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A general, simple, and explicit model for the age-dependent growth and reproduction of
individuals as a function of food supply it presented. The model ssumes a Hoiling-type functional
response coupled with a von Benalanffy body growth law, a fixed mtio between the energy
utilized for reproduction and respiration, and a juvenile stage that ends as soon as the animal
atwains & sufficient weight. This model is shown to fit the available data on the development of
Daphnia magna quitc well. The model is used as a basis for studying the effects of chemicals
on population growth rate, given the eflects on individuals. Effects on individual growth and
reproduction are reflected in a concentration-dependent relative reduction of the population
growth rate. Effects on feeding mate, digestion, basal metabolism, and survival work out much
more dramatically at low natural population growth mates. This already follows from a much
simpler model that assumes age-independent reproduction, as exemplified to a good approximation
by the rotifer Brachionus rubens. 'The theoretical results are supplemented with cxperimental
evidence, implying that the stress on a population at a certain concentration of a chemical may
indeed be strongly dependent on the feeding state of that population.

INTRODUCTION

Probably owing to the pharmacological origin of the subject, the early literature
on environmental toxicology largely concerns the physiological (in a wide sense)
effects of toxic chemicals. However, in evaluating the toxic effects of chemicals in
the environment, physiological effects should be reinterpreted and supplemented in
an ecological sense. For that purpose, effects on artificial and seminaiural ecosystems,
indoors as well as out, have been ever more widely studied. Unfortunaicly, even large-
scale experimental studies are also of limited applicability, owing to the inhcrent
complexity of the processes involved, and the concomitant scatier of data.

In this paper we hope to help bridge the gap between the individual and the
ecosystem-based approaches to environmental toxicology: we shall examine the eco-
logical consequences of physiological effects of chemicals by considering properties
of (monospecific) populations of individuals under chemical stress. Although our
results today are far from sufficient as a basis for an impact study, they at least offer
a guide to the kind of effects we should look for when studying ecosystems exposed
to toxic chemicals,

Spin-offs of our theoretical exercises are that they provide a ba.is for modeling
dosc—response relations of physiological effects of chemicals, and for 1j)deling natural
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populations on a physiological basis. We intend to explore these topics in greater
detail in the near future.

Any understanding of the determinants of a population growth has to be based
on a knowledge of individual survival probabilities and reproductive rates as functions
of age. Since reproduction depends on weight and therefore on growth, which in turn
depends on the available assimilation energy, we shall deal with these topics in the
reverse order. The plausibility of our assumptions will be discussed on the basis of
data for the water fiea Daphnia magna and the wheel animal Brachionus rubens.
These freshwater filter feeders reproduce parthenogenetically, so only females are
involved. This of course simplifies the theory. However, if the sex ratio is constant,
and if fertilization of females is almost certain, the theory immediately gencralizes
to sexual populations.

A list of symbols is included in the appendix. Where estimated values of parameters
are given for the first time, they are followed in brackets by the 95% confidence limits
if there are readily available,

INDIVIDUAL ENERGY BALANCE

Part of the food ingested by an animal is digested and can therefore be regarded
as assimilation energy. A certain amouat of this energy has to be spent on mainienance.
The energy excess is either stored, spent en growth and reproduction, or both, When
food is abundant, we can expect the storage capacities to be filled. The stored energy
may be consumed again when there is less food. At such times, the animal can
economize on growth and reproduction, but not on maintenance. In this paper we
shall refrain from modeling these physiological alternatives. Instead we shall focus
on situations of constant food supply. This cnables us to assume steady-state rates
of energy consumption, eliminating the need 1o deal with storage considerations.
Although this restriction narrows the applicability of our model, the resulting relative
simplicity reveals the salient implications much more clearly.

Food Intake

We shall assume that at any given food density, the food ingestion rate is proportional
to the surface area of the animal (a mechanistic argument supporting this assumption
will be presented below); we shall moreover assume that the animal is one that does
not change very much in shape afier birth, which is equivalent to its surface arca
being effectively proportional to the two-third power of its wet weight, or to the square
of some appropnate linear measure (cf. von Bertalanffy, 1934, 1969). Our second
assumption is that at any given size of an individual, its intake rate increases with
food density as a (Holling, or Monod) rectangular hyperbola. Data in support of
these assumptions are given in Fig. 1. Here the feeding rate at 20°C of the cladoceran
D. magna on a suspension of the green alga Chlorella is given as a function of food
density and size of the animal. Clearly the fit is excellent, cosroborating our assumptions
in this particular case,

