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Abstract

In this study, we investigate asystematically the role playsd by the
teproductive numbar (the number of secondary infections generated by an
infectious individual in a population of suscaptibles) on single group
popularion models of the spread of HIV/AIDS. Our results for & single
group model strongly suggesc that if R<l, the dissase will die out; and if
R>)] the disease will persist regardless of initial condicions. Our
sxtsnsive (but incomplete) mathemstical snalyais and numerical simulations
support the conclusion that the reproductive nuaber R is a global
bifurcatien psrameter. The bifurcation that takes place as R is varied ias
a transcricical bifurcaticn; in other words, when R crosses 1 there is a
global cransfer of stabilicty from tha infection-fres state to the endemic
aquilibrium, and viceversa. These results do note depend en ths
distribution of times spent in the infectious categories (che survivorship
functiona). Furthermore, by keeping all the key staristice fixed, we can
COmpare L[Wwo extrewmes: exponential survivorship versus piecawise constant
survivorship (individuale remain infectious for a fixed length of time). By
choosing some realistic paramsters we can see (at least in these cases)
that the reproducriva numbers corresponding to thess two sxtreme cases do
not differ by more than 1BX whenever the two distributions have the ssme
mean. At any rate & forwula is provided that allow us to estimate the role
played by the survivorehip function (and hence the incubstion pericd) in
the global dynamice of HIV. The authors have obtained similar estimates
for multiple group modela.

These results strongly support the conclusion that single population
models of thie type are very robust and hence are good candidates as»
building blocks for the construction of multiple group wodels. Our
undsratanding of the dynamics of HIV in the context of mathematical models
for mulciple groups i{s critical to our understanding of the dynamics of HIV
in the presence of a highly heterogensous populstion.

The role of long incubation periads in the dynamics ot acquired
immunadeliclency syndrome (AIDS). Part 1: Single population model:
by Cartos Castillo-Chavez!-2, Kennelh Cooks3, Wenzhang Huang® and Simon A. Lavin2.3.

{Submitted J. Math. Biclogy).
introduction:

AIDS, perhaps the most feared disease of this decade, has been estimated to

at least 30% of those infected. By the middle of 1988 over 68,000 cases of people wil
AIDS (with over 38,000 deaths) have been reporiad in the United States alone; the
numbers in Africa and eisewhere tell an even more frightening story. However, despit
these slatistics, we do not have enough infarmation 1o predict the eventual magnitude
of this epidemic. Nevertheless, there has been Incrsasing recognition that the
dynamics will depend fundamentally on transmission within and among core
subgroups, and that complex epidemiological modais that account for this
heterogeneous mixing are essantial if one is 1o predict the time-course of the disease.
In this paper, we examine prototypes of such models, extending those discussed by
Anderson et al. (1988), Anderson and May (1987), and Pickering et al. {1986), and
oblain threshoid conditions for the maintenance of the diseasa. ,
Since the isolation and identification of this virus by Barre-Sinoussi et al. { 1983
and Gallo et al. (1984), Galio (1986,1987), and Wong-Staal and Gallo (1885), there
has been rapid progress in undarstanding the structure of the Human
Immunodeficiency Virus (HIV), the etiological agent of AIDS, and of the way it
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compromises the human immune system. Nonetheless, the epidemiology of the
disease is still not well understood. A modal geared fowards determining the dynamics
of AIDS must take info account, among other tactors, recruitment of new susceptibles,
high disease-related mortality, heterogeneous mixing (certain transfers among
individuals are more iikely than others), vertical transmission, a high number of
asymplomatic carviers, variable infectivity for a single carrier during the course of the
infection, and long time scales due to the incubation and infectious periods. This
situation makes it difficult to formulate retiable models. In fact. since many important
epidemiological parameters are not yet accurately known, prediction becomes an
extremely problematical and dangerous enterprise.

The purpose of this paper is to formulate basic modals for homogeneous
" populations, with the purpose of ilentifying the role played by the long period of
incubation; other papers will do the same for heterogeneous populations (see Castilio-
Chavez et al. 1988a, 1388b). The models can be used also as starting points for
guldodeomnardnmlaﬂonoﬂhedymmleoomw.andourmalyuw results may
provide useful comparisons in these future studies. The caluiations are confined to
appendices.

