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The role of long periods of infectliousness in the dynamics of acquired
Immunodeficlency syndrome (AIDS)
by
Carlos Castillo-Chavez!, Kennath Cooke2, Wenzhang Huang3 and Simon A. Levinls4

Introduction

The discovery by Barre-Sinoussi's and Gallo's groups [1.2,3,4,5] that HIV (Human
Immunodeficiency Virus) is the eticlogical agent for AIDS has brought an unprecedented
amount of research on the biology of this retrovirus. At present, however, there is not enough
understanding on the consequences of ils transmission at the population level. Some routes of
HiV transmission are through sex (direct, anal, and oral}, through needle sharing, through
blood transtusions and through vertical transmission {(mother to child at birth). Important
epidemiological factors involved In its transmission Inciude: variable Infectivity [6,7.8], long
periods of infectiousness [9] of eight years or more and cofactors (e.g. whether or not the HIV
carrior is infected with another venereal disease). in addition, biclogical and socio-
demographic factors such as sex, age, economic status, race, sexual prefarance, geographical
araa of residence, and the natura of the social networks that are particular to each culture,
have to be taken into consideration if we are to understand the dynamics of HIV.

This epidemic already has raised many, some perhaps unsoivable, moral, practical,
economical and ethical questions reganding the possible implementation of a variety of
extreme intervention plans. These include random testing of the population, random testing of
specific ethnic groups and the possibility of putting (known) infected individuals in quarantine
{see [10] for a commaentary). The testing of the possible effectiveness of (such axtreme)
intervention plans may only make sense in a realistic mathematical framework. However, any
mathematical model has its faults. There is always a tradeoff betwean detall and tractability,
and there are inherent limits to predictabllity. Aithough mathematical models can suggest
possible consequences of intervention plans and assist in thinking about complex issues, we
strongly feel that the numerical and mathematical results obtained through their use should not
be used to circumvent the moral and ethical questions raised by this epidemic.

In this paper, we report on a series of models that we have developed recently and that
are exiensions of those of Anderson et al. [11,12). Our objective has bean to identify the role
played by the long period of infectiousness associated with HIV on the dynamics of sexualty
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transmitted HIV in homogeneous and heterogeneous populations. We present only a brief
description of these models and a partial list of our analytical results. Exiensions and proofs
of these resulls can be found in Castillo-Chavez et al. {13-14]. We note that some of our
results partially overlap with some of the results obtained simultaneously and independantly
by Biythe and Anderson [15).

. Single group models

In this section we describe two models with alternative distributions of the duration of
Infection. First we assume, as is commonly done in epidemiological modals, that Individuals
are transfered out of the infected class ut a constant rate, ar equivalently that the duration of
infection has a negative exponential distribution (Hethcote et al. [16]). For our second model,
we assume that all infected individuals remain infectious for a fixed length of time. This
approach allows us to compare the effact of the mean infectious period on the reproductive
number (i.e. the number of secondary Infections generated by a single infectious Individual In
a purely susceptibie population)} and theretore to understand better its role on the dynamics of
HIV in a homogeneous population,

la. Model with exponential removal

Wa divide the population ~sexually active male homosexuals with multiple partners— into five
groups: S (susceptibles) , I (infected that will develop "full-blown® AIDS), Y (infected that will
not develop full-blown AIDS), Z (former ¥ Individuals that are no longer sexually active), and A
(former | individuals that have developed “full-blown* AIDS). Note that A and Z are
cumulative classes and hence once individuals move into these classes they no longer enter
info the dynamics of the disease; however, for bookkeeping purposes, we keep them on
record. We do not include & latent class (i.e., those exposed individuals that are not yat
infactious). Furthermore, we assume that once an individual develops full-blown AIDS or
enters the Z class, he i3 no longer infectious because he has no saxual contacts. We also
assume that all infectad individuals become immediately infectious, and that thay stop being
sexually active or acquire AIDS with constant probabilities ayand o, per unit time; hence 1/a
denoles the average incubation period and 1/ay the average sexual jongevity of an individual.
In addition, we let A denote the recruitment rate into the susceptible class (defined to be those
individuals who are homo-sexually active); u, the natural mortality rate; d, the disease-Induced
mortality due to AIDS; p, that fraction of the susceptibles that become infectious and will go
into the AIDS class; and therafore (1-p}, the fraction of susceptible individuals that become
infectious and will not develop full blown AIDS. Following Anderson et. al. [11] and using
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Fig. 1: Flow diagram for a single group model with exponential removal, for details see the
toxt.