In the ccological literature the intake rate as g function of food density, X, is known
as the functional response, Many invegrtcbrates have been shown to exhibit approx-
imately hyperbolic functional responses. The first author to provide an explanation
of this functional form was Holling (1959), who wrote it as pX/(1 + pdX) and interpreted
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FIG. 1. Feeding rate Y at 20°C of Daphnia magna on Chiorelia as a function of food density X for
various body sizes L. The fitted curves are given by ¥ = al¥f(X), where f{X) = EXAI + £X) and
a = (.74 (0.60, 0.88) X 10° cells/(hr X mm?), = 0.7(0.44, 0.96} X 10~° mi/cell. Dala from McMacon
and Rigler (1963), as reproduced by Wullf (1980).

p as the search or filtering rate (volume swept per unit of time) and 4 as the average
time the animal needs to cope with a single food particle. Alternatively, & can be
taken to be the inverse of the digestion rate. If Holling's explanation is correct, our
assumptions imply that both the search rate and the digestion rate arc proportional
to the surface area of the animal. This does not seem too bad a first guess, because
the search rate depends on the surface area of the food gathering apparatus, and the
digestion rate on the surface area of the intestines. It should be noted, however, that
neither the assumed weight dependence nor the specific functional form itself depends
on the correctness of the Holling mechanism or on strict self-similarity during growth,
There may well be other mechanisms leading to exactly the same results,

The functional response of filter feeders like Daphnia has long been assumed to
be linear up to some threshold value of the food density, and constant thereafter
(Frost, 1972). However, recent careful measurements give little support to this as-
sumption. Fenchel (1980) found hyperbolic functional responses for filter feeding
ciliates. Porter et ai. (1982) report a close fit of a hyperbolic functional response for
cladocerans. Our own reanalysis of the data of McMahon and Rigler (1963) shown
in Fig. 1 led to the same conclusions. Finally, Fig. 2 shows the functional response
of the rotifer B. rubens, again feeding on Chiorefla at 20°C. The data points arc
redrawn from Pilarska (1977) on a linear instead of a logarithmic scale for the algal
density. Here, too, a hyperbolic functicnal response is seen to fit the data reason-
ably well.

In the following discussion we shall assume that the energy gain per food particle
is constant, so that the total energy intake can be written as

yWHY(X) )

where f(X) = EX/(1 + £X), X is the food density, W the animal’s wet weight, and »
and £ are constants.
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FIG. 2. Feeding rate ¥ a1 20°C of Brachionus rubens on Chiorella as a function of food density X, The
firted curves are given by ¥ = Yaf(X), where f(X) = £X/(1 + £X) and ¥, = 16.6 X 107 cells/(24 hr
£ totifer) and £ = 5.3 3 107% mi/cell, Data from Pilarska (1977).

Growth

We shall assume the respiration energy to be a fixed fraction « of the total, or
assimilation, energy intake. This respiration energy can be divided into maintenance
energy, which is pruportional 1o wet weight, and energy spent on tissue growth,
proportional to weight increase per unit of time. At constant food density, this results
in an age-dependent weight increase of the type first discussed by von Bertalanffy
(1934, 1969). In symbols we have

aw
af (D)W = tW + g et (2)
where { is the weight-specific maintenance energy (including the energy needed per
unit of weight for molting, filtration, and the like), n is the conversion factor for
energy to wet weight, and a is age. For a birth weight W, this results in

Wia) = FAOWa{l — (1 = f T XAWS WP} exp{~va}D’, 3

where ¥ = {/(3n) thz rate constant of growth, and W, = {xv/{) the wet weight o_l‘ a
very old individua) reared at the highest possible food density. For length L, which
is proportional to the third root of wet weight, this reduces to

L(@) = f(X)Lw — {f(X)Lm — Lo} exp{—va}, @

where L, = x»/{. In Fig. 3 this family of curves has been fitted to the lengths of D.
magna reared at various Chlorella densities. The fit is excellent, even though the
number of parameters is but two more than the number of curves (L, v, and the
value of f(X)L,, for cach curve).
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FI1G. 3. Length L of Daphnia magna as a function of age a for various food densities X. The ftted curves
have the form L = f(X)Lg = { f(X)lm = Ly} exp{~—ya}, where f(X)L, = 2.89, 3.24, 1.72, 4.17, 4.31
mm, L, = 0.8 mm, v = 0.17 (0.15, 0.20)/day.

Reproduction

Since the energy spent on reproduction is equal to the total energy input minus
the respiration energy, the reproductive energy is found from (2) to be equal to
(1 — WAX)W*(q), If we divide this by the energy investment per young, wW,, we
arrive at the number of young born per unit of time from a female of a certain age,
or the age specific fertility. In symbols we have

R(a) = fXXORW[L = {1 = Lo/{LmSIX)) exp{—va}P, 5)

where Ry = (1 — x)pL%/(wW,;) is the maximum reproductive rate, i.e., the reproductive
rate at a very high age of an animal reared on abundant food.

