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S.A.L.M. Kooijman
Division of technology for society TNO
P.O.Box 217, 2600 AE DELFT, THE NETHERLANDS

SUMMARY

This paper describes a simple and general model for the feeding,
storage, growth and reproduction of an ectotherm as functions of
a possibly fluctuating food density at constant temperature. The model
assumes a hyperbolic functional response, a fixed ratic between in-
gestion and assimilation rate, and a storage that ie proportional to
asgimilation rate and weight when food supply has been constant for
some time; it further assumes, a fixed ratio between energy spent on
reproduction and growth plus maintenance at constant food density, a
von Bertalanffy growth at constant food density, and a juvenile stage
that ends as soon as the animal attains sufficient weight. In the
present formulation, the storage dynamics is central. It describes the
gradual increase in respiration when food density is suddenly in-
creased, as well as the gradual decrease in respiration rate and time
remaining until death when the animal is starved. The model is shown to
fit quite well the available data on feeding, respiration, growth,

reproduction of female Daphnia magna and their survival time when
deprived of food. It explains the occurrence of males in this partheno-
genetically reproducing species. The model can alsoc be used to describe
microbial dynamics, if it is assumed that division occurs as soon as a
certain cell size has been attained. The relationship between the
present model and existing descriptions on the substrate-limited growth
of bacteria and the nutrient and light-limited growth of algae has been
evaluated. They turn out to be special cases of the present model,

which explains some observed deviations from existing theories.

INTRODUCTION

The purpose of this paper is to describe the growth and reproduction

‘behaviour of individuals by a model that can serve as a basis for stu-
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dies in population dynamics. The literature on this subject, although
vast, largely falls into two categories. One concerns models that in-
corporate a great deal of biological detail, and so do not allow of
studies in population dynamics other than through computer simulation.
The other concerns simple models allowing of some mathematical analy-
gis, but conflicting with known biclogical facts. The suitability of
computer simulation as a research tool being limited, the first type of
model can hardly be expected to be capable of tracking down general
phenomena in population dynamics, and phenomena predicted by the second
type of model may not be relevant.

More progress in the understanding of population dynamics is to be ex-~
pected from relatively simple wodels involving just enough biology to
fit the data in the literature on physiological ecology. In this paper
an attempt has been made to formulate such a model on basiz of a simple
energy budget of an ectotherm. It extends the ideas given in Kooijman &
Metz, 1984, to include storage considerations. Evidence from experi-
ments with the water flea, Daphnia magna, will be adduced in support of
the model, the formulation of which has nevertheless been kept as gen-
eral as possible. However, no attempt has been made to cover all
literatuxe on the subject. The literature on marine poikilotherms has
been reviewed by Conover, 1978, who cites some 1100 references, and
more generally by Bradfield & Llewellyn, 1982, In the literature,
several attempt have haen made to model the growth process in Daphnia,
but no description covers storage in addition.to being explicit c.f.
Wulff, 1980 and Palcheimo et al., 1982.

A further feature of the present model is that with minor adaptations
it can also be used for unicellulars. The understanding of the sub-
strate-limited growth of bacteria and the nutrient and light-limited
growth of algae has recently made rapid progress. It will be shown how
the proposed formulation relates to some of this work, and how it
explains some experimental results deviating from existing theories on
the dynamics of microbes. The succeasful concept of cell quota in the
description of nutrient contents of algal cells (see Droop, 1983, for a
review) is a special case of the wider concept of storage introduced
here. The discussion will be restricted to the situation of constant
temperature. A 1list of frequently used symbols is given in the
appendix.
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ENERGY BUDGETS OF ECTOTHERMS

This discussion is based on those two state variables of the organism
which seem to be the most relevant viz. Btorage and 'weight'. The
latter term is intended to be the measure of the size of the organism,
e.g. volume, a cubic length measure, or wet weight; for small aquatic
animals, wet weight is hard to measure directly, and most of the
literature on these animals uses dry weight. The biomass of micxobes is
often indicated by their carbon content. These two weight measures are
usually related to wet weight by power laws. Porter et al., 1983, state
that the dry weight of daphnids is proportional to length to the power
2.39. Strathmann, 1966, state that the carbon content of diatoms is
proportional to their volume to the power 0.758, and for other algae to
the power 0.866. Energy storage materials usually consist of proteins,
lipids and carbohydrates. When food is abundant, they contribute con-
siderably to carbon content and to dry weight, Since the amount of
storage materials depends on the availability of food, the above-
mentioned conversions to size do not make sense if they are not related
to the feeding status of the organism. This problem is less relevant
for the wet weight of aquatic animals,™ because storage materials
usually replace water. For animals that do not change shape very much
during their life, like daphnids, a cubic length measure seems to be
the most appropriate measure of size, because it can be measured
rapidly without harm to the animals. We shall assume, therefore, that
energy and nutrient storage are related to the chemical composition of
an individual, and weight to its size.

Figure 1 shows a diagram of the energy flow, in it simplest form,
through an ectothermal individual. The pathways indicated by the num-

bered arrows will be discussed briefly in the sections numbered identi-
cally.
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1. The ingestion rate, i, tends to increase with the food density, X,
and weight, W, of the animal. When starved animals are fed, they often
ingest at a higher rate (see e.g. Watts & Young, 1980, for Daphnia
feeding on algae), so ingestion rate may also depend on gut content.
However, this fast process (,starved daphnids are able to fill their
guts within 7.5 minutes, see Geller, 1975,) will not be incorporated in
our model,

la. For a fixed weight, the ingestion rate as a function of food den-
sity iz known as the functional response, which frequently takes the
form of a hyperbolic function. See Kooijman & Metz, 1984 for Daphnia.
In symbols, we have i = x/(l/i‘ln + x/in). where X is the food density,
im the maximum ingestion rate, and fﬂ the filtering or searching rate
in the absence of food.