A detailed summary of the factors thought to be involved in the transmission of
HIV can be found in the preliminary study of Anderson et al. {1988) or in the recent
work of Hyman and Staniey (1988), and in the exiensive references cited in those
Papers. We will consider primarily sexual transmission of AIDS, and will emphasize
the role of three lepldomlolouieal parameters: the lengths of the latent period, the
infactious period, and the incubation period. The latent perlod is the time from the
acquisition of infaction to the time when the host bocome‘_i.s lﬂl'owous. The Infactious
period is the time during which the infected Individual is capable of transmitting the
disease. The Incubation period is the ime interval between the point of acquisition
of infection and the appearance of symptoms. As Anderson et al. {1988), and Anderson

and May (1887) show, knowledge of these periods s critical to predicting the dynamics

of the disease.
AIDS appears to have a short latent period, long incubation and infectious

pen‘ods.andavadabbuansnﬂsdonmlo.mommﬂonolmemempododlslhougmto :

be a few days lo a few weeks { Anderson et al. 1988, Anderson and May 1988}, and
while the duration of the infectious perod Is not yet known, those individuals that
davelop full-blown AIDS have an average incubation period estimated varously at 35-
47 months (Pickering et al. 1986), 66 months (Anderson ef al. 1987), and as high as 86
months (Meddley et al. 1987), This estimate is continually being revised as information
and experience accumulates. However, aven the most conservative estimate suggests

that it may be reasonable to approximate the Infectious period by the incubation pariod; -

that is, to assume a negligible latent period. Pickering et al (1'986) stress that the ability
1o transmit HIV is not constant, as individuals are most infectious 3-16 months
following exposure, and recent studies (Francis et al. 1984, Suluhuddin et al. 1984,
Lange et al. 1986) report the existence of two peaks of lnfoduoumesa. one taking place
a faw woeks after exposure and the other before the onset of "uli-blown® AIDS. The
modeis in this study have been modified 10 take vasiable infactivity into consideration,
with the Intention of looking at how variable infectivity affects the conclusions in this
paper (see Castill-Chavez et al. 1988¢c).

A parameter of critical importance.in the dynamics of a disease is its
reproductive number; that is, the number of secondary infections generated by an
infectious individual in a population of susceptibies. For our single population model,

the reproductive numbar is given by

A=ACMD,




.where A denotes the probability of transmission per partner, C(T) denotes the mean
number of sexual parnners an average individual has per unit time given that the
population density is T, and D denotes the death-adjusted mean Inlectious period. For
muitiple group populations the reproductive number is given by an expression of the

form

Ry= 2; “R.
where R, denotes the reproductive number of group | and w; is an appropriate weight
factor (see Castii-Chavez et al. 1988a, 1988b).

k in this study, we investigate systematically the role piayed by the reproductive
number on single group poputations; in Castillo-Chavez et al. (1888a,1998b) we study
its role for multiple group populations. Our resulis for a single group model strongly
suggest that if R <1, the disease will die out; and if R >1 the disease will persist
regardlass of initial conditions. Qur extensive (but incompiete) mathematical analysis
and numerical simulations support the conclusion that the reproductive number R is a
global bifurcation parameter. The bifurcation that takes place as R is varied is &
transcritical bifurcation; in other words, when R crosses 1 there is a global transfer of
stability from the infection-free s1ale to the endemic equilibrium, and viceversa. These
results do not depend on the distribution of times spent in the infectious categories (the
survivorship functions). Furthermore, by keeping all the key statistics fixed, we can
compare two exirames: exponential survivorshlp varsus piecewise constant
survivorship {individuals remain infectious for a fixed kength of time). By choosing some
realistic parameters we can sae (at least in these cases) that the reproductive numbers
corresponding to these two extreme cases do not differ by more than 18% whenaver
the two distributions have the same mean. At any rate a formula is provided that allow
us to estimate the role piayed by the survivorhip function {and hence the incubation

period) in the global dynamics of HIV. Similar estimates can aiso be obtained for our
mulliple group models (see Castillo-Chavez et al. 1988b),

These results strongly support the conclusion that single population models of
this type are very robust and hence are good candidates (our “idealized” pendulums)
for the construction of mulliple group models. Our understanding of the dynamics of HIV
in the context of mathematical modals for mulliple groups is critical to our
understanding of the dynamics of HIV in the presence of a highly helerogensous
population (see Castitlk-Chavez et al. 1988a, 1988b). '

We must be aware, however, that tha incorporation of a large number of groups
may reduce prediclive capability because of preblams of parameter astimation and
error propagation. We suggest the use of models with as few groups as possible as a
compromise, with thres groups the minimum needed to study realistically the dynamics
of HIV in hatarogeneous populations {see Castilio-Chavez, et al. 1988a, 1988b).