In cladocerans the young are released in batches just before molting. As pointed
out by Tessier and Goulden (1982), the energy investment in reproduction should
be considered a continuous process of energy storage in triglyceride droplets during
the intermold periods. Toward the end of such a period, the stored energy is converted
in1o young. Here we shall not try to incorporate such minor refinements in our model
formulation.

In the ecological literature the production of young as a function of food density
is known as the numerical response. When regarded as a function of X, R(a) can
therefore be called the age-specific numerical response. For fully grown individuals,
it is plotted in Fig. 7.

Species for which wW, is small, so that the number of young released is large, are
often classified in the ecological literature as r strategists, and animals for which the
opposite is true as K strategists, referring to the supposed selective advantages of these
two properties under conditions of, respectively, continued food abundance and steady-
state energy limitation. I principle our type of model, based as it is on energy
considerations, can be considered a necessary first step towarid a thorough theoretical
underpinning of such ideas. We intend 1o deal with this topic in greater detail in the
future.
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Juvenile Stage

Most animals have a juvenile stage, i.c., a stage dur.ing which they are not yet able
to beget young. In our model we take account of this by assuming that dunng_ the
first part of an animal’s life the reproductive energy cannot yet be converted qno
young, but has to be spent on building the reproductive apparat!.ls. Our assumppon
that there is a fixed ratio between the encrgy utilized for reproduc_:uon and_ t.h;at utilized
for respiration implies that the animal’s length and the energy invested in its gonads
are related monotonically, at least until the end of its juvenile stage. If the_gona'ds
are fully grown at length L, the passing of this‘lenst.h_ marks the end of the juvenile
period. So, if J denotes the length of the juvenile period, we get from (4)

oy fOOLe ~ Ly (6
- 1 .
J=y"1n JX) Ly — Ly
For X < Xg(a), where
gt L;— Ly exp{—va} M
X@) =& T T T Ly ep(—va)

the animal will not start reproducing until age . (To be precisg. if young are born
one at a time, the first will not be born before time F, where 7 Ria)da = 1. Here,
ver, we shall such minor refinements.)

ho;: support our mptions, we have plotted in Fig. 4 the length 91‘ D magna as
a function of age for two different food densities. Moreover, we l_mve mdm_ated when
the first eggs were seen in the brood pouch. The figure shows that, in fact, this occurred
at a constant size, and certainly not at a constant age.

For X < Xa(00) = £ 'Li/(L.s — LJ) the animal will never have any young. For D.
magna, we have L; = 2.5 mm (from Fig. 4), Ly, = 6.6 mm (from Kooijman, 198_3),
£ =0.7 % 10~ ml/cell, resulting in Xg(c0) = 0.87 X 10° cells/ml. The food consumption

’J—--"--xm—{
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rate at this density equals Yy = alif(Xg) = al¥/L,, <f. Fig. 1. For D. magna, we
have a = 0.74 X 10° cells/(hr X mm?), resulting in ¥g = 1.75 X 10° cells/hr.

Threshold Food Density

With some slight additional assumptions, our model formulation also enables us
to calculate what is cailed the threshold food density, i.e., the minimum food density
for survival (Lampert, 1977). The first assumption is that an animal dies when it
cannot maintain its basal metabolism. The second is that an animal of a certain size
that get less food is able to switch as much of its assimilation energy from reproduction
to respiration as is necessary to cope with its bodily needs. These assumptions imply
that to calculate the threshold food density X,, we should set x = | and dW/da = 0
in (2) to amrive at f(X,) = L{/v, or equivalently X, = £'L{{v/t — L). The food
consumption rate at this food density equals ¥, = aL*(X,) = L'alfv = Lax/L,, (cf.
Fig. I). The proportionality of threshold consumption rate 10 wet weight follows from
the assumption that maintenance energy is proportional 1o wet weight. The expression
for the threshold consumption rate can be used te estimate the value of x, i.e., the
proportion of assimilation energy spent on respiration when the supply of food is
constant. For D. magna, Kooijman (1983) found x = 1/3 from L, = 6.6 mm.

POPULATION GROWTH RATE

Under constant environmental conditions the number of individuals N of a pop-
ulation is often observed to increase exponentially. This exponential growth law
applies to animals as widely diﬂ'qrem as ciliates and reindeer (see, ¢.g., Scheffer, [951).
In symbols we have

M@) = M0) exp{r},

where ¢ is time and r is a parameter known as the intrinsic rate of natural increase,
or the Malthusian parameter, or simply as the population growth rate. This intrinsic
rate of natural increase is a true population parameter. It is related to the individual
survival and reproduction through the so-called characteristic equation .

