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AVMMARY

We examined dynamicai factors that shape the distribution of the number of parasites/
host in constant or temporally varying environments, and with or without host-age
dependent variation in host susceptibility and parasite mortality. We predict properties of
the parasite distribution in the absence of density-dependent factors such as density-
dependent mortality or recruitment and parasite-induced host mortality. These propertiea
provide a criterion for the detection of density dependence in temporally variable systems
with hoat-age dependent interactiona. We have then introduced methods to estimate and
statistically evaluate the effects of host age or size on the distribution of parasites/host. The
methods are based on a maximum likelihood protocol for linear and non-linear regression
when data are negatively binomially distributed. We have illustrated the use of the
theoretical results and statistical methods by re-analysing the data of Halvorsen & Andersen
(1984) on cestode infections in Norwegian arctic charr and by analysing new data on
nematode infections in Caribbean Anolis lizards.

INTRODUCQTION

Many recent studies in the parasitological literature have focused on the causes and
population dynamic consequences of the pattern of parasite distribution among hosts.
One productive approach has been to assume that the number of parasites/host follows
some probability distribution such as the negative binomial, and then to determine
with mathematical models the population dynamic consequences of the distribution
(May, 1977; Anderson, 1978, 1982; Anderson & May, 1978, 1979, 1985; May &
Anderson, 1978, 1979 ; Dobszon, 1985). This body of work has shown convincingly that
the commonly observed aggregated distributions (variance to mean ratio greater than
1) enhance density-dependent population regulation of host—parasite communities (cf.
Anderson, 1982) and reduce the level of interspecific competition among parasites
{Dobson, 1985},

A second approach, pioneered by Crofton (18714, b) and more recently by Anderson
& Gordon (1982), has been to model directly the factors that cause the pattern of
parasite dispersion within a host population. Anderson & Gordon (1982) modelled
parasite invasion-mortality processes in cohorts of aging hosts. They treated
analytically the case in which the parasite invasion rate (the probability that a given
host is invaded by an additional parasite/unit time) and the parasite mortality rate are
independent of host age or time. If hosts differ in their susceptibilities to infection, due
for example to immunological, behavioural or micro-habitat differences among hosta,
then (a) parasite distributions are aggregated ; (b) both the mean number of parasites/
host and the variance to mean ratio increase monotonically with host age. Anderson &
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Gordon (1982) assumed that host susceptibility to infection follows a Poisson
distribution. In this paper we refer to the relation between the mean number of
parasites/host and host age sy the age-intensity relation.

Anderson & Gordon (1982} also performed Monte Carlo simulations of cases with
density-dependent parasite mortality and parasite-induced host mortality. Density-
dependent parasite mortality reduces the variance to mean ratio so that it may be
either a peaked or decreasing function of host age. Age—intensity relations, however,
remain monotonically increasing. With parasite-induced host mortality, both the mesn
and the variance to mean ratio may be peaked functions of host age. These quantities
may each increase to a maximum as age increases and then subsequently decrease. Sece
Dictz (1982) for a special case in which the problem with parasite-induced host
mortality is analytically tractable. Anderson & Gordon {1982) concluded that the
shapes of the age-intensity relation and the relation between the variance to mean ratio
and host age are indicative of the kind of density dependence present. For example, a
peaked age-intensity relation is evidence of parasite-induced host mortality. They
pointed out, however, that non-monotonically increasing relations could also be caused
by time or host-age dependent changes in host susceptibility, the abundance of
infective stages or parasite mortality.