- This paper is organized as foliows: Section 1 introduces an epidemiological
model that considers a gingle homogeneously-mixed population with constant rates of
movemant out of the infectious classes into the AlDS class or into the sexually-inactive
category. This is a coarsq first approximation useful as a starting point and as a
telorence model for comparson. This model is a variant and a generalization of those
found in Anderson et al. (1988) and Anderson and May (1987). Section 1 assumes that
tha duration of infectiousness cbeys a negative exponantial distribution. In Section 2
we generalize this by assuming that the duration of infectiousness obeys an arbitrary
distribution. We establish a threshold criterion for maintenance of the disease and
analyze the stability properties of the endemic and infection-free states, and determine,
when possible, the necessary and sufficiant conditions tor pers!stence of HIV. In
Section 3, we compare brielly the consequences of assuming different distribution
functions. Appendices A, B, C, and D collect some of the mathamatical details.



Section 1. Constant removal rates

Our approach is ta begin with the simplest model, and then add refinements as
fecessary in arder to explore the effects of particular factors. Hence we start with a
simple epidemic model that will aliow us to compare easily the elfects of long
incubation periods. We consider a single homosexual population and concentrate on
studying the dynamics of AIDS within this population. We divide this papulation into five
classes. S denotes the number of susceptible individuals; | those Infactious
individuals that will go on to develop AIDS; Y those Infectious individuals that will not
davelop full-blown AIDS; Z those former Y Individuats that are no longer sexuvally
active; and A those former | individuals that have develaped full-blown AIDS {see Fig.
1). A and Z are cumulative classes; once individuals enter these classes, they no
longer enter into the dynamics of the disease. Howaever, In order 10 be able to compute
the number of AIDS cases, we keep the A and Z individuals on record. We do not
include a latent class (i.e., those exposed individuals that are not yet Infectious),

. because tha time spent in that clags is 80 short. Furthermors, we assume that once an
Individual develops fill-blown AIDS, he is not infectious because he has no sexual
contacts. We also assume that all infectad individuals become Immediately Infectious,
and that they become sexually inactive or acquire AIDS with constant probabiities
and g, (respectively) per unit time; hence /ey denotes the average incubation period
and 1/ay denotes the average sexual-Fe expectancy.

Let A denote the recruitment rate into the susceptible class (defined to be those
individuals who are soxually active); y, tha natura) mortality rate; d, the disease-
induced mortality due 10 AlDS; p, that fraction of the suscaptibles that bacome
infectious and will go into the AIDS class: and therefore (1 - p) the fraction of
susceplible individuals that do not. Following Anderson et al. {1988), May and

Anderson {1987), and using Figure 1, we amive at the following simpile epidamiological

mode| with exponential removat:

(1.1) ﬂﬁiﬂ-:\-xcrrﬁ»-s‘}’—;‘;f‘l-usm.

12 Sgh=rocam - @ e,
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" wheare

{16) Wa=l+YandT=W4S.

Hare, the function C(T) denotes the mean number of sexual partners an average
indiividual has per unit time, given that the population density is T, and A (a constant)
denotes the transmission probability per pariner. We may think of A as aproduct A=i¢
(see Hyman and Stanlay 1888) where ¢ is the average number of contacts per sexual

partner and | s the probability of infection from a sexual contact when the latter is
infected. The parameter | is thus a biological one, whereas ¢ is a psychological or

sociological one. Kingstey et al. (1987) have presanted evidencé that the probability of
seroconversion {infection) increases with the number of infected sexual partners. With
these observations, we then note that AC(T) gives the probability of transmission per
unit time and AC(T)dt the probability that a given sexual _pagnor will transter the

disease to a paricular susceptible individual in the time dt.
The factor W/T is the probabiiity thet the contact of a susceptible with a randomly-

selected individual will be with an infectious individual. Since individuals In classes A



and Z are not sexually active, AC(T)SW/T denctes the number of newly-infected
individuals per unit time. C(T) is usually assumed to be ofthe foomc T8 ,0558< 1,
where c is a constant {C{T) = ¢ if the aciual number of sexual partners per Individual is
independant of population size). For AIDS, & may well be that C(T} = ¢ Is more
appropdatotorla:ﬁopommu.mcm-cﬂ ,0<8< 1 for small ones. Hance, a
_ case can be made for either form, or for hybrids. We use a general functional form for
C(T) in order to detenmine how this assumption alfects the conclusions. Howevar, it is
imporntant to notice, as Andarson and May (1987} have shown, that in a homogenaous
{one-group) model, C(T) should not be the mean aumber of sexual partners per unit
time, but rather shoukd be larger because of the imponant role played by highly active
individuals who are more likely lo acquire infection and are also more kely 1o transmil
it. We note that some of our results partially overlap with and generalize those obtained
simultaneously and independently by Blythe and Anderson (1888). Three cases of the
system (1.1)-(1.6) are to be considered:

Case 1: p »1. This, unfortunately, may be the most realistic as evidence
accumulates that AIDS is a progressive disease. it now seems highly probable that
" most of the infectad individuals will eventually develop “full-blown® AIDS {unless they
die first from other causes). in this case, the Y and Z classes do not exist, and we may
work only with equations (1.1), (1.2), (1.4) and with W= |, TuW + S,

Case2:0<p<i,q; = ay. Inthis case, we may interpret | as the class of
infected individuals who develop “full-blown® AIDS and Y as the class ol individuals
who develop ARCS (AIDS-felated complex). We assume that individuals with either
AIDS or ARCS are no longer sexually active, 8a that T = W + S is the total number of

soxually-active individuals. .
Case3:0<p<1, ay » ay . Wo may now intorpret | as the class of individuals

who spend a mean time 1/ infected and then develop ALDS. The class Y consists of
individuals who remain infective for a long time 1/, and then withdraw from the

sexually active group inlo a group that does not develop AIDS symploms. In this
siluation presumably ay > 0y . An aemative interpretation of the Z class s obtained |
assuming that an individual moves inlo this group after testing seropositive, and then
relrains from sexual intercourse. In this case we may have oj <ay . Thus, itls
appropriate again 10 take T = W + § 10 be tha number of sexually-active individuals.

The rest ol this section, as well as some ol the appendices, will describe
mathematical resulls pertaining to these three cases. We now begin our analysis of th
system (1.1)-(1.6) by making the following assumptions conceming C(T):

(H,) cm»>o0, Cc'Mm20,

C'(T) > 0, unless C(T) is constant,

ayzo, (1) "so,
where the prime denoias the derivative with respect 1o T. An important class of
functions that will galisfy these assumptions is C{T) = ¢ TS, where 0 < 8 st1andcisa
constant. Observe thal the dynamics of S, Y, and | are governed independently of A
and Z; therefora, it will suffice to analyze (1.1), (1.2), (1.3) with (1.6). It is not 100 difficult
1o show that the system Is well-posed, in the sense that if $(0) 2 0, I(0) 2 0, Y(0) 2 O the
the solution exists and 5{t} 2 0, I{t} 2 0, Y(0) 2 € for t 2 0 (see Castillo-Chavez et al.
1988a).

The-system (1.1)-(1.3) always has the equilibrium

(1.7) S.LY) = (f. 0,0},

and also, under certain assumplions (discussed later) has g unique endemic

equilibrium.
The stability of the disease-free equilibrium (1.7) is determined by the parameter
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(1.8) ReyE + 1-B)cety,
g, oy (]

- the basic reproductive number. Here o, = a, + 1, ¢y = ay + |t, and R denotes the
number of secondary infections generated by a single infectious individual in a
population of susceptibles. Note that R s given by the product of three key
epidemiological parameters: A (the probability of transmission per partner), C{A/) (the

mean number of sexual pariners an average susceptible individual has per unit time

'1'0;8) {the overall death-

given that everybody Is susceptible), and D = (-s— +
[ \4

adjusted mean infectious perod). Further, D = pD, + {1 - pJdy, where D, and Dy denote
the death-adjusted mean infectious periods, 1/0,and 1/ay, corresponding to the | and Y
classas. This key parameter, R =« AC{A/1} D, allows us 10 establish our first result:

Theorem 1. If R < 1 , then the equilibrium (ﬁ*. 0, 0) of the system{1.1)-(1.5) is

globally asymptotically stable.

.-

This theorem asserts that any solution of (1.1)-{1.3) {S(t), 1), Y(1}} with
$(0) 20,1{0) 20, Y{0) 2 0 tands 10 (A4, 0, 0) 88t — + e, Thus the
condition R < 1 Is sufficient to guarantee that the disease will eventually

die out of the population.

