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The size-dependence of some 20 physiological variables has been derived from a
rather simple model for energy budgets. This nine parameter model is based on
detailed observations on the growth and reproduction at varying lood densities, and
has the state variables size and storage. The size-dependence of some variables
works out 10 be different for animals of the same species as opposed to animals of
different species. The reproductive rate, for instance, tends to increase with size for
animals of the same species, but to decrease with size for animals of different species.
This is because the parameter values are constants within a species, but vary in a
size dependent manner for animals of different species. Although growth at constant
food density is assumed 10 be of the von Bertalunfly type, and routine metabolism
to be proportional 10 size, respiration turns out to be about proportional to size to
the power 3/4, both within and between species. The value of about 3/4 has
frequently been found, but it has always been thought to be incompatible with von
Benalanfty growth.

1. Introduction

The aim of this paper is to show that, starting from assumptions on the quantitative
aspects of energy budgets, we can derive in a systematic manner the way in which
many physiological and ecological variables, such as ingestion, growth and reproduc-
tion, depend on body size. These types of relations have recently come to the
forefront, (McMahon & Bonner, 1983; Peters, 1983; Schmidt-Nielsen, 1984; Calder,
1984) and are used o predict, e.g., food chain efficiencies in ecology. Bady size
relations are invariably taken to be of the allometric type, i.e. Y =aW? where the
parameters @ and b are estimated by linear regression in a log-log plot of the
dependent variable Y against body size W, The parameter b has become particularly
popular, and will be called the scaling parameter. Apart from heat production, only
relevant for endotherms, the most important body size relation concerns respiration,
i.e. rate of oxygen consumption or carbon dioxide production, where the scaling
parameter has the value 0-66 for unicellular organisms, 0-88 for ectotherms, and
0-69 for endotherms, (see Phillipson, 1981). The exact value of the scaling parameter
differs among authors who take their data from the literature. The variations are
due in part to differences in the species included and in the experimental conditions
under which respiration rates were measured. For crustaceans Vidal & Whitledge
(1982) quote values of 0-72 and 0-85, and Conover (1978) gives 0-74. If the regression
covers a greal many species, from bacteria up to elephants, the scaling parameter
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is found to be 0-75, an almost magic number in scaling relations. Since it is less
than unity, it has often been concluded that large animals use energy more efficiently
than small ones, even though this has not been substantiated for ectotherms. An
implied assumption in this conclusion is, however, that respiration rate corresponds
10 routine metabolic rate, which includes energy investment in the reconstitution of
enzymes and membranes and in routine movements, but not in growth, reproduction,
digestion and differentiation. We shall see that this assumption does not hold in
the following simple model for energy budgets, Together with routine metabolism
energy invesiments in the other processes mentioned prove to contribute substantially
to respiration rate. The model is formulated in terms of the state variables size and
energy storage as functions of fluctuating food density. The relevance of the model
has been checked for the water flea Daphnia magna (Kooijman & Metz, 1984), and
Kooijman (1986a) on the basis of a wide variety of experimental data and for egg
development in fish and birds (Kooijman, 1986b). Only a minor part of the data
will be considered in this paper for illustrative purposes. We shall confine the
discussion to ectotherms. For the extension of the model to endotherms, see
Kooijman (1985). Here we shall first derive the model on the basis of a set of
assumptions, and then consider scaling relations within and between species.

2. Energy Budgets

The energy budget model is based on the assumptions listed in Table 1. It regards
an animal as an input-output system, as illustrated in Fig. 1, with state variables

TaBLE 1
Assumptions of the energy budget mode!