J; " exp{—~ra}#(@)R{a)da = 1, {8)

where #(a) is the survival probability to an age of at least a. A derivation of (B) can
be found, e.g., in Lotka (1956), Fisher (1958), Keyfitz (1968), Roughgarden (1979),
Charlesworth (1980), or, in a stochastic context, in Jagers (1975).

For animals that die randomly, the survivor function has the form F(q) = exp{—a/
T}, where T is the mean age at death. We expect such a survivor function, e.g., in
& population under heavy predation pressure. At low predation pressure, the effect
of aging will be much more pronounced, and the survivor function resembles the
block survivor function F(a) = x(a S T), where x denotes the indicator function,
which takes the value one for true, and the value zero for false: i.e., the animal reaches
age 7, and dies immediately after. Most actual survivor functions are somewhere in
between these two extremes.

To illustrate the relation between population growth rate, individual reproductive
rate, and (mean) lifetime in a simple case, we shall put R(g) = R. This may be
considered a limiting special case of our previous model for v very large or Ly, close
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to L. For rotifers, for instance, this may be considered an acceptable approximation.
Under this simplifying assumption (8) reduces to

r=R-T 9)
for exponential survivor functions, and to
r=R(1 —exp{—rT}) (10)

for a block survivor function. The latter equation gives 7 onl_y implicitly, and has to
be solved numerically. In both cases dimensional oonsidenmon‘s at once re_veal' that
r/R, or alternatively, rT, depends only on the product RT. Figure 5,.wh1ch is an
evatuation of {9) and (10), shows three-dimensional plots gf rasa fum_:non of R and
T For both (9) and (10), the population will be stahlg, ie, r= 0, if the animals
merely replace themselves, which happens for any survivor fur_:t_mon when RT = I,
For small r, (10) reduces to r = 2(R — T~"), which is more sensitive to the parameter
T in the case of aging than in the case of random deaths. Th; dl!fcrer_we becchs
more dramatic for negative growth rates, i.c., when the population is dying off. With
aping {10) may be seen 10 predict a steep decling for 'valu_cs of Twlferc the I:andom
death Eq. (9) predicts only a slow decline. The biological mlcrqrctauon _of this effect
is that in the latter case the population is saved from 100 rapld_a decline by those
few individuals that survive to a ripe old age. For large populanfm growt:h rates of
aging individuals, lifetime is not important so long as RT > 3. An increase in lifetime
from RT = 3.15 to RT = oo raises the population growth rate by a mere 5%. In
populations of nonaging individuals the comparable value for RT is 20. In such
populations, therefore, the mean lifetime is important over a much w:der' range.

‘To illustrate the dependence of population growth rate on Ehe_d.uranon of t_he
juvenile stage (cf Cole, 1954), we shall consider a population oflmdl'.vlduals that live
forever and reproduce at & constant rate when mature. {This simplified model can
be derived as a limiting case of our general energy-based mo-del for y — a0, .an.d
L, — Ly in such a way that L(J) = L. For such a popula'uon the c‘haract‘cnsu.c
equation can be rewritten as r = R exp(—+J). From dimensional considerations it
follows that r/R depends only on the product RJ. For very small J we haye r=R(1
— RJ). Figure 6 shows the steep decline of t with increasing J. This explams_ Iwh:,r B.
rubens and D. magna have a maximum population growth rate of 0.5 day™' and 1
day™!, respectively, whereas the first species produces one young every 2 days, and
the second 60 young every 2 days: The juvenile period is negligible in B. rubens, and
2 days in D. magna.

Fc):r an ase-d:g:ndem reproductive rate given by (5), a juvenile stage given by (6},
and a survival up to a fixed age T, the population growth rate has to be found from

1300 _Rl_ _ % (€ — ¢T) — 2[1 = Lo/(Lpnf (X))] (e rFY — giriuT)

r+xy
$ U= IS OO ioass _ gtamy, 11y
r+2y

This equation has to be solved numerically. Figure 7 shows the 'resull of such a
calculation applied to D. magna reared at 20°C at various concenirations of Chlorella,
using the parameters estimated in the previous sections. The figure shows that the
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dr:‘;ﬁc pf food deqsmm within which the daphnid population changes from steeply
eclining to growing at almost the maximum rate is extremely narrow. Combined
with mc samplu}s problems encountered in the usually very clustered natural daphnid
populations, this cbservation provides an explanation for the frequently erratic

pearance of the population counts of daphnids recorded in the |jserature. s
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TOXIC EFFECTS

In the literature on environmental toxicology the reproductive rate is usually con-
sidered 1o be a more “sensitive™ parameter than survival. Our model framework
allows one to distinguish between several possible ways in which the reproductive
rate can be affected:

1. Test compounds whose toxic effects the animal is able to fight off, e.g., by
metabolic deactivation or repair of the resulting damage, will cause an increase in
maintenance energy per unit of body weight {. This will result in a decrease of growth
rate and in a lower maximum weight, leading in turn {0 a lower reproductive output.

