment models for
ole plant growth are quite common (Thornley, 1976; France and
ornley, 1984). These models break up a plant or crop into
npartments such as shoot and root, tracking perhaps several
mnponents of each, such as structural and storage dry weight and
rbon and nitrogen concentration. They may be coupled to models for
otosynthesis, soll nutrient uptake, and other possible inputs. Then
fferential equations are written to describe changes in each
mpartment, with respiratory losses typically being taken as
oportional to the dry weight in a compartment.

An area of controversy in this approach concerns the nature of

rtitioning of new substrates {(usually just taken to be carbon and
trogen) ameng the various compartments. One approach is to simply
sume that transport of these substrates follows a Fick's law of

ffusion, 80 for example
B{c_ - ¢C)
J = s i (5]

Te

ere J, is the flux of carbon from shoot to root, Cq and C, are the
rbon concentrations in the shoot and root respectively., B is a
aling factor, and I, is a registance to movement of carbon (France
d Thornley, 1984). An alternative to this is to prescribe the
rtitioning of nutrients in a "goal-seeking" manner such that either
fixed carbon-to-nitrogen ratio is set and the dynamic behavior of
e model is forced to seesk this ratio (Reynolds and Thornley, 19B82)
else this ratio is set in a way that depends on the root-to-ghoot
tio (Johnson, 1985). Still another approach to partitioning is to
sume that there are organizing principles of evolutionary origin
ich specify the partitioning of nutrients =0 as to maximize some
asure of fitness. This 1s an outgrowth of 1life history theory,
ilizes optimal control techniques, and has been applied mainly to
ants broken into roots, shoots and reproductive compartments (see
ughgarden, 1986, for a review).

Yet another approach to growth modeling is & systems one, in
which & large collection of bhysiologically detailed Process models
are coupled. These typically have submodels for light interception and
photosynthesis, root activity and nutrient uptake, partitioning of
substrates, transpiration, growth and respiration, leaf area
expansion, initiation and development of plant organs, and senescence,
though not all these may be included in each model. The models then
iterate, typically on a daily or hourly time step, keeping track of
levels of putrients and dry weights of various structural
compartments. This amounts to solving non-autonomous difference
equations and thus 1is essentially limited to being simulated on a
Computer. These models have been constructed for a wide variety of
crops (Barrett and Peart, 1981; Loomis et al.,197%; Reynolds and
Acock, 1985), involve large numbers of parameters that are sometimes
difficult to estimate, and are mainly used as research tools to point
out which subprocesses are not well understood. As with many large
Eystems models, they are extremely difficult to validate, due to the
ability to tune the large number of parameters to the available data.
It is only in rare circumstances that data ssts independent from those
used tc estimate the parameters are available for model validation.
The modeis are rarely spatial, merely assuming the wvariables are
uniform over the scale of the Plot under consideration. In this senze,
the models are limited to monocultures of fairly even age for which
spatial heterogeneity in stand structure is not a significant factor
for stand growth,

One method to take account of spatial factors is to use
individual-based models. These track all jindividuals in a stand, using
some type of growth model for each species in the stand, and take into
account the competitive interactions between neighbors through shading
and root competition, They have been applied extensively to
investigate patterns of succession in a wide variety of forests
{Shugart, 1984) by considering species compesition in small plots in a
stand. Each plot is typically only slightly larger in area than the
crown area of a single dominant adult tree. Gape are created when the
dominant dies, and the models track the transients of composition in
the plot over a time scale of centuries. From Monte-Carle runs it is
possible to make statistical predictions about the effects of
alternative disturbance regimes on forest composition. There is no
inherent reason aside from computer limitations why this cannot be
applied on larger spatial plots.

These models typically use very simple individual growth models,
though more complicated ones have been applied in the case of species



for which a good physiological data base is avallable (Makela and
Hari, 1986). Despite their general lack of physiclogical detail
however, these models produce quite realistic predictions for forest
dynamics that have been vallidated in a few cases. Parhaps their
weakest component ix the handling of competitive effects, for which
there is not much general agreement. Recent models of plant
populations which take into account explicit neighborhocd effects on
survivorship, mortality and fecundity may provide some basic theory
appropriate in this regard (see Pacala, 1988, for a review). Despite
their lack of physiological detail and the fact that these models
often include so many parameters that model tuning is a real problem,
the approach offers great hope for investigating how altering
physioclogical characteristics of the component species will affect
community-level processes (Huston and Smith, 1587).