when offered different food items, individuals usually select for type
and size. We shall briefly focus on the latter, because it provides an
argument for the maximum ingestion being determined by the digestiocn
rate; i.e. expressed as carbon content, the maximum ingestion rate is
independent of the size of food items, provided that their chemical
composition is similar. Frost, 1972, found this to be the case for
copepods fed on species of diatoms of different cell sizes. On the
other hand, Geller, 1975, found that, when the maximum ingestion rate
is expressed in terms of ingested food volume instead of its carbon
content, it is independent of the cell size of six widely different
species of food algae. This may be a ‘coincidence, merely due to one
species of alga being less digeatible than another. If X(V) denotes the
density of food particles of volume V, and P(V) the ingestion probabil-
ity of an item of volume V in the filtered water in the area searched,
the ingestion rate I(V) of particles of volume V becomes (V) = PX/
ll/?m + I, PX/im], where the maximum ingestion rate iu is proportional
to a weighted integral over the size distribution, of ingested parti-
cles, Iv Px/_[v PXC, where C(V) is the carbon content of a particle of
volume V. An efficient filter feeder (e.g. Daphnia) feeding on a
suitable algal or bacterial species will ingest all particles, so
P(V)}=1. For copepods, on the other hand, which capture their food par-
ticles more actively and tend to select the larger algae (Strickler,
1982), the results of Frost, 1972, can be interpreted to mean that the
catching probability function increases with particle volume. If such
is the case, it will probably also be a function of the size of the
animal itself.

When the food contains eeveral types of particles, the catch function
may also depend on the (relative) abundances of the types, as has been
found by DeMott, 1982, for Bosmina feeding on mixtures of algae and
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bacteria.

ib. Obviously, the ingestion rate increases with the size of organism.
For daphnids, which do not change very much in shape during growth, it
is about proportional to w2/3 (Kooijman & Metz, 1984). This relation is
plausible when we realize that the maximum filtering rate, i.e. ?m =
{di)/{dx) for X = 0, probably depends ¢n the surface area of the fil-
tering apparatus, and the maximum ingestion rate, im, on the surface
area of the gut. For microbes, ?m is related to the probability of a
nutrient particle coming into contact with a free site on its surface,
and i- to the maximum number of binding sites; both magnitudes are re-
lated to surface area.

2a. The gut has the function of a buffer, frequently fortified by the
presence of a stomach. The nutritional gains from the ingested food can
be assumed to be about proportional to a moving average of the inges-
tion rate. For small-particle feeders like daphnids, the residence time
of a food particle has been found to be between 28 and 54 minutes at
15°C, depending on the algal type (Geller, 1975). Because of these
short residence times, we will neglect the buffer function of the gut,
which is justified if food density does not change too rapidly. The
energetic gain from the food, the so-called assimilation energy A will,
for this type of animal, assumed to be proportional to ingestion rate,
and we shall disregard the possibility of digestion being less effi-
cient at high ingestion rates as has been postulated by Paloheimo et
al., 1982.

2b. S0 A = [im] w2/3f, where £ = X/(K+X), the shape parameter of the
functional response curve, K = infim. being independent of the weight,
W, of the animal, and [in] being proportional to im/wz/a, where the
proportionality factor involves the energy gain per unit weight of par-
ticles. In microbiological studies K has become known as the saturation
constant.

3. The observation that at a constant food density X, the growth curve
for Daphnia magna closely resembles a von Bertalanffy curve (Kooijman
& Metz, 1984) suggests that the decline in growth with age is due to

the increasing metabolic needs of the animal. This is confirmed by the

results of the feeding experiments with Daphnia reported in Fig. 2. In
these experiments the length of the animals was monitored during growth
at two levele of chlorella densities which were alternated after one,
two or three weeks at 20°C. The curves without shift represent least
squares adaptations of the von Bertalanffy growth curves. The curves in
the other figqures represent the expected growth for animals changing

2n

their growth regime momentarily to the same parameters as the ones
without shift. we can conclude that daphnids retain their ability to
grow, and that larger daphnids adapt more gradually to a new growth re-
gime. This will be explained by a weight related storage.

Full-grown animals still reproduce abundantly, suggesting that at con-
stant food density the storage utilization rate C falls into a part xC
spent on growth and routine metabolism, and a part {1=-x)C spent
on reproduction. The balance equation for the storage S is §=4A-C.

Ja. OGrowth is given by nW = xC - M, where n is the energy require-
ment per unit increase of weight, and M = {W the routine metabolic
rate, which is taken to be proportional to weight. Since ¢ is an un-
known function of S and W, we substitute ¢ = A = § and assume that,
at constant food density, the storage, which depends on W, is in a
pseudo-equilibrium s*, i.e. it can be written as a function of £ and W,
so W = (xh - M) / (n + «(d4S*)/(dW)}.

If growth is of the von Bertalanffy type, i.e. W is a weighed dif-
ference between w?/3 ana W, S* has to be proportional to W. We assume
that it is also proportional to £, giving s* = {sn] fW, where the para-
meter [S ] can be interpreted as the weight-specific maximum storage.
Substitution of this equilibrium storage in the growth equation gives
the growth rate as a function of f and W. Following the diagram of
Fig. 1, however, we do not want it as a function of £, but as one of
the state variable S§. The observations in Fig. 2 also show that a
sudden change in f does not produce a sudden change in W. we therefore
substitute £ = [S]/[su]. where [S] is the weight-specific storage. i.e.
{s) = s/Ww, which gives

(]
L s /3 K
W =TT+ ok Isml we/? - [ET + n/x w

So the maximum weight W of an adult is given by H-1/3 = x[ﬂ.]/ﬁ. and
the maximum growth rate by W, = (4/27) W, (£/x17(1s,] + n/x), which is
reached in animals of weight W, 8/27 for f = 1.

The storage utilization rate now becomes

, (Al 23
C=T_TL1_S En/t {2 oo w2/’ +£~w}

1f we substitute this in the storage balance equation, we have

\ , 3 . lSInéﬁ__ {§*—L£5—-
s = [Amlwz/ {f ~ TE;T S1+ n/x } - w s} + n/x
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when given in the dynamics of the weight-specific storage, [5) = /™ -
sw/we, this simplifies to [§] = |i\mlw‘1/3 LE - (8)/1S]).