2. Chemicals which affect growth directly, for example, by impairing protein syn-
thesis, will increase 5, i.e., decrease -y (but not W), again suppressing reproduction.
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3. Compounds which affect reproduction will increase the energy required for the

gestation of one young, w, and thereby decrease R,,.

4. Chemicals which directly affect the available assimilation energy, e.g., by reducing

the amount of digestible food or impairing the secretion of digestive juices, will

:l:tccm », leading to both slower growth and a lowered weight-specific reproductive

5. Finally the last plausible type of effect to be distinguished within our modeling

framework is impairment of the filtering rate, which marifests itself in a lowering of

f-i Tl.us effect has been dcscrib?d by von Pott (1980) and by Kersting and van der
oning (1981). Its frequency is not very well known, however, because it has no

effect on growth and reproduction at the high F it . .
toxicity testing, high food densities normally used in routine

In routine chronic toxicity tests with daphnids the cumuiative number of young

up to and including 21 days is counted. From (5 i
young up (0 time. + equ (5) and {6} the cumulative number of

2
f’(X)R..[T~ J- 5 {1 = L{fXOLe) " }e™ — e}

I
+ E {] — L.,(f(X)L.,.)"}z{e‘z"”— 8—277‘}] A

) The concentration—ECs;—of test compound for which thi i

in the blank is used as a measure of the toxicity of the compou:df‘;::l?:: !;sillll:::r::;:
the dcpendence‘of the cumulative number of young on food density for the test
cgmpounds ha.vmg various effects added in concentrations equal to the ECy at a
high food density. The parameters used were x = 1/3, R, = 30/day, L, = 0 ;o mm
L;=2.5mm, Ly, = 6.6 mm, vy = 0.17/day, and £ = 0.7 X 10~* ml/cell. It can be
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scen that for food densities greater than 4 X 10° cells/ml, the total number of young
cannot be used to distinguish between the various possible ways of action of a potentially
toxic compound. The following will show, however, that the seemingly minor dif-
ferences in impairment of reproductive rate at food densities below 4 X 10° cells/ml
are greatly amplified in the effects on population growth rates.

Our general model predicts that any chemical that hampers growth will necessarily
affect reproductive output. This seems 10 contradict the resuits presented by Winner
(1981), who reports that low concentrations of zinc and copper affect the body size
of 1. magna, but not its reproductive rate. He concludes that there is no reason to
believe that the chemicals can affect reproduction through an effect on body size. It
should be noted, however, that recognizing such an effect is difficult because the
scatter of reproductive data is usually much greater than that of growth data.

The general imprcssion that the reproductive rate is a more sensitive parameter
than survival should noi prevent one from considering individual survival as a separate
mechanism possibly affecting growth rate, because that impression may well be due
10 the short exposure times in routine toxicity tests. These usually last 48 hr, or at
best 21 days. In the laboratory a water flea normally lives about 2.5 months at 20°C,
and so even a considerable reduction in lifetime will never be noticed.

The time dependence of the survival probability is usually described very well by
a model assuming that the animal dies upon accumulating a certain amount of the
test compound by a simple one-compartment accumulation-climination process
(Kooijman, 1981). If chemical deaths occur only at higher ages, we may neglect the
volume variation of the animal. If, moreover, the distribution of the threshold values
is assumed to be of the usual log-logistic type, we get, in the absence of “patural”
mortality,

F(a) = [1 + (c/LCso* )1 — exp{—a/r T = 840, (12)

where ¢ is the concentration of the test compound in the medium, and LCsp- a0 is
that concentration at which the eventual survival probability is 0.5, § is the shape
parameter of the concentration-response curve, i.e., a measure of the variance of the
In{LCsp- oc:} values among the individuals, and 7 is the time constant of the elimination

Process.
CHEMICAL IMPAIRMENT OF POPULATIO‘I‘\I GROWTH RATE

In this section we shall evaluate the effect chemicals may have on population growth
by comparing the growth rates, 7. and ry, in situations with and without chemical
stress for different food densities. For the sake of simplicity we shall assume that the
stress, i.e., the concentration of the toxic compound and its effect on the individuals,
does not vary with time.