L. Energy utilized for maintenance M, for growth W, and for reproduction or differentiation is at the
expense of stored energy.
. For given size, the size-specific storage and its dynamics do not depend on any partitioning rule for
energy utilized. L
. Maintenance cnergy is proportional 1o size: M =W
. A unit increase in size ¢ a fixed amount » of encrgy.
- Assimilation A is proportional to ingestion /: A= J[A_]/[L.].
. Ingestion starts at birth size W,, s0 / =0 for W< W,.
- For W W,, ingestion is proportional to W f =[1_,)fW™? where f is & function of food density,
defined on (0, 1).
. The scaled functional response f depends hyperbolically on food density X: f= X/{K+ X), where
K is a constant.
9. Differentiation stops and reproduction stans at size L/
10. Initially, size and storage are (0, 5,), where the initial egg storage, S,, is & number such that no
assumption is violated,
11. The animal dies as soon as assumption 3 has to be violated.
12. At constant food density, growth W is of the von Bertalanify type after birth, i.e. W= W 35w,
where g and ¥ are positive and constant.
13. At constant food density, the ultimaie size, W, is proportional to f.
14. At constant food density, 1/ ¥ is linear in f
5. Energy expenses on growth are non-decreasing with increasing size-specific storage for an animal
of a certain size.

(o]

AW

o8

ENERGY BUDGETS AND BODY SIZE 271

F1G. 1. Energy flow through an animal. Rates: 1. j gestion, 2, defecation, 3. assimilation, 4. mobiliz-
ation, 5. demobilization, 6. utilization, 7. repraduction, 8. growth, 9. maintenance, 10 heating {only in
endotherms). Symbols; - cnergy flow, --» information Row, O decision valve, * heat loss rate, [J state
variable, ¢ "\ source or sink.

size, W, and storage, S. The basic idea is that:

—the tissue cells use energy, which is distributed by the blood at a rate that depends
_on the encrgy content of the blood.
—the blood circulates through the body at a rate that is high with respect to the
change in the energy content of the blood.
—the mechanism that determines the energy content of the blood (which will be
tow, anyway) only depends on the energy content of the blood and on the amount
of energy kept in storage in certain tissues (which may be considerable).

This process is summarized in assumption 1.

Two key assumptions are that food intake is proportional to surface area, so to
W and that growth is of the von Bertalanfly type (assumptions 7 and 12 in Table
1). The validity of the assumptions is illustrated in Figs 2 and 3 for Daphnia magna,
These two results pose a fundamental problem for any detailed quantitative descrip-
tion of the energy budget. Observations on these daphnids reveal that individuals
larger then 2-5 mm produce young at each moult, and that the amount of energy
involved in this process is quite substantial (see Kooijman, 1986a). Since there is no
significant reduction in growth (Fig. 3), nor any notable increase in food intake
(Fig. 2} around 2-5mm, we are faced with the problem of the destination of an
energy low in animals less than 2-5 mm, which corresponds to the energy spent on
reproduction in larger animals. This is the basis of assumption 9, where this
destination is called differentiation. 1t is a direct consequence of the assumption 3
that routine metabolic rate is proportional to size¢ W. The basis of this assumption
is two-fold. First we have the results of Smith (1957) and Vleck er al (1980) that
respiration in eggs of fish and birds is well described by a weighted sum of size and
observed growth of the embryo (these results are more conclusive than results for



272 S.A. L. M. KOOIJMAN

o /

3

~

»

E B8l X

"

o t

s o .

9 x

§ 4l (xx})

“

-

g -

ool
0 N SN
0 4 8 12

Langth? (mm?2)

FIG. 2. Measured ingestion rate § of Chlorella pyrengisoda cells as a lunction of body I_englh L of
Daphnia magna at 20°C and 10° cells per mi. The measurements are based on counts of resin particles
(x5 um ) in resuspended faeces of individual daphnids b{ means of laser optics. The concentration of
vesin particles is 4 to 7 times 10°/ml. The function § = 4L" has been fitted by lglst squares. Tlllcjval_ue
obtained for b= 1-81 {95% c.i.: 1-59, 2-03), not significanuly different from 2. this leads to § = dL? with
d =081 (95% c.i.: 0-76, 0-85) cells/(h x mm?).

animals after birth, because the (relative) size increase is much larger before birth
than afier, and because the interpretation of respiration data before birth is not
complicated by the process of feeding and reproduction). The second basis _for the
assumption that rouline metabolic rate is proportional to size is that only if it is 50,
can the scaling parameter for the respiration rate be somewhere between 2/3 and
1. This will be clarified in the next section,

In the appendix, it is shown how the change in the state variables, size W and
size-specific storage [ 5], can be derived from the assumptions given in Table 1, the