1f storage decreases to less than § = wt ([sn]/(i\m]) {/x the animal
can no longer fulfil its metabolic needs in this regime, because x c <
M. The results presented in Fig. 2 suggest that k will increase to
x &€ = M, from which follows that x = (f/[5]) (Ism]/[An])HJ/S, and so
&= [8) (1A 17180 W77,

Under poor feeding conditions, therefore, the animal decreases its uti-
lization rate and ceaseg growing. Without any food uptake, the storage
is emptied by a first-order process down to 5 = w“/3 £ [Sm]/[i\m],
corresponding to € = M. It will then die of starvation. In the non-
growth region of the storage, where W is a constant, its balance egua-
tion therefore is § = (%]wz/s (£-[8)/[S )1,

when given in the dynamics of the weight-specific storage, this again
gives (] = [AJW /> (£ - [S)/[S,]], which means that the dynamics
of the weight-specific storage is the same whether the animals are
growing or not. The only difference is that maintenance is at the ex-
pense of growth when the animals are growing, and of reproduction when
they are not.

3b. As stated above, the energy spent on reproduction equals (l-x ¥e.
In daphnids, the energy seems to be converted into young in female ani-
mals if the weight of the animals exceeds a treshold value W,,
(Kooijman & Metz, 1984). At this weight, there is no obvious change
in growth. (The von Bertalanffy curves fit well in the entire weight
range). This suggests that during the pre-reproductive period, the
gonads receive an inflow of energy for their ripening.

4. baphnids normally reproduce parthenogenetically; female diploid
adults beget female diploid offspring without intervention by males
(Taub, 1982). The occurrence of males will be discussed in the section
on starvation. The reproduction process in daphnids is coupled with the
moulting cycle. The latter depends on temperature, but not on the
feeding status. At 20°C Daphnia magna moults every 2 or 3 days. Just
after moulting, eggs are deposited in the brood pouch and develop
without food st}pply (Green, 1956) into young, which are released just
before moulting. During this period the adult reatores its energy
reserves, so the energy chanelled into reproduction can be regarded
as being constant {Tessier & Goulden, 1982). If, at constant food den-
sity, growth is of the von Bertalanffy type from birth onwards the
weight-specific storage of the young should egual that of the adult,
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Tesgier et al., 1983, actually observed that the storage in the form
of triglycerides in young depends on the adult’'s feeding success; young
born of well-fed adults survived for twice as long when starved as did
the offspring of starved adults. So the energy investment per young is
W, (w ¢ [S]1), where the parameter w can be interpreted as the weight
specific energy requirement for the formation of offspring tissue, L
being weight of a young ak birth (The length of Daphnia magna at birth
is 0.0 mm).

The reproduction rate for growing animals now becomes

e [hy]
=3 pres e (S B e b

For non-growing ones, we have

{iul

.1 1 /3

R= W, TsT+w { [s] 5T w3 ot

The maximum reproduction rate, which is reached for animals of weight
w, for £ = 1, then becomes R, = (1-«)({/x)(W /W )/((S ) w).

We have now completed the guantitative description of the arrows in
Fig. 1, in terms of the state variables weight, W, and storage 5. We
can summarize this description in the state space representation, given
in Fig. 3. At constant food density, an individual has weight W, at
birth and moves along a line through the origin, as indicated, but does
not leave the growth region. This situation will be discussed in the
next section. More generally, we can state that, if a population ex-
periences a period of constant food density, all individuals will
gather on a line through the origin, regardless of their food history.
If the population has experienced higher food densities in the past,
there may be a group weighing more than (fx[in]/t}3, unable to grow,
but still able to reproduce. For low foocd densities, f < x, there may
be another group weighing more than (f[ﬁh]/t)3 that will eventually die
of starvation. This situation will also be briefly discussed. On basis
of the (ultimate) reproduction and survival behaviour at fixed food

deneities, we can classify them into the categories mentioned in Fig. 3.

Lines of equal growth and reproduction in the state space are given in
Fig. 4.

Fig. 3

Fig. 4.
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State space representation of an ectotherm. For an increasing
storage at given weight, there is a region in which an ani-
mal cannot exist due to starvation (upperbound S=x[§ ]"4/3/
wml/a}, a no-growth region (upperbound s=[su1w‘/3/u; /3), a
growth region (upperbound s=[sm]w) and a region an animal can
not reach. For further explanation see text. In this figure,

the value for x has been chosen 1/2.

L
Lines of equal growth {left) and reproduction {(right). In
this figures, the following choices have been made: x=1/2,

ls-] k/n=10 and [sn)/mss. The numbers indicated along the
lines are fractions of maximum growth and reproduction.
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SOME PHENOMENA UNDER CONDITIONS OF CONSTANT FOOD DENSITY

—

Utilization rate can be measured indirectly as respiration rate. It is
not at all clear, however how oxygen consumption and carbon dioxide
production rates exactly relate to the energy flows under considera-
tion, even for animals with empty guts. Storage materials are usually
classified as proteins, glycogen and triglycerides. Growth and repro-
duction result in formation of tissues also consisting of these com-
ponents, possibly in other proportions. Although the preservation of
energy and oxygen, nitrogen and carbonh may be negligible in comparison
with the amounts of storage materials used during the measurement of
the respiration rate, the energy involved in this preservation process
is not. The energy channelled intc reproduction can be guite substan-
tial, as has been found for crustaceans (Kmeleva, 1972 gives 0.5 time
the utilization rate) and especially for daphnids (Richman, 1958,
gives up to 0.8 times the utilization rate}.

The energy gain from the utilization of storage materials depends on
their composition. For aquatic animals Brafield & Llewellyn, 1982,
give the conversion heat loss in joules =

(11.16x mg o2 cons. ) + (2.62x mg co2 prod.) -~ (9.41x mg NH3 prod.).

1f the composition of storage material remains the same, the conver-
sion of oxygen consumption into energy involves a constant factor.

Thizs means that at constant food density, the respiration rate can be
written as aw?’3 + bW, where the guotient of the regression coeffi-
cients b/a equals ({/n) [sn]/li‘}. see Fig. 5. The fit is quite
satisfactory. .

Fig. 5. HRespiration rate of Daphnia
pulex with few eggs at 20°C as a
function of length. Data are from

[
i Richman, 1958, table 5. The fitted
ner ol curve is 0.0336 L2 + 0.01845 L3,
b | ! and is indistinguishable from the
wal & 2.437

| & .

curve 0.0516 L
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The curve usually [itted to respiration size data is the allometric
one, awb. see e.g. Richman, 1958, who found b=0.88 and Kersting &
v.d. Leeuw-Leeghwater, 1976, who found b=0.82 for Daphnia pulex. As is
obvious from Fig. 5, the data can never tell the difference between the
two curves. See Kooijman, 1984, for a more extended discussion.

