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LIKE-WITH-LIKE PREFERENCE AND SEXUAL MIXING MODELS

by Stephen P. Blythe! and Carlos Castillo-Chavez23

ABSTRACT

We present two new general methods for incorporating like-with-like preference into one-
sex mixing models in epidemiology. The first is a generalization of the preferred mixing
cquation, while the second comprises a transformation of a genera! preference function for
partners of similar sexual activity levels. Both methods satisfy the constraints implicit in a
mixing model. We then illustrate how the transformation preference method behaves and
compare it with the standand proportionate mixing model.

INTRODUCTION

In models of the dynamic; of sexually transmitted diseases (STDs) within
populations with heterogencous sexual activity, it is necessary to specify the contact
preference (who mixes with whom). Thus, for each level of sexual activity (number of
new partners per unit time) we must know the fraction of partners coming from all other
levels of activity. For practical modeling purposes, we require some function of activity
which both makes analysis straightforward and is a reasonably accurate characterization of
observed mixing pattems. Until recently the proportionate mixing model--equation (1)
below--was the most common description of the mixing process available in analytic form,
although arbitrary rules may, of course, be applied in stochastic simulations of the
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interaction of individuals, Proportionate mixing has been used extensively in a variety of
situations by Barbour (1978), Nold (1980), Anderson and May (1984), Dietz and Schenzle
(1985), Anderson and Grenfell (1986), Hethcote and Van Ark (1987), Castillo-Chavez et
al. (1988, and in press). While this model bas also proved useful in the study of the
epidemiology of STDs (see Hethcote and Yorke, 1984, for an outstanding example), it has
Lecome clear in recent years that more realistic mixing models are required for any deailed
understanding of thasransmission dynamics of HIV-1 and for any study of the possible

value of various control measures,

At present there are few robust data on contact preference in a given community,
although estimates of the distribution of numbers of sexual partners have been derived
from verious surveys. In the absence of detailed mixing information, models of HIV-1
transmission must take into account as many mixing patterns as possible in order that the
impact of any preferential mixing in a given population be better understood,

Preliminary work on preferential mixing was done by Nold (1980) and Hethcote -
and Yorke (1984), Their idea, as Nold (1980) says, was to "supplement the proportionate
mixing model with one which allows for more social or geographic separation of groups.”
In the developinent of their two-sex group model for the transmission of gonorrhea for
very active and active sub-populations, Hethcote and Yorke (1984) note that it may be that
"aveayactivcpcrsonmaybema’el.ikelyiohaveanmcounmwithamyacﬁvep&son"
and therefore for the extreme case in which only like-with-like people mix, we have
"proportionate mixing within the very active sub-population and within the active
subpopulation, but there is no interaction between these sub-populations.” Hethcote and
Yorke conclude that "actual mixing is probably somewhere in between the extremes of
proportional mixing in the entire subpopulation and proportionate mixing in the activity
levels....". Earlier,Nold(1980) had reached the same conclusion, and introduced a mixing

matrix M which is 1 - s times the mixing matrix for proportionate mixing plus s times the



matrix for proportionate mixing in the activity levels (i.c. within sub-populations). The
parameter 8 was 8 measure of the scparation between groups. Hethoote and Yorke called it

the “selectivity constant.”

Recently Sanenspiel (1987a and 1987b) questioned the use of proportionate mixing
in dynamic models for the spread of diseases in structured populations. She emphagizes
those diseases for which the geographic and social structure plays an important role.
Sattenspie] was the firstt 1o provide a yery general formulation that allowed for truly distinct
Jevels of interactions between individuals, More specifically, her framework allowed two
distinct levels of random mixing: (1) nonsocial vs. social behaviors, with the condition that
nonsocial individuals had within-group mixing only, and (2) two types of intragroup
mixing, one involving individuals who oaly interact with neighbors (the local groups), and
the second type involved individuals who interact randomly with all of the groups.
Although her formulation was motivated by her work on the spread of hepatitis A among
pre-school children, Satenspiel is aware (see, 1987a) that her framework could be applied
10 & variety of simations including the spread of STD's. Later, with Simon (1988), she
mﬁndmmmmﬂydsdmdrn-youpmdd.