Empirical studies have repeatedly documented host-age dependent changes in the
distribution of the number of parasites/host (see, for example, Gordon & Rau (1982),
Halvorsen & Andersen (1984), Kennedy (1984} or the many human examplea reviewed
by Anderson & May (1985), and animal examples reviewed by Anderson & Gordon
(1982). One important and widely recognized difficulty in using theoretical results to
draw inferences from these data is that appropriate statistical procedurea have been
lacking {see discussion by Anderson (1982) and Anderson & Gordon (1982)). For
example, to estimate the age-intensity relation, hosts are typically grouped into age
classes and a mean number of parasites is calculated for each age class. A function of
host age is then fit to these data by eye or by least-squares (Halvorsen & Andersen,
1084 ; Lester, 1984 ; Anderson & May, 1983). There are several obvious problems with
this protocol. First, in regressing the mean for each age class versus age, one effectively
reduces the sample size from the number of hosts to the number of age classes. Secend,
means estimated from samples of different sizes are weighted equally. One, of course,
has more statistical confidence in & mean estimated from a large sample than in a mean
estimated from a small sample. Not uncommeonly, samples for the oldest age classes of
hosts are amall, and it is precisely these means that determine if the age-intensity
relation is peaked. A third related problem is that the sampling distribution of the
means may change form as a function of host age and sample size. Moreover, if the
distribution of parasites/host is aggregated, then the sampling distribution of the mean
will be commonly asymmetric. Thus, deviations of the sample mean below the
population mean may be more likely than deviations above the population mean.

This paper is divided into two sections. We first generalize the analytical treatment
of Anderson & Gordon (1982) as follows: (a) parasite invasion and mortality rates are
arbitrary functions of time and host age rather than constant; (b) the probability
density governing inherent differences among hosta is arbitrary rather than Poisson.
We derive & criterion for detecting the effects of density dependence from the age—
intensity relation and the relation between age and the variance to mean ratio. Here,
by density dependence we mean density-dependent parasite mortality, parasite-
induced host mortality or parasite-induced changes in a host’s susceptibility to invasion
by additional parasites. This criterion is unaffected by the age and time dependencies
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built into the model and so could be used to deteet density dependence in temporally
varying systems with age-dependent epidemiological parameters.

We then deseribe a method to estimate and statistically evaluate the effects of host
age or size on the distribution of parasites/host. The negative binomial distribution has
proven to be an excellent empirical descriptor of the number of parasites/host (sce
Anderson & May, 1985). This distribution has two parameters: M, the mean, and &, a
parameter that governs the degree of aggregation. Aggregation decreases as k increases ;
a8 k approaches infinity, the distribution approaches a Poisson distribution. Now
suppose that M and k are functions of host age or size; we describe & maximum
likelihood estimator for the parameters of the M and & functions. We have implemented
an iterative algorithm that solves the likelihood equations for up to three-parameter M
functions and two-parameter k functions, and produces boot-strap confidence intervals
for the parameter estimates. In intuitive terms, our maximum likelihood protocol is a
method for linear or non-linear regression when the data are negative binomially
distributed with constant or variable k. In contrast, standard regression methods
assumne that residuals are normally distributed with constant variance.

O. Halvorsen has been kind enough to send us his and K. Andersen’s data on cestode
{ Diphyllobothrium ditremum) infections in Norwegian arctic char (Salvinius alpinus)
(Halvorsen & Andersen, 1984). To illustrate the maximum likelihood approach we re-
analyse these data and show that the apparent peak in the char age-intensity relation
is likely to be a sampling artifact. Nonetheless, & increases significantly with age. This,
in light of our theoretical results, implies the presence of some form of density
dependence. We also analyse new data on nematode (T'helondros cubensis) infections in
Caribbean lizards (Anolis bimaculatus), to illustrate a case in which the hosts are
classified by size rather than age:

THE MODEL

Let q,{,a) be the probability that a host.of age a at time { has 5 parasites. Also, let
AaA(t, a) be the probability that a host of age a is infected by an additional parasite
during the time interval from ¢ to { + da (and hence between age a and g + 4a). Finally,
suppose that danu(l,e) is the probability that a death occurs in the population of
parasites infecting a host of age a within the time interval from ¢ to t+ da. Thus:

da(t+da,a+4) = daA(t, a) g, (¢, a) + da(n + 1) g, (2, a) plt, a)
+q(t.a)[1 —daA(t, a)— dault, a)].