In situations of stress, the population growth rate is by definition smaller, and so
r. < ry. As well as biological intuition our model formulation tells us, moreover, that
r. and rg attain their highest values 7mc and 7mo when food is abundant. Therefore
Fep iS the absolute maximum the population growth ratc can reach in a given species.
To study the impact of a chemical, we consider a stress which has a ceriain small
effect p on the population growth rate under optimum feeding conditions, ie.,
Fmc = PPmo. We then calculate the stressed growth rates 1. for populations growing
at lower blank rates ry.
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Age-Independent Reproductive Rates

Rotifers kept at 20°C aitain their final size within a short time ang live for about
12 days (Hatbach, 1970). Moreover, their juvenile stage is extremely short, so we
may safely make the approximating assumption that R(a) = R, a constant.

Suppose that a compound at low concentrations has no effect on survival, so that
F. = Fo = F, but does have an effect on reproduction: R, = (Rpn.o/Rmo)Ro. Then,
ft:;t?(a) = exp{—a/T’}, we get from N that . =R, — T 'and Ry =rg + T, 50

t

=+ T 'Worme + TV (rmp+ T~ T, (13)
This relation is depicted in Fig. 9 for p = 0.9. For F(a) = x{a = T) we get from {10)
that r. = Rl — exp{—r.T}) and Ry = ro/(1 — exp{—7;T}). Therefore,
(1 — exp{—rmaT}X1 — exp{-r.T})
(1 = exp{—rT}X1 — exp{—pruoT}H’
For thu equation we numerically calculate the stressed population growth rate as a
function of the blank population growth rate ry.

The result {(for p = 0.9) is shown in Fig, 9. For large mean lifetime T, both (13)
and (14) reduce 1o r. = pry, i.c., the growth rate of a population under stress is simply

e =pn (14)
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Fio. 9. Stressed population growth rates 7, a1 & function of the blank growth rates r, for compounds
affecting reproduction oaly (1) and survival only (2) for individusis which in the blank either die randomly
(a) or at a fixed age (b). The numbers along the curves cormespond 1o the valucs of Tr.,, where T is the
mmmn.mmaudrmmemﬁmummhﬁonmminﬂwmTbenm.imumpopuhﬁon
growth rate in the stremed SitUALQR Was 68 8L Fu, = Prag, With p = 0.9,
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a fixed fraction of the blank population growth rate. Figure 9 shows that, for smaller
mean lifetimes, the interaction between chemical stress and poorer feeding conditions
is still not a very dramatic, provided that only effects on reproduction are taken into
account. The situation changes drastically, however, when the stress affects survival
rather than reproduction.

From now we shall assume until further notice that R, = R, = R. We begin our
study of the effects of changing survival by making the simple assumption that the
animals die from toxic effects at time 7. S Ty. In our simple aging model the resulting
survivor functions are F{a) = x(a 3 T.) and Fola) = x{a = To). We then get from
(10)

re = R(l = exp{-r.T.}) and Foc ™ Prao = R(1 — exp{—praoT:})
The latter equation can be solved for T, giving
Te = —(prmo) ™ in{1 — p(1 — exp{—rmoTo}}}.
Substituting this for T, and climination R using (10), again with r = ro, finally yields
re = roll = exp{—reTo})"'(1 — [ ~ p(1 = exp{=7moTo})]*""=). (15)

Our simple assumption about chemical deaths changes the random death survival
function Fola) = exp{—a/To} to Fla) = Folaxta = T).
Proceeding as before, we get

r+Te' _ ((1 - p)r.p)"‘*"'“”ﬁl) (i6)
fo + TE' fmo + T‘E' '
For large Tp, both (15) and {16) reduce 10
Fe = nf1 — (1 — py= o), {an

Figure 9 shows what the solutions to (15) and {16) look like in the general case.
Clearly, the impact of an effect on survival for decreasing population growth rates
rapidly builds up. This is in sharp contrast 10 the impact of effects on the reproductive
rate. As is to be expected, this effect is less marked for populations suffering high
predation, i.e., for Fola) = exp{—a/Ty} and Torno small,

So far we have assumed that individuals die upon accumulating a certain amount
of toxic chemical, all individuals having the same toxicity threshold. Under those
conditions we may avoid the dynamic details of the accumulation—elimination kinetics.
This is no longer the case when the threshold values vary within the population.