Wa have shown also that:

Theorem 2. If R > 1, there is a unique endemic equifibrium (S°.1°,Y*),
which is locally asymptotically stable, and the infection-free state

(ﬁ. 0, 0) is unstable.

in Appendix A, wa callect the proofs of these results. In Appendix B. we show
that when oy = ay or p =1, and R > 1, the endemic equilibdum is actually globally
stable. Furthermore, preliminary simulations suggest that even In the case 0 <p < 1, the
endemic state Is globally asymplotically stable provided that R > 1. In mathematical
terms, we have @ transcritical bifurcation.

Combining the resuls of this section and Appendices A and B, we can describe
the situation as follows:

The infection-free state of sysiem (1.1)-(1.3) Is globally
asymptotically stable when R < 1 and unstable f R > 1. When
R » 1, this system has a unique locally asymptotically stable

. endemic equillbrium. In others words, there is a transfer of
stability to the endemic state as R crosses unity. Furthermore,
when o =gy, that Is when both death-adjusted mean
infectious perlods agree, and R >1, then the endemic
equlilibrium. is globally asymptotically stable.

The reproductive number R provides us with important information; we note that
R increasaes proportionately 1o the transmission probability and to the average number
of sexual pariners, and may increase in proportion to the ralé of recruitment of
Individuals to the susceptible class {through C(T)). Furtharmore, R is an increasing

1
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function of the mean infectious period D, and may be a decreasing function of the
mortality rate (depending on the functional expression for C(T)).

Section 2. Distributed delay model

Exponenlial survival in the | and Y classes corrasponds 1o the requirament that
the removal rate from {he | class (by the development of full-blown AIDS symptoms) into
the A class is independent of the length of tima that an individual has been infected.
Although the distribution of times betwaen infection and the onset of clinical AIDS is
c;nlyparﬁaﬂthn.ilappomtmm available data that the rate of conversion from the |
t01he A class, or the Y 1o the Z class, has a more general distribution (see Anderson et

- al. 1887; Blythe and Anderson 1988). Therelore, in order to improve the model of
‘Section 1 (a first approximation), we need to change fram constant o variable removal
rates. '

This section introduces a single population model that incorporaies variable
periods of infectiousness. By assuming that individuals become immediately infectious
{that is, by neglacting the latent period), we can concentrate on studying the effects of
arbitrarily distributed infectious periods and arbitrasily distributed periods of sexual
activity (for infectious | class and the life-long infectious Y class respectively) in the
dynamics of HIV. We establish a threshold criterion for the maintenance of the diseasa
and analyze to some exient the stability properties of the endemic and infection-free
states. In Section 3, we compare brietly the consequencas of assuming different
distribution functions. Invesligations of this type, but for specific distributions, have been
carried out numericaliy, independantly and simultangously b_y Biythe and Anderson
(1988). ’

Following our earlier approach, we divide our population into the previously
defined classes: §, 1, Y, 2, and A. The paramaters A =i¢, A, L, d, and p have the same

meaning as Section 1. The model of Section 1 is now modified by introducing two
functions, P(s) and P(s) (see Fig. 2), which represent the proportion of those

individuals that become I- or Y-infeclive at time § and that, if alive, are siill infectious a
timet+s; thalis.ﬂwysqucasinhaious.SlncoP,andP,msquomﬂpml\eﬁor

1haymmmogaﬂvcmdmmm.-MP,(O)-P,{O)-l.WOusummmrm

j:P,(s)ds < o, IPv(s)ds<-,
o o

" and thus, - P',(x) and - P'V(x) are the rates of removat of individuals from classes | anc

Y into classes A and Z, x time unils after infection.

Defining C(T), W, and T as in Section 1, we have that the aumber of new
infections accurring at time x is A C(T(x)) S{x) W(x)/T(x), and therefore the rate of
change of the susceptible class is given by the expression:

wi1)

@n .4 -acay S0 4 800

with

1
o [rcam sm%;l o % p t-x) e
o .

ropresenting the number of individuals who have been infected from times 0 to t and
are still in class | (with a similar expression for class Y). The factor exp{- (1-x)) takes
account of removals due to deaths by natural causes (that is, in this case, not Hiv). o
lolt) and Yp(t} denate those individuals that were in either class | or Y at time t = 0, and
are still infactious, then the total number of |- and Y-infectives at time  are given by