Subtracting ¢,(¢, @) from both sides, dividing both sides by 4a, and passing to the limit
a8 da — 0 yields

@%ﬁ%‘—;—“’ = A(1,0) gy 0) + (n 4 1) (L, G) gu a1, 0)

—A(t,a)g,(ta)—nu(t.a)g.lt,a). (L)
A solution of equation (1} is qu(t. 0} = e7¢¢" [n! (2)

where = J..,\(g_a+z,,;) o-fimt-arnman g,
L]

Thus_, the probability that there are n parasites in a host of age a at time ¢ is given by
a Poisson distribution with mean ¢. Of course, equation (2} may be shown to be a
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solution of equation (1) by direct substitution. In the special case of constant u and A
studied by Anderson & Gordon (1982), ¢ reduces to A/u{l —e*?).

Now suppose that the invasion rate A({,a) is the product of a non-negative random
variable Z and a non-negative function of hoat age and time c(¢, 2). The random variable
Z accounts for differences among hosts in their susceptibilities to infection. Each host
ia assigned & value of Z at birth und retaina this value throughout its life. A submodel
of infection that leads to the relation A(t,a) = Ze(t, a) follows: suppose that 4a8w is the
probability that a host encounters ah infective stage during the small time interval £ to
i+ da, where @ is the number of infective stages in the host's home range and daw is
the probability that the hoat encounters any one infective stage. Further, let ¢ be the
probability that the host is infected given an encounter. Then: A{t,a) = Bwe. There are
at least three qualitatively different possible relations between Ze(t,a) and Owe.
(8} Suppose that the mean denyity and spatial distribution of infeetive stages is constant
in time, but that the spatial distribution of infective stages is patchy {(some hest home
ranges contain more infective stages than others). If € and w vary temporally and with
host age but do not vary among hosts of the same cohort, then Z = 6 and ew = ¢(a,t).
(b) Suppose that host behaviour varies, such that w is independent of age and time but
differa among hosta. This could occur, for example, due to between-host variation in
prey preference. If @ and ¢ vary temporally and with host age but do not vary among
hosts of the same cohort then Z = @ and 8¢ = ¢{a., t). (¢) Suppose that some hosts are
better able to resist infection, given an encounter, than others, but that ¢ is independent
of age and time. This could occur if nutritional differences among hosts affected their
ability to mount an immune reaponse. If & and w vary temporally and with host age
but do not vary among hosts of the same cohort then Z = ¢ and w€ = ¢(a, !).

We emphasize that the above interpretations do not represent an exhaustive list.
Rather they are but three of many that will lead to the relation A(¢, a) = Zc(t, a). With
the invasion rate expressed as the product Zc{a,t), the solution to equation (2)
becomes:

gqll,a) = e” 20 Zatt a)|"/n!; gl a) = J'ac(t—-a-#x‘ x) e fiet-arvman gy 3
[}

The probability that & randomly chosen host of age 4 at time ¢ will have n parasites
is

r bz)guitia | Z =2)dz, )
[ ]

where b(z) is the probability density of Z. If Z is a discrete random variable, then the
integral in equation (4) is replaced by a discrete sum. In the case considered by
Anderson & Gordon (1982), b(z) is Poisson. Let 7(r) be the moment generating funection
of b({z). The probability generating function of g,(t,a | Z = z} is v(s) e @1 and g0
the probability generating function of equation {4) is #{g(t,a) (s— L)). We obtain the
mean, M(!,a) and variance of equation (4) directly from n{g(t,a) (s—1)) as

Mt a) = Bg(t.a)
Variance = Bg(t, a) + o?g(t, a)*, (5)

where B and g are, respectively, the mean and variance of Z. Thus, the age intensity
relation at time { is given by equation (5) and the variance to mean ratio as a function
of age and time (VM(t, a)) ia

VM(t,a) = 1+ (0% B)git, a). {6)