_ With regard to resource management, it should be clear from the
above that we are still very ignorant about how to scale up from the
detalled knowledge available on cellular and organ levels to even a
whole plant, let alone to stand and regional scales. But when 1is it
really necessary to do this? Many of the models that are currently
used by agronomists and foresters to predict harvests, and schedule
fertization, irrigation and pesticide application are empirical in
form. These models work well as long as the data base upon which they
are based is adequate. For predictions outside the range of available
data however, mechanistically-based models are necessary. One example,
discussed below, concerns the long term effects of atmospheric coz
increases. For management at the level of individual farmers, an
approach which couples a mechanistic model with expert systems methods
may well be the best combination of empiricism (from the intuition and
experience of the axpert opinions solicited) with mechanism (Lemmon,
1986). A major limitation 4in all these approaches iz the
unpredictablility of the snvironmental inputs. Stochastic simulators of
variables such as rainfall can be included in most approaches, leading
to estimates of the variance or even the full probability distribution
of yleld. Management decisions will then depend upon the manager's
agsessment of how much risk is acceptable.

It has been argued that in order to make reascnably accurate
predictions of the long-term effects of atmospheric C02 increases on
world productivity, it is necessary to construct systems models which
. are capable of extrapolative prediction on an ecosystem level, based
on mechanistic models for physiological responses to Co2 (Reynolds and
Acock, 1985). While I am sympathetic with the reductionist sentiment
which underlies this, I am also quite pessimistic that detalled

physiological models are either possible to apply or to validate at
regional or world scales. I believe that the best that one could hope
for from such models is that they would suggest relatively simple
empirical models, that though they lack the detalils of the mechanistic
approach, would still be fairly accurate predictors. This uses a
complicated model to determine what parameters really matter, and
suggest macrodescriptors that would be fairly robust. On these scales,
robust might be defined as within an order of magnitude of the actual.

On world scales, I believe it is much more reasonabls to pursus
top-down models. These may still include physiologically reascnable
formulations, as Landsberg and McMurtrie {(1985) argue for in the case
of forest management. As an example of how this might be formulated,
I'll describe an (admittedly fairly cbvious) approach to investigating
world productivity changes due to coz. ¥y objective is to point out
how one might integrate models on different scales, in essence by
decoupling them.

Suppose that the world is broken up into several differant
vegetation types, 4 = 1,..,n, such as deciduous forest, grasslands of
different types, atc. Let

Ai(u) = land area of vegestation type i under world conditions u

Pilu) = productivity (e.g. biomass production per unit time) per
unit area of vegetation type 1 under world conditions u

u{t) = a time-depandent vector of world conditions (i.e. the
distribution of temperature, precipitation, coz. etc.
over the sarth's surface) at time t.

Then u(t) would be generated by a climate model, and if there were
several such models then their outputs would each be used to give some
estimate of the potential variance in productivity. Then total
productivity in year ¢t is

P(t) = f Aglult}) Pyluit)) (6)

This allows s decoupling of abiotic effects from blotic ones since the
Al(u) might be estimated from Holdridge-type diagrams obtained from a
climate model. In this simple case, direct effects of co, on plants
are viewed as not being important in determining future world
distributions of vegetation types, compared to the effects of climate
change.



To estimate P,(u), consider there to be many species types within
the vegetation type i. Then

pitu(t)l = Pituol + sPitultH {7)

where Piﬁuol is the value of productivity in vegetation type { at
present and Grllultn is its change from the Present to time t. The
models may well be much more accurate predictors of changes than of
absolute values of productivity and, furthermore, whatever dats 1=
collected to vallidate the models will only be at one or a few t:o2
levels. Then letting

f“(ul = the fraction of ground area in vegetation type i
occupied by species j under worlad conditiong u

BijGu) = productivity per unit area of Epecies type ] in
vegetation type 1 under world conditions y

with 5811 (u) and 6fij(u) representing changes in these when conditions
thange from present (uo) to u, we have

8P, (u} = ;:{ ﬁnij(u) :Eij(u) + bfij(u) Bij‘“o’
+ 6fij(u) 6311(1“} (8)

jere the sum is over all species types in the vegetation type (i.e
reeds, pines, grasses, ste.)