1
@2 W =,0+ e [acaumsnFa e U E-gax
0



14

@3) YO = Yo) + (1-p) I AC(TE) S0y ) 0" Py - xpax

whare Iy(t} and Yoft) are assumed to have compact support (ihat is, they vanish for

large enough t).
The expression for A{t) is the sum of three terms. The first is

“@edt
Age “* Y, whore A, = A(0), and represents those who had full-blown AIDS at time
zero and are still alive. The second is the term A, (1), representing those Initially in class
twho have moved inlo class A and are still alive at time t. We assume that A, (1)

.approaches zero as t approaches infinity. Finally, the term representing those | infected
after ime t=0 is given by

T(x)

[T

([ remoysp R g 10 [ p! e BTN gy g
0

where - P, (1 - x), denotes the rate of removal from the class | at time t or (% - x} units
after infection and, themiore.

a9 AQ - pffj'xcrr(xnsm‘.’r"("‘,’ R O N P L PP

+ Aoe."“.d“ + Aam

The corresponding iaxprosslon for the Z-class Is given by

2.5)Z() = (1 - p) 10{1‘(:))5(::) W g ut0 (o' e RO ax e
T(x) Y

c 708N L 2.
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System (2.1)-(2.5) is a system of nonlinear integral equations, and hence the
standard rasufts on well-posednass for these systems as found in Miller (1971)
guaraniee the existence and uniqueness of sokitions as well as thair continuous
dependence on parameters. The proof of positivity is the same as that given in
Castillo-Chavez (1988a) and therelore is omitied.

Observe that the dynamics of the classes S, Y, and ! are governed
autonomously, and hence wa can resirct our analysis to the system (2.1}-(2.3}. The
basic reproductive numbser in this case is given by

@6) R =10l [(pF 00 + (1-pP (e " ax
0 .

whare

[teP@ + (-pP 17" ax
0

denotes the death-adjusted mean infectious period D. In fact, it Py(x} = o~ ax, Py{x) =

% * _ then (2.6) reduces to (1.8). Note that D = p D, + (1 - p)Dy , where D, =

_[ Py(se ™" ds and Dys= _[Py (s)e ™ "ds denotes the mean infectious period of
[}

classes | and Y rospectively.

The system (2.1)-(2.3) with },{t} = Y,(t) = 0 alwys has the equilibrium

2.7) {S.1.Y) = (f:. 0,0).



but otherwise does not have a constant solution. Since ly(th and Y, (1) are zero lor large
1, it could be expected that (A, 0, 0) is an aftracior or "asymplotic equikbrium® as t — +
==, Under appropriate condilions. The following theorems show that the reproductive
number R determines whether (2.7) is an attractor or not.

Theotem 3. If R < 1 , then the infection-free state (&, 0, 0) of the
"

Kmiting system
(2.12.3) is a giobal attractor; that is, im (S(1), Kt), Y(1)) ~ (A 0,0) for
T
any

positive solution of system (2.1)-(2.3).

Theorem 4. If R > 1, then the intection-free state of thesystem (2.1)-(2.3)
is weakly unstable, thal is there exists a constant WP >0, such that any

positive solution (S(t), I{t), Y{t)}, of (2.1)-(2.3)
satisfies fim sup [I{t) + Y{t)] 2 W,
Tt

In other words, if R > 1, then the disease-free state (2.7) cannot be an atiractor for
any pasitive solution. In fact, every sokttion has approximately W* infectives (this W* is
tha same as that in the statement of Theorem 5 below) , or mare, for a sequence of
times t tending 10 + «. It is then natural to ask wether S(t), I(t), Y(1). approach nonzero
constants as t — + e, when R > 1. if 50, then it is known (see Miller (1971)} that these
constants must satisfy the limiting system associated with {2.1)-(2.3), which is given by

the following set of aquations:

(2.8) %S- = A ~LC(T() S T(‘!;’ LS. - -

16,

29  Wep j AC(T() S Tt 7P, - ax,

(2.10) Y()) = (1-p) jlcﬂ(x)) St ot 0" Py -x) ax,
lllhaequaﬂonslorlandYa:eaddod weo have

@.11) Wit} = Ixcmxnsm ‘;‘;‘x’;’ o ¢ Npagax,
where

P(x) = pPy{x) + (1-p) Py (x}.

The limiting system (2.8)-(2.11) is an aulonomous system for which wo have

- oastablished the following resuit:

Theorem &. if R > 1, than the limiting system {2.8)-(2.11) has & unique

positive equilibrium (S°, W"} that is locaily asymptotically stabla (which 1

may call the endemic equilibrium).