Together equations (5) and (6) provide the following result (Result 1). In the absence
of density-dependent. parasite mortality, parasite-induced host mortality and parasite-
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Fig. 1. The relation between the mean parasite burden and the variance to mean ratio
predicted by Result 1.

induced changes in a host's probability of further infection, the age-intensity relation
is given by equation (5) and the variance to mean ratio is given by equation (6).
Equations (5) and (6} are valid in constant or temporally variable environments, with
or without host-age dependent changes in susceptibility or parasite mortality. Note
that parasite distributiona are always aggregated if the host population is heterogeneous
(VM(t,a) > | if 0* > 0) and that the degree of aggregation of the parasite distribution,
VM(t, a), is a linear increasing funclion of the mean number of parasites/host (Fig. 1).

The simulations of Anderson & Gordon (1982) show clearly that Result 1 is, in
general, not valid in systems with density-dependent parasite mortality or parasite-
induced host mortality. With density-dependent parasite mortality, V.M(t,a) often
decreases as M{1, a) increases and VM{{,a) may be less than 1 (see Fig. 4 in Anderson
& Gordon, 1982). We conjecture that the same would be true if a host’s susceptibility
were & function of its parasite burden (due for example to an immune response
(Anderson & May (1985)). If host mortality increases with parasite burden then the
relation between VM(l,a) and M(l a) is, in general, not monotone (see Fig. ® in
Anderson & Gordon, 1982).

Result 1 may thus provide a criterion for the detection of density dependence that
is valid even in temporally variable systema with host-age dependent parasite invasion
and mortality rates, 1f VM(¢, a) is not a linearly increasing function of M(t, a} then this
is evidence of density dependence. It is important to realize that the converse is not
necessarily true; a linear relation might be expected in some systems with density-
dependent parasite mortality, parasite-induced host mortality or a parasite-induced
immunological response that alters the probability of further infection. Density-
dependent parasite fecundity, parasite-induced changes in host fecundity, and host
density-dependent host fecundity or survivorship will affect the abundances of hosts
and/or parasites, but will not cause the relation between M(¢, ) and ¥ M (¢, a) to be non-
linear.

We caution that Result { is dependent on the assumption that the probability
density b(z) does not vary with host age or time. The density b(z} would be a function
of host age, for example, if hosts become immunologically or behaviourally less
heterogeneous as they age (Anderson & Gordon, 1982).

In practice, it may be difficult to detect directly non-linearly in the relation between
the mean and varianee to mean ratio. Suppose, however, that the distribution of
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parasites/host in each cohort is negative binomial. Again, the negative binomial has
proven to be an excellent empirical model in many studies. Because the variance to
mean ratio of & negative binomial is 1+.M/k, Result 1 is obtained only if & is constant.
Thus, in the negative binomial case, Result 1 can be restated simply as the parameter
k is constant, k = f*/¢?, and the age-intensity relation is given by equation {5). One
could obtain evidence of density dependence from negative binomially distributed field
data by determining whether or not & varies significantly from cohort to cohort. As
before, this criterion is valid even in temporally variable systems with age-dependent
epidemiological parameters. Incidentally, the distribution given in cquation {4) is
negative binomial for each value of @ and ¢ if Z is gamma distributed. See Adjei, Barnes
& Lester (1986) for a method of estimating parasite-induced host mortality that is
based on truncated negative binomial distributions.

Anderson & Gordon (1982) rightly pointed out that peaked age-intensity relations
could be caused by age- or time-dependent parasite invasion or mortality rates as well
as by parasite-induced host mortality. For example, it is straightforward to show from
equation (5) that either of the following factors may cause peaks in an age-intensity
cutve: (a} parasite mortality increases with host age or (b) the invasion rate of parasitea
decreases with host age {c.g. decreasing susceptibility with increasing age). Moreover,
suppose that the age—intensity relation is estimated using data from a longitudinal
study in which one cohort is repeatedly sampled through time. A peak in the age-
intensity relation from a longitudinal study could be caused by (a) parasite invasion
rates that decrease over time {say due to a seasonal decrease in the abundance of
infective stages) or (b) parasite mortality rates that increase over time. There is one
interesting remaining case. Suppose that parasite invasion and mortality rates vary
temporally but are unaffected by host age. Further suppose that a cross-sectional study
is done; several host cohorts are sampled at & single point in time. Then, the invasion
and mortality rates become Aft) and u(¢) and the age—intensity relation in equation (5)
becomes