Length {mm)

Q S PR P T
[+] 4 8 12 16 20
Time {d)

F16. 3. The measured change in length L in individuals of Daphnia magna a1 20°C, in 40 mb, supplied
with 10* cells of Scened: bspicatus a day. The curve is of the von Bertalanfly type: L(s)=
Lo—{La—Lg) ™, where Ly, L, and ¥ are parameters and f the time.
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result being

W= {( WL AL S)/Sn] - WE/ )/ ([S]+n/x))
[S1=[AIW (W= W)X/ (K + X) - [SV/[S.]}

where X is food density, the dots indicate rates or derivatives with respect to time
and (W= W,) has a value of 1 or 0 if true or false. The parameters, which are
assumed to be constants fora speciesin a constant environment (apart from, possibly,
a fuctuating food density), are described in Table 2. The initial size is a model
paramcter, W, and the size-specific storage at birth has to be equal to that of the
mother at the moment of egg formation, if it is to be consistent.

TasLE 2
Parameters of the energy budget model

Symbol Dimension Interpretation Symbol Dimension Interpretation

W, length®  Birth size x Propontion  of  utilized
cnergy channelled to
growth and routine meta-

bolism
K biomass - Food density resulting in ¢ energy - Size specific routine meta-
length™? haif the max. input length™* - baolic rate
time™*

[4.] biomass - Surface area  specific n energy - Energy requirement for s
Icnsth'*'- maximum ingestion rate length™ - unit increase in size
time™

[A.] energy - Surface  arca  specific [S,,] energy:  Size specific maximum
Icnslhl" - maximum assimilation length™? storage
time™

In Kooijman (1986a), the energy content of an ¢gg has been derived on basis of
the assumptions given in Table 2. This is necessary for the calculation of the
reproduction rate, i.e. the energy channelled into reproduction ({x — 1} times the
utilization rate in situations of growth), divided by the energy investment per egg.

The cnergy content of the gut has not been modelled as a state variable, because
its relaxation time is assumed to be small with respect to that of the storage. This
seems 1o be reasonable for animals like daphnids, in which the gut residence time
at 20°C can be as short as 20 min. For animals with a large stomach, this assumption
may not be appropriate, but the model would still apply in comparing different but
constant food inputs.

The state variable energy content of blood only appears implicitly in assumption
1 because of its low energy capacity and small relaxation time. For the purpose in
hand, we only have 10 deal with the utlization rate, and not with the mobilization
and demobilization rates indicated in Fig. 1. Substitution of the equations for the
assimilation rate and the storage change rate from the appendix, shows that the
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utilization rate in sitvations of growth equals
C ={(ISV[S)+ 7/ OH W (] ) An)/[Sm]+ Wi/ x).

This equation will be used in the next section.

The diferent types of energy losses in the form of heat indicated in Fig. 1 are
supposed to be fixed fractions of the energy flows involved. (This is in contrast to
endotherms, where there is also another type energy drain to heat production for
the purpose of heating the body. This flow rate is an order of magnitude larger (see
Kooijman, 1986a).) Therefore there is no need to model them explicitly. They only
show up in the values of the parameters. The parameter n, for instance, will be
larger than the energy released in the decomposition of a unit of body tissue, partly

because of its entropy or “information content”, and partly because of the heat toss

involved in growth.

Energy losses in movements have not been modelled explicitly here. In fact they
are considered to be negligible as compared with the other energy flows. If they do
not happen to be negligible, it may be that average energy losses in movements can
be written as a weighted sum of size and surface arca. In that case, the formulas
do not change, but only the parameter values of { and [A,,], which increase and
decrease, respectively.

The present paper does not deal with the estimation of parameter values from
experiments (this is dealt with in Kooijman, 19864a), but some remarks on the von
Bertalanfiy growth curve might be appropriate here. There is a lot of literature
showing that von Bertalanfly growth curves fit experimental data on a wide variety
of species very well. This is in itself remarkable because most of them concern data
on animals in field situations, where food density is usually not constant nor
abundant. Compuler simulation studies which will be reported elsewhere show the
energy storage, as introduced here, flattens out rather wild fluctuations in food
density. This (partially) explains the fit.