Theorem § indicates that there s a switch of stabiiity trom (A/u, 0) to (S, W™} as

R crosses ona. We would also expect that the asymptotic dynamics of system (2.1)-(2.
and the kmiting system (2.8)-(2.11} agree. While this is not a proven fact, we believe
thal is a reasonable conjecture. An auornatp“:"bm parhaps not entiraly satisfactory
approach can be found in Hethcote et al. (1981). The proots of these resulls can be

found in Appandicas C and D.

Section 3. Discussion
vood
In this paper we have constructed a series of models with the purpose of
determining the role of long incubation periods of the HIV virus in a single population.



The lack of enough information to determine the parameters needed for these models
makes prediction Impossible. However, much useful information can be obtained from
these results. First of all, the long incubation periods do not result in periodic oulbreaks.
The disease either dies out or it remains endemic. The computations of the
reproductive numbers allow us to understand the role of the different parameters in the
maintenance or eradication of HIV. Behavior modification naturally plays a very
important role, and the reproductive numbers help us to quantify the effects of behavior
modification. Furthermore, the effects of differant distributions for the incubation period

_can be estimated. Here, for example, we compare two extrames. First we assume that
Pi)= o “*, and Px)= 8 ™ * . The reproductive number, given by

R =acd [[pP (0 + (1-p Py 10" o,
e

now reduces io

1
T

Ry = AG(A) (p—— + (1-p) ).
e ay

if we take the other extreme and assume that Py(x} = H{x) - H(x - @) , Py{x) = H{x} - H{x -

1) . where H(x) denotes the Heaviside function {the fact that P{x} and P{x} are not

continuously ditferentiable is just a technical nuisance), then
“he ut

1-¢ f-0
1-p) ————}.
+ (1-p) m ]

R, =acd (e

Hence, we have that

Pl——) + (1-p) (——)
L T i)

y oo

BTy

1-9 1-@
m )+ {(1-p)( m

p(

Therefore if we take p = .5, w = 10 years (= Va),t=30years(m Tfay), (14) = 30
yoars, then R, /R, & .82. I, for example, w =6 years, T = 30 years (= Vo), (171) = 30

years, then

f-
R, £t

- = -
Rop(r-e) s prepiit-eh
Hence 1(1/3), the ratio of the reproductive numbers is approximately 0.81. A value of p
= 2/3 gives a ratio of about 0.84, a value of p = 89 gives a ratio of about 0.88, and a
value of p =1 gives a ratio of about 0.92. In general, note that

pD,. + {1-p)D
o) = Du : 1,Y
PDy, + (1-p) D,y

whare the Indices differentiate between the death-adjusted mean infectious periods for
modal 1 (exponemiﬂ ramoval) and modal 2 (fixed period of infectiousness). We further

~ observe that (p) is an increasing function of p provided that

"*’.:' 1 - ¥e
>

u+-|- I - @ k"
L0

which holds whenever t > m. Hance whenever 1 > , i(p) satisfias

—l —
Dy B+ Dy __#+o
f(0) m e = sip)st(l) me—— = L0<ps1.
O = By = T amns SIS =g 2= T 0P
T} n

Thus, even though the assumption of simple exponential removal
underestimates the reproductive number, the above expression gives us a way fo
estimate the rolative error relativeily as the abova two distrbutions represent the two
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axiremes. Hance, under the assumptions of the model, the "true” value of R lies
 somewhare in between. in addition, for & valua p near unity {unfortunately not out of

the realm of possibility), the qualitative dynamics predicted by these models is not very
diftarant. Furthermore, sinca the qualitative dynamics are governed largely by their
reproductive numbers, and thelr values are not very different (at least for the realistic
paramaeters chosen in the above examples), the etfect of changing key parameters
(once these are determined with higher accuracy) can be assessed readily. Note,
howevaer, that the transient dynamics could be quite different; this is partially due to the
dimensionality of the system (inite vs infinite). If the infinite-dimensional model (that is
" the distributed delay model) is more realistic, then it will be extremely difficult to predict
the transient dynamics; that is, short-lemm predictions become more difficult.

Finally, we -.ote that in the models introduced here we have not only assumed
homogeneous mixing (but see Castillo-Chavez at al. 1988a, 1988b), but also that an
individual once infected is always equally infectious. Since there is some evidence that
HIV camiers are not equally infectious (see Francis of al. 1984, Suluhuddin et al.- 1984,
Lange et al. 1986}, then the relaxing of this assumption bacomes of importance in ordar
to estimate the effact of variable infectiousness in the reproductive number and
therefore in the dynamics of HIV. Preliminary analysis suggests that variable
infectiousnes does not have a significant effect on the qualitative dynamics of the
distributed delay maodel, but this analysis is not yet complete {(see Caslillo-Chavez et al.