For a log-logistic threshold distribution and no natural mortality, the survivor
function is given by (12). If chemical and natural mortality occur together, we get
FAa) = $4a)Fola). For this survivor function we can no longer find an explicit
expression for the integral in the characteristic Eq. (8), which then has to be tackled
numerically. However, the basic ideas remain essentially the same. Some representative
numerical results for Foa) = x(a = T) are presented in Fig. 10, which shows the
relation between the stressed and blank population growth rates r. and ry for two
types of compound, one having a small time constant for elimination, ¢.g., a detergent,
and the other having a rather large elimination time constant, e.g., a heavy metal.
These figures show that an increase of the variability £ of the threshold levels widens
the region of blank population growth rates in which the population does ngt succumb
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Fra. 10. Stressed population growth rates r, as a function of the blank population growth rates r, for
compounds with a small time constant of elimination, r = | (a), and with a large time constant of
elimination, r = 50 (b), and an effect on survival. The numbers along the curves are the variances of the
In threshold concentrations among the individuals. ‘The product of the maximum lifetime Ty and the
maximum reproductive rate in the blank situation Ro. o was chosen as [0, as is reasonable for Brachionus

rubens. The maximum populstion growth mie in the stressed situation was set at r,. = prag, with
p=09,

to chemical stress. Clearly, moreover, the effect is much more marked for the compound
with the small time constant. This at once follows when a large value of 8 is put in
(12): in that case animals either die from chemical causes very early on in their lives
or experience no cffect at all. When almost stillborn animals are regarded as having
been unborn, the chemical effect on survival becomes one on reproduction. Biologically
speaking, those individuals that escape early chemical death go on reproducing for
their normal lifetimes, thereby effectively saving the population from declining rapidly.
We have tested the theory set forth above in two sets of experiments. Kooijman
(1983) subjected populations of B. rubens to a range of concentrations of sodium
metavanadate. The observed population growth rates were in excellent agreement
with the population growth rates calculated numerically from (8) on the assumption
that F{a) = Sla)x(a = 12 days) and R(a) = R.

The results of the second set of experiments are depicted in Fig. 11, which shows
the growth rates at 20°C of populations of B. rubens for different Chlorella densities
and different concentrations of the toxic compounds 3.4-dichlormaniline and notaccinm
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Fig. 10.—Continued

dichromate. The first compound is known mainly to affect reprfaducnou llll lo}:w
concentrations, whereas the second compound mainly affects survival. Clcar y;tt (;.
results are in perfect correspondence with our predictions: lthe chemical lmp: 0
3,4-dichloroaniline is almost independent of the blank population growth rate, whereas

for dichromate there is a marked dependence.

Age-Dependent Reproductive Rates

As a final step we shall study the various possible effects of ch‘em_lcal stress on :1
population of individuals having a juvenile stagc whose duration is given by (6), lai:'lst
whose age-dependent reproductive rates are given by (5). Fgr this purpose we i
solve (11) for the food density X for various blank population growth :tos, ;":;1 ag:
the parameter values of the blank situation. Next,_ we solve (l‘l) for the v. ue o .
parameter that is supposed to be affected, assuming a very high food _dcnsny and a
given reduction p of the maximum blank population growth rate. Fl_nglly, l:ms u:;
(11) 1o calculate the stressed population growth rates for thc'food_denmus ondta:
in the first step and the value of the affected parameter obtzuped in the seco u;;:i

The result of the procedure is shown in Fig. 12. In caiculating the curves, we
a hlack cunsiune functinn with 7o = 70 davs. and the parameter values for D. magna
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FiG. 11, Observed population growth rates of 20°C at Brachionus rubens (vertical in days™') for various
concentrations of 3,4-dichloroaniling (a) and potassium dichromate (b) (to the nght, in In g/l and
In mg/, respectively) feeding al various Chiorella densities (backward, in 10* cclls/mt). The lefimost con-
centration is blank and shoukt be positioned st minus infinity.

obtained previously. The values of those parameters were v = 0.17 mm/day, ¢ = 0.7
X i07* mi cell™', Ry, = 30 day™', Ly = 0.8 mm, L, = 2.5 mm. For v and «, we chose
the values 1J day™' mm™2 and 1/3, respectively. The value of » is urbitrary, because
it enters the calculations only as a scaling constant. The resulting valugs of the metabolic
parameter are { = 0.05/ day”' mm™, 5 = 0.1/ mm™?, and @ = |.834J mm >, The
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FIG, 12. Stressed population growth rates for compounds affecting (1) feeding rate, (2) digestion, (3)
bualmmbnli:m.ﬂ)mwth,(&)npmdueﬁvcme.M(G)wrviul.!imi‘otthcfwdiuuu.the
concentration of toxic compound is chosen such that the maximum stresacd population growth rate is 90%
of the maximum blank population growth rate.

corresponding stressed parameter values for p = 0.9 were found to be » = 0.924J
day™' mm~, { = 0066 day™' mm™>, g = 0.116J mm™, w = 2.5877 mm~>, and
T = 4.07 days. The stressed value of £ was chosen arbitrarily as 0.5- 107° mil cell ™.
(Note that we here assume that only one paramcter is affected at a time. This may
be realistic for low concentrations which only affect that parameter which is most
sensitive to the chemical in question. At higher concentrations, more parameters may
be affected simultaneously.)