Stanley and Hyman (in press) have examined some approximations to like-with-like
mixing; in addition, their simulations have illustrated the possible dangers of using
proportionate mixing. Recently, Stanley (personal communication) has developed a model
where the preference of half of the population may be specified by the modeler, with the
other half being defined by the preferences of the first, and Jacquez, Koopman,
Sattenspiel, and Simon have explored a restricted form of mixing slightly more general than
Nold's preferred mixing. (sec Sattenspicl et al. (ms), Jacquez et al. (in press), and
Koopman et al. (ms)). All of these approaches represent important and valuable
contributions to the study of STD epidemiology.

In this paper we seek to extend the range of mixing models available to the modeler
by inroducing two new forms which satisfy the necessary contrainis: (1) generalized
preferred mixing, and (2) neighborhood mixing,

MIXING FUNCTIONS

In any one-sex model with heterogencous sexual activity we have the mixing
r+Ar

function p(s, ), and hence, Ip(s,u) du , specifies the fraction of s parners
r

among individuals with activitics in the activity interval [r, r +A r]. There are three
constraints which p(s, r) must satisfy forall sand r:

® pGnz20,
@ [pena=fpromu=1
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(i) p.sNE) = p(r,9)rNi),

where N(x) is the number of people in the population with activity x , this is of course a
function of time. However, we have suppressed time notation as (i - iii) must be true at alf
times. Conditions (i) and (ii) arise because p(s,r) is in effect a probability density function,
while condition (iii) expresses the requirement that the total number of partnerships of s-
people with r-people mmst equal the total number of partnerships of r-people with s-people.
We observe that that if we look for solutions of the form r N{r) A(s.r), then condition (iii)
implies that A(s,0) = A(r;). These constraints are simple and obvious, but it is
exwraordinarily difficult to find functional fonms for p{s,r) which satisfy them

simultaneously for all s,r, and time 1.



We express the standard mixing model for proportionate mixing as

PG = — B0 (1)

J' u N(u) du

0
Here p(s,r} is actually independent of s, and may be interpreted as saying that the fraction
of partners taken by any individual in the population from individuals with activity ris
proporticnal to the total number of parterships formed by all r-people, and clearly satisfies
(i)-(ii).

A preferred mixing function is an extension of equation (1) to include a preference
of individuals for parmers with exactly the same activity level. In the continnous variables r
and s used here, Nold's preferred mixing becomes

PG =(-0) — 2 +abs-n, (2)

I u N(u) du
0

where 8(s-1) is a Dirac delta function and the constant o represents the bias towards
partners of exactly the same activity. Although very useful for modeling purposes, and
sufficient to demonstrate that even a small bias towards like-with-like can have a profound
effect on epidemiological patterns, equation (2) is rather restricted as a general model of

preference.

A more general aliernative to proportionate mixing has been derived by Stanley

(personal communication), and 1zkes the form

N(r)

p (ru 5) ';'N""("s')' , I<S
psr1) = 3)
&s DN ;
—20 (- sy d), >
Iﬂs.u)uN{u) du 0

where p(r,s) for r < 3 is arbitrarily specified by the modeler to suit available data, and the
rest of the values are derived from this constraint. The function £(s,c) appears o be
arbitrary, and may be used to fine-tune the behaviour of p(s.r) to the modeler’s needs. It
may be shown that equation (3) satisfies (i) - (iii). This general mixing function is
potentially of great value in modeling studies.

it

Wenow is xduce two new mixing functions which satisfy the constraints (i) - (i),

GENERALIZED PREFERRED MIXING

The first mixing model is a direct generalization of Nold's additive equation (2) to
allow preferences for partners with activities which are arbitrary multiples of one's own. A
discrete version of this model has been used recently by Jacquez et al, {in press). The

continuous version takes the form:

r N(D ~iaiairN(air)
im] s
p(s, 1) = + iaiﬁ(r-;—i) . (4)

- i=l
I u N{u) du
0




Here there are m delta-functions with weights {a;}, describing the preference of
individuals with activity s for individuals with activity s/a,, s/a,,..., 8/a,.