Ma) = Brﬂ(t—a+1) e fs wumarna gy (7)
a

Here, ¢ should be taken as a constant because the study i8 cross-sectional. If ¥’ = x—a

and " = y—a, then .

M(a) = EJ.» :\(t+:r')e‘fr"“*""‘“"dx’
-a

and

M = BA{t—a) el mrvrar
du

Because A{t—a) 2 0 and g{i+1y') 2 0, dM /da 2 0. Thus, the mean number of parasites
is & non-decreasing function of age. The implication of this result is that a peaked age-
intensity relation is evidence of parasite-induced host mortality in a temporally
variable system if the epidemiological parameters are independent of host age, and if
the study is crosa sectional.

Mazimum hikelihood estimalion

Suppose that we collect a sample of N hosts and let X, be the number of parasites in
the ith host and further, suppose that the vector A, is a series of measured attributes
of the ith host excluding X,. In the context of this study, A, would include the age and/
or time of collection of the ith host, but other host-specific variables such as habitat
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deseriptors or host size or reproductive condition could be included as well. We assume
that the probability that a host with vector A, has X parasites is given by & negative
binomial distribution with parameters M{A,) and k(A,). Thus, the parameters of
negative binomial are functions of the host-specitic variables. Our goal ix to estimate
the parameters of the M(A) and k{A) functions from the A, and the X,

With these assumptions, the log likelihood funetion for the data set (X,,A,),
t=1,...Nis

N
L=2Y [k(A‘) log (E(A ) — £(A)) log (M{A,)+4(A))+ X log {(M(AY

-1
X[
—X, log (M(A)+k(A))+ 2 {log (k(A) + X, —j} —log (X, !]]~ (8)
=1

Let the r parameters of the M(A) functionbe ¥, ¢=1,2,...,r; and let the p parameters
of the k(A) function be W,, & = 1,2,...,p. Values of the ¥, and W, that maximize L are
maximum likelihood estimates. Our maximization protocol is described in the Appendix.

To estimate confidence limits for the parameters we employ a boot-strap procedure.
One hundred data sets of size N are first obtained by randomly selecting values of
(A,, x,) with replacement from the data. Parameter estimates are then obtained for each
of the random data sets. The 96% confidence limits for each parameter are given by the
third largest and third smallest estimate obtained.

Cestodes in arclic charr

We now analyse two sets of empirical data to illustrate the use of the above statistical
and theoretical results. Halvorsen & Andersen (1984) obtained 5165 cestodes
(1. ditrencar) from 590 arctic charr that ranged in age from 2 to 13 yeurs. The dark
cirdles in Fig. 2A give the mean number of cestodes/host for each age claxy of host and
the number above cach mean gives the host sample size for the age class. Note that the
age—intensity relation appears peaked; the mean number of parasites/host increases
with age up to age 8 and then decreases. Halvorsen & Andersen (1984) also calculated
values of the negative binomial parameter k for age classes 3-8, These estimates
increase monotonically with age (Fig. 2B, dark circles), and so the distributions appear
to become decreasingly aggregated in older fish. Finally, estimates of the variance to
mean ratio first increase and then deerease with age (Halvorsen & Andersen, 1984). The
authors conclude from the apparent peak in the age-intensity relation and the
theoretical results of Anderson & Gordon (1982) that heavily infeeted fish suffer greater
mortality than lightly infected fish. They speculate that this increased mortality is due
to selective predation on heavily infected fish by black-throated divers.