First, we will consider how a number of variables depend on size within a species,
and, secondly, how they do so between species.

3. Body Size Relations in Animals of the Same Species

Energy is normally stored in the form of carbohydrates, proteins and, especially,
lipids. The utilization of the energy involves Oxygen consumption and a carbon
dioxide preduction. In animals with empty guts, (A=0), the respiration rate there-
fore corresponds to the utilization rate in previous section. As shown in Table 3, a
constant food density, it can be written as a weighted sum of W and W, which
can appear almost linear in a log-log plot with a slope somewhere between 2/3 and
1 (Fig. 4). Although we have assumed that routine metabolic rate increases linearly
withsize, the increase in respiration rate with size is less steep, owing to the decreasing
amount of cnergy invested in growth and reproduction. In the case of ectotherms,
there is no reason to believe that these flows are negligible in short term measurements
of respiration rates. Although the actual size increase during this measurement may
be negligible, the energy invested in (the overhead of) this increase may not. In
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TasLE 3
Some quantities Y expressed as a function of size W and the best fitting scaling
parameter b in the allometric equation In Y = a+bin W, Where this relation is not
strictly linear, the maximum range for b is indicated

Scaling parameter

within between
Quantity Equation species species
Max ingestion ratc bow(i, w3 2/3 1
Max filtering rate F.m[] JW¥yK 2/3 273
Saturation constant K=1I,F, 0 /3
Max assimilation rate (AW 2/3 1
Routine metabolic rate {W 1 1
Threshold food density  KW'Y/([A )/ ¢~ W'Y z1/3 1/3
Thresh. ingestion rate Wil )AL 1 i
Max size W, =(x[A,1/{) 0 1
Max storage [S,]1W 1 4/3
Threshold storage WS 1AL 4/3 4/3
Max starvation time WYALS, JTAL In ([ A, )/ (W) ~1/310 1/3 1/3
Abundance {max/threshold ingestion) ™" -1to -2/3 -1
Max growth rate (82 W_ (L/x )/ (LS. ]+ n/x) o 23
Max respiration rate Com (WHIWI o+ WS )il (n+ ~[S.]) 2/3tw01 2/3to1
Birth, adutt size w,, W, 0 1
) wl/_ w3
Min pre-reprod. period S = (3/{)(n+ «[S.]) In ;}";_;T”” 0 173
m T Wy
Max egg storage Som WIS H1-174(W,/ w, )/ )2 0 4/3
Min water loss in eggs So— W,[5,.} 0 4/3
Ix S\
Min incubation time =[S, (r_L)
14 W,
x(ll v’+m/2+l+ u\/i)
A m:tanl_v, 0 1/3
where v={4(W, /W,)/2_1)}-1/4
Max reproductive rate Ry =(1-}C,/ S, 231 23w -1/3
Max pop. growth rate R./O+E N —_ ~2/3to0 -1/3

endotherms, routine metabolism, including heat production, dominate. {An
endotherm eats ten times as much as an ectotherm of comparable size (Farlow,
1976).) It follows that large endotherms are more efficient than small ones, because
they lose relatively less energy in cooling. The routine metabolic rate being propor-
tional 10 size, the fact that the scaling parameter of the respiration is less than one
does not necessarily imply that large ectotherms are more efficient users of energy
than small ones, and we should seriously consider the possibility that they are not.

In the literature, it has been observed several times that there exists a negative
correlation between the von Bertalanfly growth parameter ¥ and the ultimate size;
see c.g. Duineveld & Jenness (1984). This observation has been used by Knight
(1968}, to assault the von Bertalanffy model as a reasonable model for growth. In
order to remove this correlation, Gallucci & Quin (1979) suggested the transforma-
tion 3y = kW[, In the appendix, the ultimate size at constant food density is found
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FIG. 4. Respiration rate of Daphnia pulex with few eggs at 20°C as a I'unc_:ion of ‘Ien‘llh. Data are
from Richman (1958, Table 5). The fitted curve is 0-0336L7 + 0-01845L", and is indistinguishable from
the curve 0-0516 L3 %7,