These stressed parameter values for », {, 5, and w correspond to a reduction factor
for the cumulative number of young per female up to 21 days at high food densities
of 0.79, 0.65, 0.92, and 0.71, respectively. So for compounds affecting growth, a
reduction of the cumulative number of young per female up to 21 days at high food
densities correspond 10 a similar reduction of the population growth rate, at least for
D. magna.

The main conclusions that now emerge are that for D. magna (1) toxic effects on
growth and reproduction result in a stressed population growth rate that is in effect
proportionally reduced; (2) the impact of effects on survival, basal metabolism, and
digestion increases with decreasing blank population growth rate; and (3) not vn-
expectedly, effects on filtering rates are only seen at low population growth rates.

DISCUSSION

If we are interested in the effect of toxic chemicals on the environment, our main
concern should not be individuals but populations which, moreover, experience a
variety of feeding conditions. Our models predict that the impact on population
growth ratc of chemical effects on filtration rate, digestion, basal metabolism, and
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survival strongly depends on food availability. Unfortunately, this means that lab-
oratory systems, in which food is normally abundant, cannot be but insensitive to
such effects. However, our results can be put to two positive uscs: (1) they can explain
some of the difficulties encountered in the scientific study of chemically stressed
experimental and natural ecosystems, and (2) they can warn us about the critical
phases in the life of an ecosystem when chemical pollution will be most disrupting.

When an aquatic “ecosystem” is isolated for experimental purposes, it usually
exhibits an algal bloom. Our theory predicts that a toxic compound will have its
severest impact only after development of the bloom, when the food supply for
phytoplankton as well as for zooplankton is falling short. Unfortunately such effects
are difficult to study experimentally, because scaled-down ecosystems begin to diverge
rapidly in behavior after a few weeks. For this reason it is nearly impossible to trace
effects to their causes in any particular case. (Certain experimental results reported
in the literature may not be as significant as they are held to be, because they may
well be due to the organisms adapting themselves to their new experimental envi-
ronment, as may be manifested, e.g., in an increase in the lag phase in populations
of microorganisms; see Kooijman et al. (1983).) It is here that a modeling study from
causes instead of effects should prove its worth.

Most animals in the relatively shori-lasting spring and autumn blooms of freshwater
zooplankton do not grow old. Therefore, it is those animals surviving between the
blooms that will suffer especially from a low level of chemical stress. At such times
the biomass per unit volume is necessarily low, and so difficult to sample. Early
adverse effects may thus escape notice. This situation might best be helped by mon-
iloring chemical influxes together with laboratory tests and fate studies in a modeling
environment of the type discussed in this paper.

Finally we wish to emphasize once more that a shortage of food, even if temporary,
is likely to greatly increase the chemical stress to which an ecosystemn is subject.

APPENDIX: NOMENCLATURE

Symbol Dimension Interpretation

a time age

c g-length™? concentration of toxic compound

f —_ functional response as a proportion its
maximum

¥F —_ survival probability

F survival probabilities in the blank and
stressed situations

reduction of the survival probability
due to chemical stress

duration of juvenile period

length of the animal

length at birth, at the end of the
juvenile period, maximum length

concentration of compound at which
the survival probability upon
continuous exposure is 0.5

J time
L length
Ly, Ly, Ly length

LCsy g-length™?

Symbol
p

fimy
Fimy.0s Timye

R(m)

R{m].o [}
R(m),c

T

TOv Tc

W
Wh s Wm

Xh Xlt

Yl s YR
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APPENDIX—Continued

Dimension

time™!
time ™!

time™!

time ™

time

time

length~?
length™?

cells - length~3
cells+ length~?
cells- time™'
cells - time™

cells - time ™! - length ™2

time™' ,
energy - time ™!+ length™

energy - length~?

energy - time ™' + length™2

length? - cells™

time

energy - length™>

Interpretation

reduction of the maximum population
growth due to chemical stress
{maximum) population growth rate
{maximum) blank and stressed
population growth rate
(maximum) reproductive rate
(maximum) blank and stressed
reproductive rates
mean lifetime
mean lifetime in the blank, upperlimit
to the lifetime resulting from
chemical stress
volume of animal = wet weight
wet weight at birth, maximum wet
weight
food density
threshold food densities for survival,
reproduction
feeding rate
threshold feeding rate for survival,
reproduction
maximum feeding rate per unit of
surface area
variance of the log threshold
concentrations
rate constant of growth
maintenance energy consumption rate
per unit of weight
growth energy per unit of weight
proportion of assimilation energy
spent on respiration )
maximum energy intzke rate per unt
of surface area ) )
filtering rate times the digestion time
per cell
time constant of elimination
indicator function, giving 1 for a true
argument and O for a false one
invested energy per unit of birth
weight
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