We obtained maximum likelihood estimates from Halvorsen & Andersen’s data for
a three-parameter M function and a two-parameter k function. The mean funetion is

9

— - Vyla-¥y
Mg) = Vl[!__e_‘__]_

£

This function is the age-intensity relation predicted in the absence of parasite-induced
host mortality, if A and x are constant for each host and if hosts are not susceptible to
infection until a threshold age, V, (see equation (5) and Anderson & Gordon, 1982).
Apparently, plerocerids of the genus Diphyliobothrium are not found in 0- and 1-year-
old arctic charr (Halvorsen & Andersen, 1984). The parameter V, is the mortality
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Fig. 2. (A) Age-intensity relation for cestodes in arctic charr (Halvorsen & Andersen, 1984).
(@), Data means for each age class; the value in parenthesis above each data mean givea the
hust sample size. (—) Maximum likelihood it of equation (9) to the data. (B) Relation
between negative binomial parameter &£ and charr age. (@), Values calculated separately
for each age class by Halvorsen & Andersen (1984). {—) Maximum likelihood best tit of
equation (10).

rate of parasites and V| is the mean value of the parasite invasion rate for the host
popuiation. The k function is a linear function of host age

k(a) = W, + W,a. (10)

Parameter estimates and 96% confidence limits are given in Table 1; predicted values
of M(a) and k(a) are given by the lines in Fig. 2A and B respectively. Note that the
predicted valucs of the mean and & closely match values calculated separately for each
cohort, provided that the sample size of the age class is Iarge {age classes 3-7).
Deviations are larger for age classes with small sample sizes (classes 8-13). The line in
Fig. 2B overshoots the separately calculated values for cohorts 3-5 and undershoots
values for cohorts 6-8 primarily because the data in cohort 2 are not aggregated (and
thus have infinite k).
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Table \. Parameler estimales from a maximum likelihood fit of a three-parameler mean
SJunction and a two-parameter k function o Halvorsen & Andersen’s (1984) cesiode—arclic
charr data

Lower %6 % Upper %
Parammeters Estimate confidence limit  confidence limit
V, 2-889 1-593 4-276
Ve 0082 —0-186 0347
¥y 1-758 1-5689 1-454
W, 0199 0082 0393
W, 0054 015 0078

Halvorsen & Andersen {1984) fitted the model equation (9) directly to the means of
the data from each age class {presumably by least squares). Their fit asymptotes at
approximately 13 parasites/host rather than 46-6 as in Fig. 2 A. The reason for the lower
asymptote obtained by Halvorsen & Andersen {1984) is that their procedure weights
equally the means derived from one or two individuals in age classes 10-13 and the
means derived from over 100 individuals in age classes 4-6. Thus, the low means in age
classes 10-13 are able to pull down their asymptote. In contrast, our procedure
accounts for the differences among the sample sizes.

The maximum likelihood estimates indicate that the apparent peak in the age-
intenaity relation is likely to be an artifact of the small sample sizes in age classes 8-
13. Te see this, note first that the parameter V, is not significantly different from zero
{Table 1}. The parameter V, determines whether or not the function in equation (9) has
a positive or negative second derivative. If V, is zero then the function in equation (9)
is linear. Thus, we cannot conclude that the slope of M(a) decreases with age, let alone
becomes negative.

To demonstrate directly that the deviationa between the sample and predicted means
could be due to sampling artifacts we simulated the study as follows. Consider the
cohort of hosts with age e, and sample size N,. We generated N, negative binomial
random numbers with the mean given by equation (9) evaluated at a,, & given by
equation (10) evaluated at a, and using the estimated parameter velues in Table 1. We
then calculated the mean of these N, numbers, repeated the entire procedure 200 times,
and omitted the 5 highest and lowest sample means to obtain 95% sampling limits on
the predicted mean. Of course, these limits could also be calculated directly from the
negative binomial distribution. The upper and lower 95% limits for each age class are
given by the lines in Fig. 3. Notice that all data means (the dark circles) fall within the
95% envelope. Because none of the deviations from the fitted model are statistically
significant, we cannot conclude that the age-intensity relation is peaked. The marked
widening of the 85% envelope as age increases is largely due to the small sample sizes
of age classes 8-13. Finally, it ia possible to show with similar methods, that the
apparent peak in the variance to mean ratio reported by Halvorsen & Andersen (1984}
is also likely to be a sampling artifact.