In the above, the tij would presumably come from community-level
wdels taking into account relative competitive ability changes under
tlevated coz. differential abilities for species to adapt to elevated
:02, etc. The Bij could come from a relatively simple empirical
wdels, possibly derived from complicated physiclogically-based
wodels. The above procedure allows one to set up a variety of "null
wdels” gince 1t decouples the community level effects from the direct
ffects on Physioclogy. Por example, one could investigate the
ssumption that relative species compositions within vegetation types
111 not change under elevated cl:)2 by setting Gfij = 0. This approach
lgo allows one to estimate how sensitive the larger scale results are
© changes in models on smaller scales. In this way it may be useful
h providing some confidence interval, or range, for possible effects
n world scales from confidence intervals on parameters in the
ower-level models. From a public policy perspective, even fairly
ough confidence intervals from procedures such as the above would

provide a rational basis for analyzing the long-term effects of
alternative governmental responses.

SPATIAL ASPECTS OF PLANT EPIDEMIOLOGY

The purpose of this section is to point out some relatively
unexplored problems in epidemiology that arise from considerations of
spatial scale. The vast majority of mathematical work in epldemiclogy
concerns the spread of disease in homogeneously mixing populations.
This agssumption is reascnable for mary animal populaticns imn which the
spread of the disease i caused by contact between animals that move
about. Even so, it is not realistic in cases for which there is ejther
spatial or some other structure in the population which caukes there
to be higher contact rates within certain groups than between these
groups. There have been a variety of models developed to analyze the
effects of such structure in the host population on digease spread
(Hethcote, 1978; Post et al., 1983; May and Anderson, 1984}, 1In
contrast to the gituation in animal epidemioclogy, there has been
relatively little theoretical dsvelopment in the spatial aspectsg of
Plant epidemioclogy.

Flant epidemiology offers two important differences from the
epidemiology of animal diseases, at least as far as }noduling is
concerned. First, since plants are fixed in space for much of their
lifespans (and in essence all of it for crops), disease spread doesg
hot occur due to contacts between individuals but rather through the
dispersal of the pathogen itself. There is thus an explicit gpatial
aspect in plant epidemics that hag iong been noted, but generally
ignored from a modeling perspective {@illigan, 1985). Secondly, plants
generally have a continuum of resistance levels to any particular
pathogen. The effect of infection by a pathogen on a given plant may
range from severe damage or death to no damage at all. In many crop
plants, infection leads to reduced growth and yield, but rarely to
rremature death of the host. This implies that the usual mathematical
Etructure of epidemiological models - classes of infected,
susceptible, immune and removed individuals - ig inappropriate for
most plant situations. The situation is similar to the case of
macroparasitic infections in humans {Anderson and May, 198B2}.

Due to the above, even in monocultures of genetically uniform
crop plants, it is inappropriate toc assume that digease ig spread
either uniformly or according to a Poisson distribution over the host
population. Despite this, much of the work on the temporal spread of a
disease makes this assumption (Rouse, 1985; Hau et al., 1985), What

[



work has been done on the spatial aspects of disease spread tends to
be either highly empirical (i.e. statistical mcdels for spore
dispersal} or based on physical transport models with very little
emphasis on biological effects (McCartney and Fitt, 1985). With few
exceptions (l.e. Kampmelijer and Zadoks, 1977) there has been little
work which attempts to simulate the dispersal of a crop disease and
couple it with the growth of the crop. At the same time, essentially
no attempts have been made to analyze the stochastic nature of the
spatial spread of crop disease (Gilligan, 1985).