At constant food density, the equilibrium storage equals [Sm]fw, for
which the growth eguation can be solved, resulting in
1/3

{1-be~Y%), where wnl/a =k £ [Am]/ L, b= 1-w 1/3/w_1/3

Wl/a(a) =W, b

v = (/x)/13(n/x + (S 1£)] and a the age.

The rate i therefore decreases with increasing food density, owing to
the presence of a storage. Reanalysis of the data on daphnid growth at
different chlorel.a densities of Kooijman & Metz, 1984, reveals a sig-
nificantly increased goodness of fit, compared with the situation with-
out storage, [sm]=0; see Fig. 6. Note that the inverse rate y depends
linearly on the asymptotic length: 1/y = 3ns/f + 3([sn}/[im])w_1/3. The
quotient of the slope parameter and the intercept, (f/n) lsm]/[in},
should equal the guotient of the regression coefficients corresponding
to W and w2/3 respectively for the respiration rate as a function of
weight, as we have seean before.
Fig. 6. Lenght L of Dapnia magna as a
function of age a for various Chlorella
densities X at 20°C. The fitted curves
have the form L = fL_ - (fL_-L ) exp {-ay},
where f = ,407, .465, .554, .625 and .682
respectively, Ly, = .80 mm, L = 6.60 mm,
¥y= 1/{3nst + 3£[sm]x/t| with n/f= 0.672 d
and [sm]x/t= 3.06 4. All parameters have
been estimated by nonlinear simultaneous
° . N 2 % regression, except L, and L, which have

age td} been determined from other data.

Length (.81 awn)

The duration of the pre-reproductive period, i.e., the age at which
weight WJ is reached, is found form W(J) = W_ to be

3= (ax + i) 000607 e - w A ey

for £ 2 (ﬁ/Kiwé 3/[ﬁm]. At lower food densities, the weight W; will not
be reached,
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Like the respiration rate, the reproduction rate can be written as
aw2/3 + bW at constant food density, where b/a also has the inter-
pretation ({/n) [sn]/[ﬁm]. Khmeleva, 1972, found for crustaceans that
the relation between weight and reproduction is similar to that
between weight and respiration. For Daphnia magna it is illustrated
in Fig. 7.

«8
2 Fig. 7. Number of eggs in
f brood pouches of Daphnia magna,
; " sampled from a wild population.
The data are from Green, 1954.
» The fitted curve is
length feasie, s «1.01 L2 + 1.295 L3.
[ ] ' L 'l L L I
L 2.4 .0 3.2

Although the fit is satisfactory, particularly because nothing is known
about the feeding history of the wild population sampled, this regres-
sion cannot contribute to the estimation of the energy budget para-
meters; even a small change in the shape of the curve has a large
effect on the regression parameters. In Fig. 7, these parameters
even fall outside the relevant range.

At constant food density, but for unknown food history of the popula-
tion, an optimum relationship of reproduction rate to individual weight
will, in principle be established. For k « 2/3 the maximum reproduc-
tion for £ < k3/2 is (W /) (£/x)(w+is ) €)" ' as21? for w3 =
(2/3) [A)£/E, i.e. it lies on the curve 5 = (3/2) (IS,1/[A]] w3 ¢ in
the state space representation. For f > x3/2, the maximum reproduction
occura for w For x > 2/3, the maximum reproduction is

(W /wb)(t/n)(w + 15,0071 (1-x) for w3 = xf[A )/, i.e. it lies on
the curve separat;nq the growth and the no-growth regions in the state
space.

Up to now, we have compared the reproduction rates of animals on a
line through the origin in the state space. Comparing the reprecduction
rate of full-grown animals, which are on the curve separating the
growth and the no-growth regions, we find that the reproduction rate
is linearly proportional to weight, with a proportionality factor of
R/ -

At constant food density, given the explicit expression for weight as a
function of age, we can write the reproduction rate explicitly as a
function of age. Although the formulae now become lengthy, it is easy
to write out the primary production efficiency on basis of wet weight,
defined by (wbﬁ + W)/i, and to show that it decreases with increasing
.food density, because storage increases with food density. This finding
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may be the solution to the problem mentioned by Conover, 1978, in his
review on this topic, namely that he fails to see why production
efficiencies should decrease with increasing foed density.

SOME PHENOMENA ACCOMPANYING STARVATION

The storage development at constant food density in an animal of weight
W and storage 5, at time zero, in the no-growth region of its state
space, is easily found from the balance aquation tc be

Aglt A (s, w3 (At
s(t) = 5, exp { - + e (l-exp { - ——73 1)
° (s,1w/3 [hg] (519>

where Al is the influx of assimiliation energy. So in case of star-
vation, 1i.e. Also, the storage decays exponentially: S(t)} = ?8
exp.{-t/a}, where the time constant o can be interpreted as Hl
[s ]/[A }. Figure 8 shows that the dry weight and lipid content of
starved Daphn1a magna at 20°C actually follows such a decay.

. 19 e/ doplre
ng dry wepht/daphnia -
103 ‘0\\
02 7] S
o1 — 27 "~
1
, Ly A N
0 t 2 3 & 5 &7 0 t 23 & 5 &7
— timw,d —fime.d

Fig. 8. Dry weight and mean lipid content of starved paphnia magna at
20°C, measured in groups of 25 animals with a mean length of
3.4 mm. The fitted curves starting from 0.27 mg and 64 ug
respectively are exponential decay functions with time con-
stants of 1.99 d and 1.88 d, respectively, with asymptotes of
$0.19 mg and 54 ug resp.
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From these curves we estimate lsm]/[im] to be 0.586 4/mm and 0.552 d/mm
respectively. {This type of decay functions has also been found by
Richman, 1958, and Lemke & Lampert, 1975, for Daphnia pulex, with twice
as large values for lsn]/[iml). The ratio of the storage at the entry
into the no-growth region of the state space and the storage at death
by starvation equals k. The time to death by starvation for the animals
was 7 d, Bo we estimate x to be about exp. {-7/1.99} = 0.024 and
exp.{-7/1.88] - = 0.03, both of which seem to be incredibly small.
However, errors in the estimation of the asymptote of the dry weight
and lipid content strongly influence this estimation of k. Estimations
based on oxygen consumption or carbon dioxide production rate do not
suffer from such errors, because the asymptote is zero.