Unlike the age—intensity relation, the parameter estimates of the k function do
provide evidence of density-dependent parasite mortality, parasite-induced host
mortality or parasite-induced changes in host susceptibility. Specifically, the slope of
the k funetion, W,, is significantly positive (see the confidence limits in Table 1) and s0
the parasite distribution becomes decreasingly aggregated as host age increases,
Because k is not constant, Result | is violated. We thus agree with Halvorsen and
Andersen that there are indications of density dependence in their cestode—charr
data.
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Fig. 3. Upper and lower 95% sampling limita on the mean for the negative binomial
distribution with mean function of equation (9), k¥ function of equation {10), parameter
values in Table | and sample sizes in Fig. 2. Note that all data means (@), fall within these
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Nematodes in anoles

We collected 100 Anolis bimaculatue lizards on St Eustatius, Neth. Ant. in June 1985,
and determined the number of T'. cubensis nematodes in each. We cannot age these
hosts and so, instead, we classify them by size. Size in A. bimaculatus is a reasonable
indicator of age; fitted growth models for this species have been reported by Pacala &
Roughgarden (1985). 4. bimaculatus is sexually dimorphic. Males reach approximately
90 mm in snout—vent length and females reach approximately 65 mm. A total of 50 of
the hosts were collected in relatively xeric coastal forest and 50 were collected in mesic
montane (500 m elevation) forest, We used the maximum likelihood estimator to fit a
linear mean function of length and constant k to these data. Four separate fits were
obtained: montane males, montane females, coastal males and coastal females. The
results, together with the data points are given in Fig. 4. Note that montane animals
were more heavily infected than coastal animals,
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Fig. 4. Host size-intensity relations for nematode infections in Caribbean anoles.

DISCUSSION

The characterization of population dynamic processes from epidemiological patterns
is at best a difficult endeavour because several different processes may lead to the same
pattern. Here, we derive criteria to detect density dependence in the presence of
confounding factora that are common in natural systems. These include temporal
variation in the density of infective stages and time and host age-dependent variation
in parasite mortality, probability of infection given an encounter, and host behaviour.
We show that & peak in the age intensity relation from a cross-sectional study is
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Fig. 5. Probability that the sample mean from a negative binomially distributed population
will undereatimate the true mean ss & function of sample size. In all cases, M = 10.

evidence of parasite-induced host mortality whether or not parasite invasion and
mortality rates vary in time. Such a peak may also be caused by increases in
susceptibility or decreases in parasite mortality with host age. Moreover, we suggest a
criterion for the detection of density dependence (Result {) that is valid under quite
general assumptions about the nature of host age and time dependencies. If the parasite
distributions for each age class of host follows a negative binomial distribution, then
this criterion is that k is constant in the absence of density dependence. The cestode-
charr data are well described by the negative binomial (Halvorsen & Andersen, 1984).
We caution that estimates of k could vary spuriously among age classes if the negative
binomial distribution were fit to significantly non-negative binomially distributed data
{see Pielon (1977) page 130). One other implicatioh of Result 1, is that it lends support
to epidemiological models that assume i tonstant k despite changes in parasite and host
abundances (see Anderson & May, 1985).

The maximum likelihood statistical methods should prove useful regardless of the
applicability of the theoretical results. In addition to estimating changes in the
distribution of parasite burden with host age, the methods could be applied to any
regression problem in which the data were negatively binomially distributed for all
values of the independent variables. Methods similar to those that produce Fig. 4 could
also be used to assess whether a seemingly abnormal value of any statistic calculated
for an age class is a sampling artifact.