For like-with-like preference we might have a, = 1, and the other a; arranged as
multiples and fractions of unity, with the weights {a ;} at a maximum for i = 1 and

decrcasingastheaigetlarguasmauuthanunity.ltismhﬁvclymytoslwwthat

cquation (4) satisfies (i) - (iii) provided that the sum of the weights, i a ,islarge

enough (greater than MAX {0 ;8 ;x N(x)} is sufficient). It may in practice be a serious
i

deﬁdmythuﬂmeam'gaps'mﬂwmmmﬁmwmthﬂrbinuﬂychom
positions of the delta-functions. Nonetheless equation (4) may be useful for preliminary
investigations of a like-with-like preference distributed around s =r.

A NEIGHBORHOOD MIXING FUNCTION

Instead of the delta-function model of equation (4), we should like to be free to
specify like-with-like preference by some arbitrary function with well-understood
properties. In particular we wish to usc “neighborhood" functions which express
preference as a continuous function with a single peak at r = s, falling off to either side. We
know of no such functions which may be used directly, satisfying (i) - (jii). Even an
isolated delta-function requires some transformation, the simplest example of which is

ps, 1) = %% dr-s) .
This example provides a clue as to how one might make use of an arbitrary function, say
&(s,r), as our preference function. We must ask: “What transformation of the function
#(s,r) satisfies (i) - (iii)?" If we restrict our choice of ¢ to functions with the property ¢(s-r)
= ¢(r-5), and state that

+ -

femray =1,

then we find that the transformation
p(s, 1) = : N@O Pa) P(s) rl:(r) 0G-1) . (5)
J' u N(u) P(u) du
0
satisfies ()-(iii). In (5),
l -
() = 1 -l-j u N() $(x - u) du , (6)
0

and A is a constant. We consider this constant further below, It is trivial to show that
equation (5) satisfies constraints (ii) and (jii); the value of A must be large enough to give
P(x) > 0 for all x, which in turn is sufficient to satisfy (i). When ¢(s-r) is not a delta-

function at s =r, then the choice

A=I u N{u) du {7
0

is sufficient; for a delta-function P(x) involves point values rather than integrals, and A >
MAX{xN(x)} is necessary and sufficient.



AN EXAMPLE

In this section we consider a simple example for which p(s, ) can be calculated.
We are not here concerned with a time-varying activity distribution (which would be the
;ase in a real application or a dynamic moxiel), and choose the convenient exponential form

N(s) = Nke " **, (8)

where N(s) is the distribution of sexual activity in the population, N is the total population
size, and 1/k is the mean sexual activity. For the neighborhood preference functions ¢(s, 1),
we choose i

=g (9)

which becomes more sharply peaked as ¢ increases. Using equation (7) we have A = N/k
for this case, It is trivial to calculate the expression for P(x) and p(s,r) given equations (8)
and (9), and in Figures (1) 1o (10) we preseat some illustrative examples. In the figures,
we have graphed p(s,1) as a function of r for different values of s and for a variety of
values of ¢ and k, with A = N/k.

In Figs (1) to (3) we illustrate p(s1) for k= 0.1 and ¢ = 0.5, and 5 = 1.0, 5.0,
and10.0 respectively. In this case p(s,r) retains the sharply peaked form of ¢(s.r) except
when s is small, in which case p(s,r) is much smoother. This case corresponds to a very
narrow neighborhood function, with 50% of the area under ¢(s.r) lying in the interval r = s
t 2In2, and a large average activity: 1/k = 10.0 partners per unit time.