£0.06 £
3 e
LI :
? i.d!
Yoo "
& Ssm
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Fig. 9. Oxygen consumption and carbon dioxide production rate in

starved Daphnia pulex of 1.62 mm at 20°C. Data from Richman,
1958. The fitted curves starting from 0©0.167 pl/h and
0.185 pl/h, respectively, are exponential decay functions
with time constants of 5.48 d and 3.43 4.

From the curves in Fig. 9, we estimate [Smlllﬁm] to be 3.38 d/mm and
2.11 d/mm. For a starvation time of 7 d, we have x = exp.{-7/5.48}=0.28
and x = exp.{-7/3.43}=0.13, which seem to be more credible.

If the influx of assimilation energy happens to be less than the
routine metabolic rate, the animal will eventually die by starvation.
If it is assumed that the storage 5, has been in eqguilibrium with a
higher influx io experienced earlier, the time until death by starva-
tion i: found from s(t*) = w"a t[Sm]/lﬁml to be

t, = W3 (s 1/1A1) 1n ((hy - A))/th = AL,

where as we have stated before, the influxes A are assumed to be
proportional to H2/3, and the routine metabolic rate M to W. In case
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of starvation, i.e. A:=°’ the starvation period reduces for

[S,1 = S(t )/ to ty = {(541/0) 1n tIS,1/(5, 1)

The number of young born in this period is

(15,1 2 (IS,1/0S,01 + (w + [S,1) 1n {(w + [S,1)/(w + [S1)}] W/ twwy).
Depending on the values of the parameters and especially of x, the
survival time can decreagse as well as increase with weight of the
animals. This result holds for animals differing in weight, but start-
ing at the equilibrium storage [smliow, which represents a line in
the state space representation. Comparing animals fullgrown at constant
food density, we have tT = -w1/3 ([Sn]/[Am]) ln x. Such animals are on
the curve, separating the growth and no-growth region in the state
space representation. So the latter starvation time is the time needed
by the animals to cross the no-growth region of the state space. This
relation for starvation times can be of use in estimating the para-
meter k, if the value for lsn]/[im] has been obtained from the analysis
of respiration rates or growth curves, as outlined in the previous
section.

The starvation times and total number of young born in this period have
been determined for individuals of Daphnia magna at 20°C kept without
food in two kxinds of water derived from groundwater. This had been sup-
plemented with salts to arrive at the major ion concentrations in mmol:
Na: 1.19; K: 0.2; Ca: 1.36; Mg: 0.73; Cl: 2.72; 504: 0.73; HC03: 1.39.
Before use, the media were filtered over charcoal and bacterial fil-
ters. The two media differed in that one had been kept in stock
for several weeks and had been aerated with compressed air from a
central supply, whereas the other had not. The results, shown in
Fig. 10, indicate that in the water used directly, the animals survived
for about 5.5 days irrespective of their length, while in the aerated
water, the small ones (S 2 mm) survived for up to three weeks. The
difference may have been caused by the presence of organic matter,
possibly arising from microbial degradation of oil residues in the
compressed air. This conjecture is supported by the finding that the
aerated medium contained 2 mg/l of total organic carbon, whereas the
other medium contained only 1.8 mg/l (Most, if not all of which is not
biodegradable).

The theory predicts that animals weighing more than ([ém] fa/t)3 will
fail to survive at input fs = XB/(R+xB). The food density allowing an
animal just to survive is known as the threshold food density, and is
given by X = xwl/a/(lhm]/t-w1/3) = xw1/3/(wm1/3/x - w3 For
Daphnia magna fed on the alga Chlorella pyrencidosa, K eqguals 1.4 x 108
cells/ml and the maximum length is 6.4 mm, see Kooijman & Metz, 1984,
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Fig. 10. The survival time of Daphnia magna at starvation after a
period of abundant food {(Chlorella) and the total number
of young of each daphnid born in this period, as a function
of length in stocked (a, b) and freshly prepared (c, d) media
at 20°C.

If we take k to be 1/4, we have for an animal of 2 mm length: xs = 104
cells/ml, which corresponds to 0.1 mg C/l, well within the observed
difference in carbon content. In fact, such low threshold food densi-
ties pose a practical problem in starvation experiments.

Substituting W=w, in the formula for the threshold food density, we
obtain the threshold food depsity at which a population can rejuvenate
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itself. It can be regarded as a lower bound for the threshold food
density for the population. It was introduced by Lampert, 1977, who
defined it to be such that the biomass of a population remains con-
stant, and s0 just compensates mortality.

The ingestion rate at the threshold food density is known as the
maintenance ration, and is given by is = {w (1 )/(A ); see Kooijman
& Metz, 1984. For daphnids about 3 mm long, it equals some 6 chlorella
cells a second at 20°C, see Kooijman, 1983. The utilization rate at
this ingestion rate eventually becomes equal to the routine metabolic
rate, so I = M = {w.

The gquotient il/is equals [i‘]/[%], i.e. the conversion factor for
food into assimilation energy. Kersting, 1983, inverted this relation
by converting the maintenance ration to an energy measure and used
the respiration/ingestion ratio to determine the threshold food
density. This procedure is valid if it is known how the conversion to
an energy measure should be performed for the food and animal species
under consideration.

Some species show remarkable adaptations in their life histories to
the size dependent effacts of a drop in ‘food density. As has been
mentioned bhefore, daphnids normally reproduce parthenogenetically.
However, large female daphnids start producing males when the food
density declines rapidly. This situation usually involves a large
variance of weights in the population, because large animals (older
ones, grown up at high food density) as well as small ones (new-born
animals due to the high reproduction rate) are abundant. They produce
no males when focod density declines slowly, usually corresponding
to a smaller variance of weights, see Kooijman, 1983. After copulation,
those females produce winter eggs, which represent a resting stage,
see Fig. 11. This behaviour can be understood when we realize that at
non-increasing food densities, the small individuals will outcompete
the large ones (because of their lower threshold food density) if the
variance in weights is large, whereas this mechanism is much less
operative if the variance is small.