to be W= (fix[An]/{)’. Substitution in the expression found for ¥ gives (3y) ' =
n/{+ WEHS.)/[AL). Apart from n/¢ which has a small numerical value
(Kooijman, 1936b), the proposed transformation indeed renders ¥ independent of
W’. Based on the present model, this dependence is caused by the dynamics of
stored energy, and it by no means detracts from the von Bertalanfly model as a
model for growth at a constant food density. {The parameter {/ 7 can be shown to
the so-called maintenance rate constant, which appears only in the microbial
literature, but which deserves wider attention (see Kocijman, 1986b). There are
indications that the maintenance rate constant increases in the sequence bacteria,
daphnids, fish and birds, and decreases in the sequence bacteria and algae, suggesting
lines of evolutionary development.)

The reasoning set forth in the previous section has many additional consequences.
We shall briefly consider starvation processes, because these are ecologically interest-
ing. Suppose that an animal experiences a period of starvation after a pesiod of
constant food supply. From the storage balance equation for the dynamics of the
size-specific storage, together with growth being zero, we see that the storage
decreases exponentially uniil the utilization rate equals the routine metabolic rate.
Any further decrease in storage would cause death by starvation. When the anir_nal
is about to die, we can calculate the minimum storage, the time 1o death by starvation
and the threshold food density (see Table 3), i.e_. the foo_d density at which the
animal is just able to survive for a long period, (or A= C = M, growth and reproduc-
tion being zero), as functions of the parameters and the size of the animal. The
threshold food density is a hyperbolic function in W'">, Therefore, small animals
can survive at food densities at which large ones cannot. Since size tends to increase
with age, (which trivially holds at constant food density), the average age of the
population decreases in periods at the beginning of starvation. The effect of a
temporary drop in food density reflected in the time until death by starvation depends
on the parameter values. In the order of the values for Daphnia magna, the large
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ones tend to die a little carlier than the small ones, but the differences are slight.
This has been verified experimentally (Koocijman, 1986a). As we shall see, this
behaviour constrasts with that of animals of different species.

From the cnergy preservation law it follows that the energy spent on reproduction
equals C — M — »W. Substitution of the energy investment in growth shows that the
reproductive rate is simply related to the utilization rate, viz. (W = W, )(1 -x)C/S,
in the growth region of the state space and (W= W,)(C-M)/S,in the no-growth
region, (W= W,) taking the values 1 or 0 if true or false, and S, being the initial
storage, i.¢. the energy investment per young. The expression for S,, given in Table
3 is derived in Kooijman (1986b). As storage at birth is in assumption 12 laid down
o be 8, =[5,]/W, for a mother feeding at (constant) input level f, the energy
consumed during the egg stage, W < W,, equals Sp— S,. In animals like birds, this
use of energy corresponds to the loss of water in eggs, because the metabolic
degradation of yolk, releases waler that would drown the chicken if it did not
cvaporate. This water includes waler arising from the metabolism of energy-rich
chemicals, as well as water deriving from the watery matrix in which these chemicals,
arc embedded for the purpose of degradation and transport. The observation that
loss of water from bird eggs corresponds to the use of energy, and so with Sa— 58,
will be used in the next section. The derivation of the incubation time is given in
Kooijman (19865). In the growth region of the state space, the reproduction rate is
thus proportional 1o the utilization (or respiration) rate. So their size dependences
are similar, See Kooijman (1984) for a test against experimental data.

The pre-reproductive period at constant food density is obtained from the inverse
function of size as a function of age, which is a rather simple function due 10 the
von Bertalanfly growth from size W, (see Kooijman, 19864).