Fig. 4 shows that the peak in the charr age-intensity relation is not statistically
significant and we conjecture that artifactual peaks are common in empirical studies.
This is because the sample mean parasite burden for an age class will underestimate the
true mean with high probability if the sample size is small and the parasite distribution
is sufficiently aggregated. Fig. 5 shows for negative binomially distributed data, the
probability that the sample mean will underestimate the true mean as a function of
sample size. The three curves in the figure correspond to three different values of k. To
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calculate these probabilities, we use the property that the sum of N negative binomial
random variables, cach with parameters M and k, is itself negative binomially
distributed with parameters NW and Nk, The probabitity that the sample mean is an
underestimate is always greater than 0-5 in Fig. 5 simply because the negative binomial
distribution is not symmetric about the mean. Note that the probability of obtaining
an underestimate increases as the sample size decreases and as the distribution becomes
increasingly aggregated (as k decreases). Because of host mortality, the sample size for
& host cohort typically decreases as host age increases, and so sample means for the
oldest host cohorts are more likely to be underestimates than the other means. Thus,
one expecta artifactual peaks to be common in age-intensity relations. The important
point here is that intuition honed by the study of symmetric distributions may be
misleading when faced by asymmetrically distributed data. This underscores the need
for statistical methods that are based on an aggregated distribution, such as the
negative binomial.

APPENDIX

To maximize L in equation (8) with respect to the parameters V,,¢=1,2,...,r and
W,,h =12 .. pwe must solve the system of r+ p equations:

OL _ o _wn IMAN X, HAY+X, | _

av, = 0= Zm 5y [M(A,} M(AJH(A,)]’ 9=12...r An
L ¥ k(A _ __HA+X,
B‘W;—O—El —-a-w;—[l+10g(k(A¢)) log (M{A,}+k(A,)) M(A)+ KA,

Xy
+ 3 1A+ X —j)]; h=1,2,....p
-1
for the roots: Vq: W, ¢g=12....r0 h=12....p

We have implemented an iterative algorithm that will solve the system in equation
(A 1) for M{A) functions with up to three parameters and {A) functions with up to two
parameters. The inputs for this programme are the data, the functional forms of k(A)
and M(A), the first and second derivativea of these functions with respect to their
parameters, and initial guesses of the parameter values. Given appropriate initial
guesses, the programme converges to a local maximum of equation (8).

The programme’s numerical root-finder is a modified Gauss-Newton algorithm. The
advantage of the Gauss—-Newton method is that it converges rapidly. We have written
two versions of the programme, one in PL1 on an IBM mainframe, and the other in
Pascal on a8 micro-computer, The micro-computer version is not prohibitively slow even
with data sets including more than 500 hosts and 5000 parasites. The disadvantage of
the Gauss-Newton method is that it is prone te oscillatory instabilities, and our
implementation is certainly no exception. The algorithm is especially sensitive to the
chaice of initial values for parameters of the &(A) function, as small changes in & result
in large changes in the shape of the negative binomial. We have thus developed a hybrid
procedure whereby a value for one parameter of the k{A) function iz chosen and held
constant while the other k{A) parameter and the parameters of M(A) are solved by
Gauss—Newton. By successively increasing or decreasing the value held constant and
resolving for the remaining parameters each time by Geuss-Newton, the algorithm
eventually converges to the roots of equation (A 1). Even so, preliminary data analysis
is required to determine appropriate initial guesses for the parameters.

We have also implemented a simple hill-climbing (simplex) algorithm to solve the
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system in equation (A 1). This programme will never exhibit oscillatory instabilities but
is much slower than the Gauss—Newton routine. Nonetheless, the hill-climbing
programme iy useful to obtain initial guesses for the Gauss—Newton algorithm. Copies
of the mainframe versions of all programmes are from 8. Pacala and copies of the micro-
computer versions are available from A. Dobson.

We thank J. Roughgarden for hia field work, encouragement and friendship and the National
Science Foundation (# BSR-83-16949) for funding the study.
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