Fig. 11. Life cycle of Daphnia magna. The female normally produces
eggs in a brood pouch (a). The eggs developing into young
females, which are released just before moulting {b). Under
certain circumstances, eggs develop into males {(c), which
will copulate with females with empty brood pouches (d).
These females then produce two winter eggs {e) in an
ephippium, whigh represents a resting stage {f}. For further
details, gee Lext.
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UNICELLULAR DYNAMICS

The food items ingested by multicellulars usually satisfy all their nu-
tritional requirements although many exceptions to this general rule
have been noted. For instance, Checkley, 1980, reports that copepods
ingest many more diatoms if these are starved of nitrogen, in order to
fulfill their reguirement for this element. Scott, 1941,
reports that the marine rotifer Brachionus plicatilis requires dis-
solved vitamin 512' In unicellulars the uncoupling of the various nu-
tritional and energy sources is much more widely spread. The interac-
tion between these inputs will not be discusged here; we will assume
that the input of the non-limiting nutrients remains constant. A fur-
ther essential difference between the dynamics of multicellulars and
unicellulars is that in the latter, proliferation is coupled to growth
of individuals more directly: the asexual reproduction of unicellulars
can usually be well described by a division following attainment of a
certain division weight, W,. For a division into p parts, we have W, =
pW, . In this section we shall consider the implications of the present
model for unicellular dynamics, and we shall discuss ite relations to
relevant results in the extensive literature on this subject. Most of
this literature focuses on the description of eguilibrium states of
chemostats, where the dilution rate, and eventually the population
growth rate is constant, in terms of measurable quantities like yield,
uptake rate, and cell gquota. We shall evaluate these relations on
basis of the present model, first for non-conservative substrates,
i.e. Bubstrates whose degradation provides the energy necessary for
maintenance and proliferation, and secondly for the special case of
conservative substrates, here called nutrients, i.e. substrates which
provide the chemical elements to be incorporated in the biomass.

The dynamice turns out to be dependent on the scaling of uptake rate
of substrates with cell size. We ghall consider two scaling relations:

- the uptake is proportional to w2/3 because this has been observed
to be relevant for ectotherms and
- uptake is proportional to W, because this is the assumption

usually made in the literature on unicellular dynamics.

This gives four categories to be studied.

1. Unicellulars feeding by phagocytosis like ciliates probably resemble
multicellulars most closely in their dynamics. At constant food density
the division interval, D, is easily found from the egquation W(D) = WD-
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It corresponds to the expression for the length of the juvenile stage
in multicellulars, given before for x = 1, because no reproduction is
involved. In situations where death is not important, the population
growth rate at constant food densities is found from r = (1n p)/D for
division into p. parts. It results in

1/3

. /3
. A=t v w3 ol
r & —— {1ln p)/{3 (W = 1) In ——p——
isglf *+ n - w3 (pw )13
where w1/3 = £(A /L. For £ < ({/71A 1) (oW, 1173 the cells will not reach
their t.hreshold weight for division. We will see in the next section
that in camse of an uptake rate proportional to weight instead of surface

area, the population growth rate reduces to the first factor.

2. The literature on bacterial dynamics actually assumes that the up-
take rate of substrates is proporticnal to weight, so in the present
notation I = [I ]1fW. For bacilli it may be argued that the surface area
scales approxxnauly with weight, because the rod diameter is more or
less constant. The balance eguation for the storage then becomes

. (s AL (s,1 ¢
s-wuhu-—i—— (Bl gy for 1s) @ 2
(s} +n  (5.) (Ay)
_ . (silAg)/is,) - & , _
Growth js given hy W = W 3T + 0 . Expressed in the dynamics

of the weight-specific storage, [5} = §/W - sW/we, we have [5] =
[3.1 (£ - [8)/[S,]). Por [S] s [S,) t/[i-] the cell dies of starvation.

The population growth rate at constant substrate density is found from
t = (ln 2)/D, and the division interval D from W(D) = 2 W,, as before.
The result i r = (lA £ - t)/([s 1£ + n).

Substitution of f-x/{l(fx), reveals the hyperbolic relation between r
and the substrate density X, which for {20 reduces to the well-known
Monod equation X=r WX/ (X4K) for r =[%]/([s ] + 1) and K'=Kn/{[5;] + n).
1t still plays a central role in the literature on mlcrob:.al
dynamics, in spite of the existence of maintenance in bacteria growing
on non-conservative substrates having been known for a long time.
Pirt, 1965 noticed that the slope of the line in a plot of inverse
yield vs inverse population growth rate equals the so-called 'mainte-
nance coefficient' in equilibrium situations.

The yield, ¥, defined as the quotient of biomass formed and substrate
consumed, is

Y = k/((106) = BUAL) - I8,05)/4 [ig) ¢ + ab)).
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The present model simplifies to the formula in Pirt, 1965, for zero
storage, Ism] = 0. In our notation, we have
lf“'] + [f“‘l t . The parameter IA‘?
(Al Al r n [I.]

“true yield" and corresponds to the yield for { = 0. Pirt calculated
the "maintenance coefficient, corresponding to { [i.]/{ﬁ.]. for twe
bacterial species growing on two substrates, aerocbically and anaerobic~
ally, and obtained a range of 0.083 to 0.55 h~! on basis of dry weight
(apart from a selomonad that behaved erratically). This wide range is
due to differences in the ability of the bacteria to convert the sub-
strate into energy. The corresponding range for the product of the
wmaintenance coefficient" and the “true yield", {/n. confusingly called
the "maint.enance rate constant® (Gons & Mur, 1975), is 0.0393 -
0.0418 n~l. So, whereas IAn] is highly dependent on the environment,
this indicates that the internal parameters { and n are essentially
constant.

Later, Stouthamer, 1979, 1980 analysed the dependence of the “gpecific
rate of consumption" U on the population growth rate r. The “specific
rate of consumption¥ also known as the “specific uptake rate¥, is
defined as the total substrate (or nutrient) uptake by the biomass,
per unit biomass. In the equilibrium situation of a constant substrate
density, it is given by U=r/Y¥. Stouthamer derived a linear relationship
between U and r, but he observed deviations which he explained by the
growth rate influencing the fermentation pattern. Our model provides
an alternative explanation, which can be regarded as a further inter-
pretation of the explanation by Stouthamer, resulting in 0=

[1 HE + ani/Z(lAg) - (S, ]1¥}. This hyperbolic relation between
1] and r is meamngful only on the interval {0, (IA.] - t)/([s 1 +nd);
its asymptote on r = [An]/[S ] lies outside this interval.