4. Body Size Relations in Animals of Differeat Species

Within a species, the nine parameters listed in Table 2 are assumed to be constant
in a constant environment (apart from, possibly, a fluctuating food density). This
is because the energy budget model is basically a model for growth. Any change in
the parameter values would immediately result in a violation of one of the assump-
tions (in particular of assumption 12). The maximum size¢ W, an individual can
reach (at a high age and with an abundance of food), can be written as a function
of three parameters (see Table 3). Species that differ in this maximum size therefore
have to differ in one or mare of these three parameters, Consistent with the basic
model formulation, we shall assume that the size specific routine metabolic rate and
the fraction of the wtilization rate channelied into differentiation or reproduction
do not depend on the {maximum) size. This implies that the parameter for the
assimilation, [A,], scales with W, The maximum assimilation rate itself, which
is given by [A,.} W (see Table 3) therefore scales with W,., sc the scaling parameter
is 1.

Since the ingestion rate is assumed to be proportional to the assimilation rate,
the ingestion rate also scales with W,,. Farlow (1976) gives a scaling parameter of
0-88 for the ingestion rate, but 1 also fits the data well. The maximum ingestion



278 S.A. L. M. KOOIJMAN

rale as well as the threshold value scales with W, so we may expect the abundance
of species of body size W, to scale with Wl very ncarly what was found by Peters
(1983). For filter feeders, where filtering rate F is ingestion rate I divided by food
density so that F=[f,]JW"/(K+X), the shape parameter K of the Holling
functional response can be interpreted as the quotient of maximum ingestion rate
and maximum filtering rate, i.¢. in absence of food so that K = i,/ F.,. If the filtering
rate is dependent on the surface area of the filtering apparatus, it scales with wi?
(see Brendclberger & Geller, 1985), so the shape parameter scales with W'/* and
the threshold food density with W2/°. This means that a constant efivironment tends
to select for small species, because they are able to outcompete the large ones.
Fluctuating environments, on the other hand, tend to select for large species because
the time until death by starvation scales with W'/, (Threlkeld (1976) found a scaling
parameter of 1/4, but 1/3 also fits the data well.) In contrast to what has been found
in the previous section for animals of the same species a large specimen of a large
species is thus better equipped to survive a period of food shortage than a small
specimen of a small species. Brook & Dodson (1965) observed that in the absence
of predators, the larger species of zooplankton dominate. On basis of the present
theory, the explanation does not lie in the size dependence of the threshold food
density as they suggested (because this would operate the other way round), but in
the length of periods during which no animal can find sufficient food. This has been
confirmed experimentally by Goulden & Homig (1980).

In order to couple the maximum storage capacity to the maximum energy intake,
we assume that the size-specific maximum storage, [S,,] scales with the parameter
[A.], i.e. with W' and that the birth size as well as the size at the end of the
pre-reproductive period scales with W,,. These two assumptions complete the scaling
relations for the parameters of the energy budget model coliected in Table 2. We
can now derive expressions for a variety of observable quantities such as maximum
growth and minimum pre-reproductive period, wrile them as functions of the
parameters and size and judge how they would behave in a log-log plot against
size. In making this judgement, we must remember that the parameters are constants
within a species, but allometric functions of size between species. Some of the
expressions for the quantities collected in Table 3 then result in proper allometric
functions, and so they are linear in a log-Tog plot against size. Some of the other
expressions are not quite linear, but only approximately so (see legend to Fig. 4),
In that case the maximum possible range of the scaling parameter is indicated in
Table 3, il one nevertheless wishes to fit a linear relationship (in deference to
tradition in biological literature). When comparing the results with data from the
literature, we should bear in mind that, if the energy budget model really holds, the
reported values for the scaling parameter should fall somewhere in this range,
depending on the species included. From an analysis of the equations given in Table
3, it follows that the respiration rate scales with about W4 as we also found within
a species, a result that has frequently been found (see intraduction). It also follows
that maximum growth scales with W/, which fits Calow & Townsend's data (1981)
very well, that the minimum pre-reproductive period scales with W'/ !, which very
well fits Bonner’s data (1965) as given in Pianka (1978); that the energy investment
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per young, which correspond to egg size, scales with W5 in ectotherms; that the
water loss from bird eggs scales with W**, je. with (egg size)'; as found by Rahn
et al {1979}, that incubation time scales with W, i.e. with (egg size)'/*: as found
by Rahn er al. (1974) and by Kooijman (19865); and that maximum reproductive
rate scales with W,'/? the exponent being close to the value of ~1/4 given in e.g.
Peters (1983), (in view of the data). It is interesting ta note that, the maximum
reproductive rate R,, decreases with increasing species size, not, as many authors
have suggested, because size-specific routine metabolic rate, but size-specific storage
depends on size. The same holds for the duration of the pre-reproductive period,
which increases with species size. Since only the age of the mother when she gives
birth for the first few times is relevant in the population growth rate and the duration
of the pre-reproductive period J is small, and reproduction once started, soon
reaches its maximum rate, the population growth rate can be approximated by
R./(1+R.J), and consequently scales with W_'". Considering the proliferation
in microbial populations, we can assume that division occurs at given cell size (see
Kooijman, 1986a). The division interval then corresponds to the expression given
for the pre-reproductive period. Since the population growth rate is inversely
proportional to the duration of this interval, it scales with WZ2'. This fits the
protozoa data of Fenchel (1974) well, who gave 2 scaling parameter of ~1/4. Basic
feature of this scaling is that ingestion rate is preportional to the surface area W22,
This appears to be particularly relevant for ciliates feeding by phagocytosis, but
perhaps less so for bacilli, which change their shape during growth, because the
rod diameter remains constant. In the latter case, the population growth rate is
independent of cell size and ingestion rate scales with size. This refates to the findings
of Banse (1976, 1982} who found a scaling parameter of —1/4 and 0, respectively,