Figure 1, we anrive at the following simple epidemiological model with exponential removal:
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Here the function C{T] denotes the mean number of sexual partners an average individual has
per unit me, given that the population density is T, and A (a constant) denotes the
iransmission probability per partner. More specifically (as In Hyman and Stanlay [17]), A = | ¢
where | denotes the probability of infection per sexual contact and ¢ denotes the average
number of contacts per sexual partner. Hence, AC[T] denotes the probability of transmission
per unit time and AC[T]dt denotes the probability that & given sexual partner will transfer the
diseasa to a particular susceptible individual in the time dt. The factor W/T is the probability
that & contact of a susceptible with a randomly selected individual will be with an infectious
individual. Since individuals in classes A and Z are not sexually active, AC[T}SW/T denotes the
number of newly infected individuals per unit time. C{T] Is usually taken to be constant or a
sonstant times TS , 0<3< 1, depending on whether the actual number of sexual pariners
an individual has is independent of or dependent on population size. According to the
situation, a case can be made for either form, or for hybrids. For AIDS, it may be that C[T]
should be taken as proportional to T8 for 0 < § 5 1 for small populations, but treated as a
sonstant for large populations. This is because there is some evidence (Kingsley et al. (187}

that the probabiiity of saroconversion {inlection) increases with the number of infacted sexual
partners for those individuals that practice receptive anal sex. We use a ganeral functional
form for C[T] that includes both of the above choices as special cases in order 10 determine
how this assumption affects the conclusions. Anderson and May [12] have shown that in a
homogeneous (one-group) model, C[T] should not be the mean number of sexual pariners per
unit time, but rather should be larger because of the Important role played by highly active
individuals who are more likely to acquire infection and are also more likely to transmit it.
Unfortunately, there is evidence that AIDS is actually a progressive disease and that
most individuals that have besn infacted will go on to develop *full-blown® AIDS. If we accept
this view, then p is approximately equal to one and equations (1.3) and (1.5) are no longer
necessary. In the rest of this article we will report results only for the case p = 1: for the case

0<p<1 the reader Is referred to [13-14]. Observe that the dynamics of the classes S and | are
governed autonomously, and hence the system (1.1}, (1.2), {1.4) can be reduced to

ds b
(1.7) o5 = A-AC[TISz-48,

di ]
1.8 F=lacs-o9.
where T=S5 +1, 0=y +a,, and where we assume that C[T] satisfies the following properties:

(H) C{T]>0, {T/CT 20, and [T/C]" < 0.and CYT] >0 except for the special case when C{T] is a
constant {(here the primes denote the derlvatives with respect to ).

Note: the most imporiant class of functions that will satisfy these assumptions are those of the
formC[T]=k T 3, where 0 <8 <1 and k is a constant.
The system (t.7)-(1.8) aiways has the infection-free state

(1.9) (SW) = (ﬁm.

as an equilibrdum.
For this model, the reproductive number R, L.e. the number of secondary infections
produced by an inlectious individual in a purely susceptible population, is given by

(1.10) Reacihyl |
Ko

where we observe that 1/o denotes the mean infectious period. We note that it R > 1 there
exits a unique endemic equilibrium given impiicitly by the unique positive sciution to the
system:
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For these equilibria, we have established the following results:

The system (1.7)-(1.8) has a unique {positive) sndemic stale if and
only If the reproductive number sxceeds unity (R>1).The infection-
free state (1.9) Is globally asymptotically stable (relative to solutions
for which S{0) = 0, W{0) = 0) whenever the reproductive number R Is
less than unity (R<1) and It Is unstabie when R>1. In addition when R
crosses 1 (from below) there Is a transcritical blfurcation with the
endemic equlilbrium becoming globally stable.