One approach to this is to utilize the individual-based growth
models mentioned above. A somewhat preliminary investigation of this
method was undertaken by a former student of mine (Bullock, 1986). The
objective here was to investigate the effects of alternative spatial
patterns of mixtures of resistant and non-resistant plants on the
spread of a fungal pathogen. The method used a very simple individual
grovwth model, logistic in form, with no neighborhoed competition or
physiological effects of environment. Pathogen was introduced
according to a random process, with local growth dependent upon leaf
area available, and dispersal occuring once pathogen density on a host
reached a certain fraction of the host's carrying capacity. Dispersal
was determined by an exponential random variable, with the capebllity
tc bias the spread due to prevailing winds. Host growth rate was
either reduced as a function of pathogen load (for nonh=resistant
plants) or independent of patheogen density (resistant plants). Several
alternate spatial patterns were considered including uniform,
bordered, striped and checkerboard. Criteria investigated were mean
total biomass at end of season as well as probabjlity that biomass at
season end was below some threshold (presumably that at which profit
is zero)., Results indicated that generally the more divided the field,
the smaller the amount of damage thers was. Also, it was determined
that bordering a field with resistant plants, as iz sometimes
suggested to farmers, had little effect on slowing an epidemic unless
pathogen dispersal distancea were very small.

It is possible to formulate an analytic approximation to the
above situation, if one is willing to make certain assumptions.
Consider the situation in one dimension only, and suppose the pathogen
spreads according to a diffusion process with local growth depandent
upon the local densities of the two host types. Also suppose there is
ho neighborhood competition in the host, so that plant growth iz given
by an ordipary differential equation. Then a general form of the
problen is

3

4

= Dr + £(r,g ,9 )
XX 1 2

L1
(o d

99 = ho(r,g.9) (9)
at 1 1 2

94; = n(r,g9 .9 )
dat 2 1"z

with g;(x,0) = ki(x). i=1,2, r(x,0}) = rolx), 03 ki £$C, and

I (k1+k2)dx-lll.

In the above, the qi(x.t)'l are the densities of the two plant
types at location x at time t, r{x,t} is the pathogen density there, f
is the local growth rate of the pathogen, the hi'n are the growth
rateg of the plants, the kl's are the initial planting densities of
the two plant types which are bounded by C and total initial planting
is M, and rO(x) is the initjal pathogen distribution. In addition cne
could attach zero boundary conditions for the pathogen density on the
plot of length L say. The above becomes a control problem if the
object is to choose the initial densities ki so as to maximize the
total biomass at end of season T

Y= (gy{x,T) + g,ix,T)) ax. (10}
0

In even the non-control case, this problem is extremely difficult to
analyze. In part motivated by this model, R. S. Cantrell and C. Cosner
of the Univergity of Miami have investigated a steady-state version of
{10} in the gimplified case of fixed “"good" and "bad" regions for the
growth and dispersal of a pathogen. In the control problem, even
proving that bang-bang is optimal is very hard. One can pretty much
intuit what the answers should be in some special cases depending upon
the dispersal rate of the pathogen, the size of the plot, and relative
growth rates of the two plant types.

The above is partiy meant to show how rapidly mathematical models
can become intractable, but also that simplificationa of the model can
lead to intriguing mathematical problems. There have besan a humber of
other models for disease spread that essentially produce travelling
waves. One is a simulation approach similar to the individual model
described above (Minogue and Fry, 1%83}) and another considers the
diffusion cf pathogen from a focus (van den Bosch et al., 19B88).



‘ther of these consider the effects of the pathogen on the plant

'aver.

‘CLUSIONS

In sum, I have argued that a physiological perspective is often
ful, even when the scales of the problem of concern are
siderably longer temporally and larger spatially than would
mally be addressed by consideration of physiology. My key point
ht be succinctly stated as "A little reductionism iz good for the
1, too much reductionism is bad for the heart”. Thus, we gain a
hanistic understanding of the functioning of complex natural
tems by taking a phyaiological perspective. At the same time, there

clear limits to the utility of a reductionist approach, evident
» the large number of poorly understood pParameters and functional
ns which appear in large systemg models. I argue for an
:rmediate approach which uses physiologically-based models to
lcate appropriate macrodescriptors for large-scals phenomena. When
s is coupled with an analysis of the system's structure according
the rates of the processes appropriste to the questions being
‘essed {O'Niell et. al, 1986}, we will have avajlable a truely
‘archical approach to natural systems.
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