Conclusions

Central to the reasoning outlined above are the Holling functional response, the
diagram of Fig. 1, and the von Bertalanfly growth equation {von Bertalanfiy, 1934).
Though popular several decades ago, this growth equation has lost a great deal of
its appeal, primarily owing to the observed scaling of respiration rate with body
size. This argument does not appear to be a valid one; the scaling parameter of the
respiration rate is smaller than that of the routine metabolic rate owing to less and
less energy being invested in growth and reproduction with increasing size. The
reason lies in the assimilation rate scaling with surface area for animals of the same
species. In the considerations given above, I have not attempted to predict the value
of the scaling parameter in body size relations correctly to two decimal places. Such
an attempt at accuracy is bound 10 fail, because of the many biological exceptions
to general tendencies in body size relations, and because body size relations are not
necessarily of the allometric type. With reference to the aim of this paper, the gist
of the reasoning is, in fact, that many of the relations between physiclogical variables
and body size can be predicted simultaneously from an elementary knowledge of
energy budgets. 1 have not devised my energy budget model to explain body size
relations correctly, but to describe detajled observations of the feeding, growth and
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reproduction behaviour of daphnids. In explaining body size relations, storage
considerations have proved to be more essential than has been recognized. These
relations work out to be different for animals of the same species than for animals
of different species. The most striking divergence is in the reproductive rate and in
the starvation time. The energy budget model suggests that the environment selects
for body size as a compromise between, on one hand, smali, because small animals
can better survive low food densities and, on the other, large, because large animals
can better survive periods of starvation. If starvation periods last too long, however,
the population numbers will follow the fluctuations in food density more closely.
In that case, the enviconment will select for small species because of their large
population growth rate. Conversely, the model indicates that there is an optimum
relation of body size to the time scale in which fluctuations in food density take place.

The author would like to thank Professor Dr J. A. J. Metz and Professor Dr O, Diekmann
for their stimulating interest, Ms A. de Ruiter for the experimental work underlying Figs 2
and 3 and Professor Dr P. Calow for his comments.
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APPENDIX

Derivation of the Esergy Budget Model

The change of the state variables, size and W and size-specific storage [$) can
be derived from the assumption listed in Table 1 as follows,

The energy channetled into differentiation or reproducticn {cf. assumption 9} can
{always) be written as a fraction 1 — «( W, 5) of the utilization rate €. This fraction
may be a complicated function of the state variables. So the fraction channelled
into maintenance plus growth equals x( W, $)C = M + nW, where the maintenance,
M, is given by M ={W, and W stands for growth, ie. the change in size, W.
Assumption 1 states that the utilization rate, C, equals C =A-S8, where § is the
change in storage, S, and the assimilation rate, A, is proportional to the ingestion
rate, § (assumption §), which is given by assumptions 6, 7, and 8. So we have
A=[A.,]fW*>, On the basis of assumption 8, this type of ingestion rate is known
as the Holling functional response (see Holling, 1959).