ib. Models with constant Incubation period

As previously, we assume that all individuals become immediately infectious; hence with this
formutation the incubation pariod is again taken to be equal to the infectious period. For the |-
infected it is assumed to be constant (w) and for the Y-infected i Is assumed to be a constant <
equal to the average length of their sex-life. Therefore all infocted (assumed infectious)
individuals remain a fixed length of time {w) or (1) in their corresponding classes {(more general
forms of the model allow () and (1) to be distributad [13-14)). lp(t) and Vg(t} denote those
Individuals that were In either class | or Y at time t = 0, and are slill infectious; Zp(t), those
individuais that were in class Z at time t = 0, and are stll alive; and Apft), those individuals that
had already developed full-blown AIDS at time t = 0, and are still alive. We assume that Zo(t)
and Aglt) vanish for large encugh 1, L.e., in mathematical terms that they have compact
support. Since o denotes the infectious period and ¢ the average sex-lfe of an individual in
this population, we assume that lp{t) = Yo{t) = 0 for t> max(w,t). The function H(x) that
appears in the following is the Heaviside function, defined as being equal to 1 if x > 0 and zero
otherwise. The rast of the parameters are defined as in Saclion 1. Using these conventions,
and with the aid of Figure 2, '
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Flg. 2: Flow diagram for a single group modal with constant periods of infectiousness, for

details see the text.

we obtain the dynamical equations:
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where Wit) = I{t) + Y(t) . and T(1) = S(t) + W(t) and we assume that C{T] has the properties
indicated in Section I Obsarve that the classes A and Z are completely determined by the
classes S, Y, and 1. Hence we can restrict our analysis to the system given by {1.12)-{1.14). In
addition, the results of Miller [19] and Londen [20] show that the initial poputation composition
as expressed by, lo{t), Yoft), Zo(t), and Ag(t) will have a transient effect, but may be neglected
for targe enough t. The existence , uniqueness and positivity of solutions is established as
follows:

first, we specily an appropriate set of initial conditions by setting S(t) = r(t), I(1)
= p{t).Y(1) = m{t), on the interval [- max{w,t), 0). Moreover, in order to make
this systam consistent, we mus! have that lp{1) = p{t).Yo(t) = m(1) on the
interval [-max(ew,x), 0]. For this set of ordinary delay-differential equations
local existence and unigueness of solutions follows from standard results
(see Hale, [21}).

We now assuma that lp(t) 2 0, Yolt) 2 0 on [-max{w,t), 0], and will show
that the solutions remain nonnegative for t > 0 as long as they are defined.
That is, we wili show that the point (S(1), I{t), Y{t)) remains in the nonnegative
*orthant” in R3. To correspond to the biological context, we also assume that
S(1) > 0 on [-max{w,t), 0], that at least cne of the infectious classes is strictly
positive on a subinterval of [-max(w.1), 0], and that A > 0.

The trajectory cannot reach a point in the face S = 0, since i S = 0 then dS/dt
> 0 in a neighborhood by {1.12). Next wa show that a solution cannot reach



a face where either |= 0 or Y= 0. For,# t' isthe first imathat | mO(or Y =
0), then from (1.13)
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which is a contradiction. Thus afl variables am positive for t > 0, under the
stated conditions.

As before, we restricl our analysis to the case p = 1 {that is we model AIDS as a
progressive disease). In this case equation (1.14) is no longer relevant and the study of the
steady slates reducas to the fatlowing set of equations:
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For this system the Infection free-state (& » 0) is always an equllibrium, in éddlﬂon. the mean

-p.

1-
infectious period is given by m and therefore, the reproductive number R, is given by

For this model we have established the following results

The system (1.17)-(1.18) has a unique positive endemic state if and
only if the reproductive number exceeds unity (R>1). The Infection-
fres state ia globally asymptotically stable whenever the
reproductive number R Is less than unity (A<1) and it Is unstable
when RA=1. Furthermore, perlodic solutions do not arise when one
varles parameters from either the endemic state or the Infection-free
state.

For extensions of these results 1o the case 0<p<1 and to the case where distributed (rather
than constant) delays are used the reader is referred to [13-14].

1. Multigroup models

In this section wa dascribe twao multigroup models: the first assumas that individuals transfer
from tha infected class at a constant rate (L.e. that the duration of infection has a negative
exponential distribution); In the secend model we assume that all individuals remain infectious
for a fixad langth of timd. In both models we assume that AIDS is a progrehslva disease; we
relax this assumption in [13-14].

lla. Model with exponential removal

A modal with three subpopulations {§ = 1,2,3) with ditferent sexual and social practices Is
considered (in constructing this model, we follow the approach of Ross (22], and Hethcote and
Yorke [23]). Group 1 Includes those individuats whose sexual prefarences, degree of sexual
activity and soclal practices can facilitate the transmission of HIV. H we assume that the
rasarvoir of the HIV virus Is within the {sexually active) homosexual population, then Group 1
could include {sexually active) bisexuals, and perhaps a subgroup of the male and femaie
popuiation of prostitutes. Group 2 Includes those heterosexual individuals who have multiple
saxual partners, and Group 3 Inciudes those essentially monogamous individuals whose risk
of infection arises from social and sexual contact primarily with individuals of Group 2. This
classification is somewhat arbitrary, but it is given primarily for the purposa of illustration, We
denote by Sy, 1, and A;, the corresponding classes for group | as dafined In Section 1. In this
case C|[T] = ¢iCIT] (¢ appropriate constants for each group), Ay, A, & and p are defined as
betere but with a subindex to differentiate grotips.