In Figs (4) 10 (6) we illustrate p(s,r) for k =0.5 and c = (.1, with the same range
of s values. In this case the neighborhood function is very broad, and contributes very little
to the shape of p(s,r), which always behaves as rN(r) (that is, like proportionate mixing).

In Figs (7) to (10) we illustrate the case k = 0.25 and ¢ = 1.0 for 5 = 1.0, 5.0 10.0,
and 20.0, respectively. Although here the neighborhood function is narrow, the mean
sexual activity is small and the interplay between N(r) and p{s,r) is complicated. The
essential form of p(s,r) is a mixture of proportionate and like-with-like mixing. At a small
s (less than 1/k, Fig (7)), p(s.1) is very much like ¢(s,r), but with a more pronounced tail.
As s is increases (Figs (8) to (10)), the component due to ¢(s,r) decreases, until by the time
s = 20.0 proportionate mixing is predominant.

We remark that the fidelity of the transformation p(s,r} to the underlying
neighborhood function ¢(s,1), given equations {8) and (9), depends upon the width of ¢,
the mean activty 1/k, and the value of s in relation to 1/k.

These numerical simulations have beea repeated using a “Gaussian® preference
function and the results have been consistent with those reported in this paper.

CONCLUSION

We have presented two new like-with-like mixing functions, one based on
proportionate mixing biased at m values of the ratio s/r, and the other based on 2
transformation of a general neighborhood function ¢(s,5). A simple example for a static
population ind :ates that the second mixing function behaves like the neighborhood
function, provided that the latter is sharply peaked and the mean activity in the population is
relatively high. In other cases proportionate mixing may be regained, with or without a
level of bias towards like-with-like preference. These results support some of the numerical
experiments of Hyman and Stanley (1988, and in press) regarding the role of the width
(variance) of the neighborhood preference function and its relationship to proportionate

mixing.
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Much work remains to be performed before we have a complete understanding of
the transformation method for an arbitrary neighborhood function, and the behavior of this
p(s.x) in a fully dynamic epidemiological model must be investigated. This work is in
progress and we hope to report on it in future publications. Finally, we speculate that if
estimates for N(s) (the activity distribution in the population) and §(s.r) (tendency for like-
with-like mixing) can be obtained from survey results, then examination of the
transformation p(s,x) of equation (5) may be able to tell us whether or not the like-with-like
preference is important in a given population, and thus whether a propartionate mixing
description is adequate, or 8 more complicated model is required.
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FIGURE CAPTIONS

Fig 1. Behavior of (a) ¢(s.,r) and (b) p(s,r) fork =01, c = 0.5, and s = 1.0,
Fig 2. Behavior of (a) ¢(s,r) and (b) p(s.) for k = 0.1, ¢ = 0.5, and s = 5.0,
Fig 3. Behavior of (8) ¢(s,r) and (b) p{s.,r) fork = 0.1, ¢ = 0.5, and 5 = 10.0.
Fig 4. Behavior of (a) $(3.x) and (b} p(s,t) for k -‘0.5. c=01,ands=1.0.
Fig 5. Behavior of (8) ¢(s.r) and (b} p(s,r) for k = 0.5,c = 0.1, and s = 5.0.
Fig 6. Behavior of (g) ¢(s,r) and (b) p(s,r) fork = 0.5, c = 0.1, and s = 10.0.
Fig 7. Behavior of (a) ¢{s,r) and (b) p(s,1) fork = 0.25,c = l.O‘and s=10

Fig 8. Behavior of (a) $/5.1) and (b) p{s.x} fork = 0.25, ¢ = 1.0, and s = 5.0.

Fig 9. Behavior of (1) ¢(s,r) and (b} p(s.t) for k = 0.25, c = 1.0, and 5 = 10.0.

Fig 10. Behavior of (2) ¢(s,r) and (b) p{s,r) fork = 0.25, ¢ = 1.0, and s = 10.0.
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