At constant food density X, the storage aflter birth can be written as a function,
S", of size, W, and the scaled input F=X/{K+X) (see assumption 8), so §*=
W aS*/aW. Substituting this and the von Bertalanfly growth, W=5Ww_3yw
given in assumption 12, in the equation obtained above, x (W, SY(A—§) = {W + W,
we can solve 35*/a W, obtaining

33'/3W=(f|+81W'”)/(fz+xzw”’).wilhf.={A..1f"ﬁ(f)n/x;f:=ﬁ(f);
Bi=~{/x+33(fIn/x and g,=-3y(f).

From assumption 2 we have that the size-specific storage, [S]= 8§/ W, is independent
of the partitioning rule «, so 3°$*/(3x 3W)=0 for all values of W. For primes
denoting derivation with respect to x considered as a function of time we have that

a’'s* LA it fogt - 118 - 158 WP+ (gig: - 8,85) W
W ax (Lt+ g W)

has to vanish for all values of W, from which it follows that (f,/f;)'=0 and
(g:/8,) = 0. This gives

PN =p(fYn/(flAnlc?) and G3(S) = GV 9/} -33f)/ x.

Solution of these differential equations gives g(f Y={An1f/(n/x+3S*/aW) and
3¥7(f)=({/«)/{n/x+35*/aW). Since j and 7 are independent of size W, and so
the ultimate size W, which from W =0is given by W> = 5/(37) =[A.]fx/{ we
have that « is independent of size. From assumption 13 we also have that x is
independent of f, so « is the same for different constant food densities. Since p and
¥ are independent of size, we also have that 35*/o W is independent of size, W, so
S* has the form §* = h(f) +2(f) W. Assumption 1 states that growth utilizes stored
encrgy, not directly assimilation energy. Therefore 35*/3 W, which is equal to g(f),
in g and ¥ has to be replaced by §*/ W —h(f)/ W, which is only independent of f
and W for h(f)=0. So we have S*=g(f)W or [S*] = g(f) for [S*]=S*/W, In
accordance with assumption 1 f in g has to be written as a function of S.s0fis
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replaced by g~ '({S$*]), where g is the inverse function of giec g ' (g(f)) =1 We
now obtain

W =W~ 35W = (W A 1g (S*]) - W§/x}/(n/x+[S*]).

Growth depends on stored energy, S*, as the only variabie that is changing (it
changes even when food density is constant), and it does so on its momentary value
and not on earlier ones. We can therefore drop the asterisk and apply the equation
for growth in situations of fluctuating food density. If however, the food density is
fluctuating, the state variables can attain values they cannot attain at constant food
density. These values correspond to growth becoming negalive in the equation
above. Assumption 15 in fact means that, in those situations, priority is given to
differentiation or reproduction over growth, which ceases. The dynamics of the
size-specific storage, [ $]=$W - SW/ W2, is now found from the balance equation,
§5=A-C 10 be [S)=[A,]W " {f-g ' ([S])}.

Assumption 14 states that 1/¥ is linear in /. s0 g is proportional 10 f say
£(f)=[5,1/, which implies that g~" is proportional 10 [$] and vice versa, In other
words: the size-specific storage obeys a simple first-order process if and only if 1/ ¥
is linear in £ To summarize the final result, we have that the change of the state
variables is given by

W= (WA, 1(SV/(S. 1~ Wi/ )/ (LS1+ n/x)).
[S1=[AJW™ (W = W,) X /(K + X) - [SV/[S.]}

where (W= W,) has value 1 or 0 if true or false, in accordance with assumptions
6 and 5. The model would be much simpler to derive if we assumed that x is
constant, in which case we can drop assumption 12 that growth at constant food
density is of the von Bertalanfy type. The reason for not doing this lies in the
experimental testing of the assumptions. It is very difficult to measure the difierent
energy flows to growth, maintenance and reproduction directly. Among other things,
we have to disentangle the heat losses involved in these processes and measure
other forms of overheads (see text).