In their study on light-limited growth in algae, Gons & Mur, 1975 and
van Liere, 1979, noticed that in an equilibrium situation the intercept
of the linear relation between épecit‘ic light-energy uptake rate and
growth rate can be interpreted to be the maintenance rate constant.
This relation follows from our model for zero storage, {s ] =0 and a
volume-related input: I = [I 1£f W. This relation may be reahstic if
chlorophyll content is volume telatcd. and the cell is optically thin.
In that case, the volume increase of a cell is exponential, as has
been found by Donze & Nienhuis, 1973. See Fig. 12. Gons & Mur, 1975
also observed a deviation from linearity for high uptake rates, which
they explained by assuming that light energy utilization is less

has been called the

'<|""'
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efficient at higher growth rates. Their data closely obey the hyper-
bolic relation i/w =
(ig) (¢ + af)/(A]] - [S,]7) obtained from our model for [S.] # o.

200r- O "' Fig. 12, Exponential volume in-
- crease during the light periocd in
ot /
- e Scenedesmus obliguus growing in a
"
’/,// synchroneous culture at 20°C. From
o Donze & Nienhuis, 1973.
2 ;
0 F 4 (3 ‘I ; ; l'lJ l.‘ [}
—— ey, ¥

See Fig. 13. So this hyperbolic relation affords an alternative expla-
nation for the deviation.

Fig. 13. Relation between biomase-
specific energy absorption and
population growth rate in Scenedes-
mus protuberans at 20°C. Data from
GCons & Mur, 1975. The dots refer to
an illumination of 30 kJ/d and the
crosses to 13 kJ/d. The curve is
X = {(1+2.284 ¥)/(1.921~1.636Y).
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3. The literature on nutrient-limited growth of algae is very exten-
sive. As far as I know, it assumes that input is proportional to W,
i.e. I = lim]ﬂﬂ. There being no routine metabolism for nutrients, we
may put { = o. 1t has, however, often been noted that nutrients are
excreted. If we assume that the rate of excretion is a fixed propor-
tion, (1-x), of the utilization rate, the resulting balance equations
for the storage becomes

(s] n/x 1i,)

[T 15,1 ¥

§ = [1 06w -
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Growth is given by W = W Isllim]“sml(ls]m/x)}'1. Expressed in the
dynamics of the weight-specific storage, we have (5]= [im](f-[S]/IS-]).
These equations correspond to the formulae presented by Nyholm, 1976,
1977. At constant nutrient concentration, the storage is at its equi-
librium value 5* = {Sm]fw. I1f, in this situation, death is not impor-
tant, the population growth rate can be obtained as before, and results
in © = (I)E/([S,1€ + n/x).

The first investigater to recognize the importance of storage in nu-
trient-limited growth of algae was Droop, 1968.

He introduced the concept of cell guota @, defined as the nutrient
concentration in the cell. In the equilibrium situation of a chemostat,
this concentration equalse the guotient of the substrate consumed
and the biomass formed, and so0 we have Q=1/Y = [im] f/r. Substitution
of r gives ( = [Sm] f4+n/x. Droop considered the situation of zero loss,
i.e. k=1, from which it followa that Q=(S]+n. The parameter n, which
we took to be the amount of nutrient required for formation of a unit
of biomasas, has been called the subsistence quota, or the minimum gquota
needed for growth to proceed. This is obvious, because Q=n implies
{§)=0. Droop observed a linear relationship between the cell gquota and
the specific uptake rate (. In the equilibrium situation of a constant
nutrient density, we have U = rQ. Substitution of r and £ = (Q-n/x)/
[s,) gives U = (Q=n/x} [in]/[sm]' which is linear in Q.

4., The parameter n can be interpreted as the quotient of the amount of
nutrients built into the structure of the algae and cell size. Compar-
ing different species, Shuter, 1978, found that the nitrogen and phos-
phorus contents of algae that do not grow because they are starved of
these nutrients, scale with volume to the power 06.709 % 0.066. This
finding suggests that the amount of these structural nutrients is es-
sentially related to surface area. The weight-specific amount of nu-
trient needed for growth therefore decreases with cell weight. If we
assume the uptake of nutrients to be also surface related, i.e. i-=
IimlfWZ/3 we have the balance equation 3 = [im1£w2/3 - ¢. The utiliza-
tion rate ¢ now relates to growth W as x€ = 2/3 nw'1/3 W. Nutrient ab-
sorbtion being much more rapid than growth, the storage is at ite equi-
librium value, S*, at constant input. Cell growth is usually assumed to
be exponential. This implies that S* scales with wz/a, and suggests
that s* = [g |£w2/3_ writing [S} for the surface area-specific storage,
i.e. {5)=8 /3, the balance equation is

H 18022 < (nzw?2 (11 1/0s,1) (81/(181+ a/k) ana
W{3/2) (11,1708, 1) {S}/(4S) + n/x)

S

W

H
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when expressed in the dynamics of the surface-specific storage, we have
(51 = 8273 - 273 sup®/3, so 15} = (1 1/LE-18) /1S, ).

I1f death is not important, the population growth rate at constant nu-
trient concentration is r = 1.5 [imlftlsmlf + n/x}'l.

The yield is given by Y=t {lim}ﬂ}'1 where A is the guotient of the
average value of w2/3 and of W in the population of cells. If there is
any scatter in the threshold weight for diviasion, the distribution of
cell sizes at constant nutrient density usually converges rapidly to
the stable cell size distribution. This has density 2w /W2, see Voorn,
1983, so A = (2/3) w3 (1-277) (W 21n 2)"t 2 0.1 w273

The specific uptake rate U is © = I/¥ = ({1 1/15,1)(Q3/2 - A/x)

which means that Droop's linearity between U and Q still holds.