Procaeding as in Section t and guided by Figures 1 and 3 , we anive at the foflowing

model.

(2.1 S0 a, -2z, cmos, s
(22) Tl A -2 cmos,0 58w,
(23) LN -A,c,cmmsa(t)%-ussm ,
(24) %- 2,6,CITIS, 1 ‘:"((:)’ ol, 1) .

(25) T e cmus,0 9 a0,

diy(0 1)
(2.6) 5=, 6 CITIOS, 0 - o0



whereo=p+a and T w45 +5,+5,+W Wal +|,.

+ Remark. Note that perhaps it would be more appropriate to uss a different T for the third group
(i.8. T2= 82 + S3 + Iz + I3}, and 10 use a constant instead of c3C[T]. However, we feel that
thesa changes wouki not affect the basic dynamics as they hava a minimal effect in the
reproductive number. Nevertheless, the use of a different C[T] for each group may lead to
complex dynamics. We are prasently working on further elaborations of these models and the
results will be published elsewere.

CORE GROUP 1

CORE GROUP 2 NONCORE: GROUP 3

Fig. 3: Three group network, with two core groups and one noncore group, for details see the
toxt.

This system always has the infection freg-state

A A A
(2.7) {5,528y lplg) = ‘T;L'Tf"ﬁi"m'o’ '
as an equilibrium. In addition the reproductive number is given by the following expression:
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which is the crucial parameter in the establishment of the following stability result.

The Infection-free state is locally asymptotically stable provided its
reproductive number R < 1, and Is unstable if R>1.

The stability analysis of endemic equilbria for a general C{T] has not yet baen tully resolved. In
this case thers may be more complicated dynamics. For further detaits on some partial resuilts
see [13-14].

iib. Model with constant incubation perlod
It we now modily the previous model by assuming that I-infected individuats remain

infected and infectious for a fixed length of time (w), and ignore translent dynamics (as in
Section Ib) we then arrive at the following limiting mode! (using Figures 2 and 3):

- dS; @)
@8)  —g— = A, -4,¢,CMS, O TL-u5,0 .
ds, (¢
en =0 20065,
ds, ¢ )

(2.10) —- = A ~ 4 G CTHNS, (M) ) -uS,(t) ,

Wit-a) -
@1) —-Ae.fcmms (L cma-m)s,u-mr;‘“ge )

@i2) =2 cmos,0 T~ CITiet - S, - «»%l’- " ut,0
dLt {t
2.13) —) - ‘c:,[cmms,m';—((:)- = CITI(t - ;) Syt - m l’ o "Y-ul0,

where T -I:,e-s‘1-':‘.2-0-8,+W.\I'\n'-l‘-c-l2 .

This system always has the infection free-siate

A A A
(2.13) (S:SaSphylply) = ‘T;"'Tf"ﬁl'“'°'°"

as an equilibrium. In addition the reproductive number is given by the following ekpression:



-
-Alllc, +Azlzczc A|+A;+A,;{1 .e""
A +A +A, B h

which is the crucial parameter in the astablishment of the following results:

The Infection-free state is locally asymplotically stable provided Its
reproductive number R < 1, and unstable it R » 1. Furthermore,
periodic solutions do not bifurcate trom this state when parameters
are varled.

The local stability analysis of endemic equilibria for a general C[T] has not yet been fully

resolved. For some partial results in this direction and for partial results for the case O<p<1 (l.e.

when AIDS Is not assumed to be a progresive disease), see [13-14].
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Legend for figures

Fig. 1: Flow diagram for & single group model with exponential removal, for details see tha text.
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Fig. 2; Flow diagram for a single group model with constant periods of infectiousness, for p l A H
details see the text. A —» S a tH
Fig. 3: Three group network, with two core groups and one noncore group, for details see the 1- Y > Z
text. p
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