DISCUSSION

The course of the weight, storage and reproduction rate in an ectotherm
containing the parameters P = [W,, Wy K, [ ). [Ag). IS,].
{, n. w} has been described with a set of two coupled differential
equations. The parameters involving enexgy, viz. [Am], [sm]. £, n and
w, only occur as raties in the model, so only nine parameters have to
be estimated, and no actual conversion to energy is necessary.
Its various aspects have been checked for Daphnia magna feeding on
Chlorella. At constant food density the equations for weight,
storage and reproduction rate can be written explicitly as a functicn
of age. Even in this case, the storage has an effect on growth and re-
producticon behaviour, resulting in, e.g., a decrease in production ef-
ficiency for increasing food densities. This result contradicts a
gtatement made in Kooijman & Metz, 1984, For zero storage, [Sm]=0, the
present equations for growth and reproduction reduce to those in
Kooijman & Metz, 1983, Apart from the considerations on starvation, no
attempt has yet been made to analyse the implications of the model in
dynamic environments. For this purpose it is necessary to develop tech-
nigques for handling two-dimensional, or, if age is to be included,
three-dimensional state spaces for individuals with survival bounda-
ries. As we have shown above, our model can be used to describe
nutrient- and light-limited algal growth, and substrate-limited bac-
terial growth, as well as being able to describe growth in multicellu-
lars. For unicellulars it affords explanatjons of &ome observed
deviations from current thecries. Foy nutrient-limited algal growth,

;!

the model becomes much simpler involving only the parameters (W, , K,
liml. [Sm], x, n}, where wb disappears when input is weight-related.

A remarkable feature of the reasoning here presented is that, at
constant food density, the respiration rate can be written as a
weighted sum of a surface area and a weight measure, this sum approxi-
mately scaling with Hp's whereas the routine metabolic rate scales
with weight for individuals of the same species. The dependence of
respiration rate on weight has caught the attention of many research
workers in ecophysiology, who usually compare {(widely) different
species. Their work prompte a study of the implications the model has
for the comparison of respiration rates and related variables between
species of different sizes. The key to such comparisons is the maximum
size a species can reach, vwhich can be written, as has been shown, as
a simple function of the parameters. These parameters must therefore
vary in a systematic way between species of different size. It has
proved to be possible to explain in this way the relations reported in
the literaturs between, on the hand, size of a species and, in the
other, ingestion rate, animal abundance, maximum growth rate, respira-
tion rate, reproduction rate, duration of pre-reproductive period,
starvation time as well as maximum population growth rate. For further
discussions, see Kooijman, 1984. '

our model formulations shows some promise for studies on phytoplankton-
zooplankton interactions. Some progress may be expected from a study of
population dynamics on a basis of budgets.
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L1IST OF FREQUENTLY USED SYMBOLS

Symbol dimension
X, X food (nutrient).length™>
3
i, 1, i' foad (nutrient).tile'1
[i] food (nutrient).length™2.
time™! .
A, Am' anergy.t:ime'1
. -2 -1
[Am] energy.length “.time
s, Sm energy (nutrient)
[s]. [sul energy (nutrient).
length-a
5 energy (nut.rient).tine"1
3
W, W, Wy length
W W, W 1enqth3
.Da ot 'm 3 ) -1
w length™.time
R, ﬁm time™!
M energy.tina'l
¢ energy (nut:ient).tile'l
Fo 1enqth3.tine'1
K food (nut:ient}.lenqth“a
LY
-3
" energy.length
f enerqy.length'3.tine'1
- energy.length™>

interpretation

food or nutrient density,
threshold-

functional response as a por-
tion to its maximum
ingestion rate, maxipum-,
threshold-

size specific-

assimilation energy rate, maxi-
num-~

size specific-

storage, maximum-

weight epecific-, maximum
weight specific-

stqraga change rate )
weight,~at birth,-at the end of
the juvenile stage

-at division, adult-, maximum-
growth rate

reproductive rate, maximum-
routine metabolic rate
utilization rate

maximum filtration or searching
rate

saturation constant

proportion of utilized energy
spent on growth and routine
metabolism

energy requirement for a unit
increase in weight

maintenance energy consumption
rate per unit of weight

energy requirement for a unit
increase in offspring tissue
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APPENDIX The idea behind the x-rule.

Blood has a low take-up capacity for energy (or nutrient), but
a relatively high transportation rate; Many times an hour it is
pumped through the body. Passing along the gut, it takes up any
energy delivered there, which is rapidly circulated through the
whole body. At separated sites along the vessels, two types of
cells are waiting to pick up energy from the blood, the (many)
somatic and (few) ovary cells. These cells are not able to
react to each other's activities other than through the concen-
tration of energy in the blood. The carriers that remove enexgy
from the blood across the cell membrane, into the two types of
cells, have the same activity dependence on the concentration
of energy in the bloocd, but they may have different efficien-
cies, One might assume that all carriers are identical, but
that the numbers of carriers in the membranes of the two types
of cells differ. This is the basis of the x-rule. The efficien-
cy (a number) of the carriers in the ovary celle is controlled
by hormones, depending on age, size and envirorment. For
Daphnia, this efficiency seems to be constant as long as
feeding states permits. Inside each somatic cell, the energy
partition occurs within the same cell, maintenance and growth
are natural competing processes. It is therefore reasonable to
assume that maintenance is at the expense of growth, not at
reproduction as long as energy permits. The hormonal system has
to intervene for maintenance to be at the expense of reproduc-
tion. It will do so in poor conditions. The main part of the
maintenance energy is involved in the course grain regulation
of the enzyme system of the cell; i.e. a continuous process of
breaking down and building up. This process is closely related
to those occurring during cell growth and division. (Observing
the oxygen consumption pattern, the energy spent in movement in
Daphnia is only of minor importance.) At still other sites
along the blood vessels, carriers regulate the energy content
of the blocd. They can not observe which type of cell removed
the energy from the blood nor the energy influx along the gut.
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They only see the energy content of the blood, the amount of
stored energy and the size of the animal. Therefore, [§] cannot
depent on k. The size dependence of the energy regulation is
plausible, because the stored energy is chemically represented
by more or less massive solid lipids, which are deposited on
certain surfaces inside the animal. Since these surfaces in-
crease with w2/3 and the volume with W in growing animals,
the blood has a decreasing ability to reach the stored enerqy;
the lipid layers grow thicker and blood can only reach the
outer surface. It is therefore quite natural that (5] appears

to be proportiomal to w173,
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