1988c¢).

Appendix A
Stability Results for the system (1.1)<(1.5)

In this appendix we collect the proofs of Theorems 1 and 2 of Section 1, We w
repeat some statements to increase the clarity of the exposition.

Theorem 1. If R < 1, then the equilibrium (:}.0. 0} of the system(1.1)-{1.5}

globally asympioticaily stabla.

Proof of theorem 1.
Let Q = [0, =}3 be the nonnagative orthant in R3. As we remarked above, if

(So.lo.Yo) is in Q then (S{t), (1), Y(1))isIn Q fort 20 and any p, 0 < p $1. From (1.1}, il
follows that lim sup S(t) SA Hence for the discussion of tha asymptotic behavior ol

1= +m
solutions as t -+ + = we can {without loss of generality) assume that S{t) s Ay when
2 0. Furthermore, since C(TY/T is a nonincreasing function of T, and C(T) is
nondecreasing, then

cam sy ¢ CEM) SH
T0 s S o

0] Y(l)
o, a\,

gi(t) P 1-p.. COM)SH)
il Lo }a 0] 11W()

it wa now let f(t) »— . then

i
st + —-—ch(A} -uwm
9 oy .
-(1-R)W(t) s-(1-Fl)ol(t}.
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whare ¢ = min {g, , ay} . Theralona 1{t) -+ 0 ast— + e, hence i(1) — 0, Y(t) = 0, and
C(TISWIT - Gast — + «. From (1.1) it foliows that S(t) ~+AjLast -» + ==, cOompleting
the proof.

When R > 1, the disease free equilibrium is unstable (Theorem 1); and
futhermore, there exists a unique positiva endemic equilibrium (S".1.Y"). To establish
this tast result we begin with the following preliminary result;

Lemma At. Suppose that B,, B, and H are positive numbers, and that
C{A/n) > H. Then thera is a unique number I" > O such that

C‘ﬂ'”."’fﬁg'.”f"’; ) “HA-B1+p1), A.p, (>0.

Proof. Let M(T) = C(TVT whenevar T> 0 , and et g(1) = M(A/: - B,1 + B,1)(Ak - B, ),
with 0 < 15 A/(uf,} . Observe that g(0) = G(A/s) > H and g{A/(up,)) = 0. Since

my G BAMW - B M) + uMw), u = A-prep
Note that for T > 0, we have that
(A3) MM >0, MM s0, (TMM)' > 0.

Therefore (A2) implies that g(l) is a strictly decreasing function of | on the intarval
{0.A/(uf, )], and hence thera is a unique I’ in the open interval (0, Af(uP,)) such that g{I)

= Hwith Au- B,1"> 0.

Corollary A4. If R > 1, then there is a unique positive endemic
equilibdum {S°1",Y).

Proof. In order to prove the existence of such oquilibrium, we lot
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- —l L L - !
B, puol.B,-pD'.andH-m.Usmgmefaaxhat By >0, B,>0,and that R I

= A C{A/u} D, we have that C(A/) = R{DA) > H; hence by Lemmat » there is a unique I’
in (0, A/(1B,)) such that

(AS) M(ASL - Byl" + B,0) (AN - B, 1) = H and A - B, > 0.
Now lat . .

Y L Y L ) el Y a2y,
{AS8) 8 m ppD," Y (pD| N, WalsY pDIl

Since I' < A/up, = ApD,,then $' > 0, and since DApD,} > 1, then Y" > 0. Therafore

using (A6) we findthat T » S + W = ﬁs - B + B,1 , which in combination

with (A5) implies that M (T')S" = H. Finally, it can be easily checked that (S' 1", Y') is
a positive equilibrium of (1.1)-(1.3).

To show uniqueness we proceed by lotting (5S4, 1*,Y#) denote a positive
aquilibium. From (1.2), (1.3), we get [{1 - PV D] i* = [p /Dy ] Y*, and ADM(TA)SAWA »
I* 4+ Y4 = WA,

Using

N I ST -
{A7) M(T*)S* = H D" {pD. | Rl PO,

whare W =4 + YA, T4 =S4+ WA, and (1.1), it follows that

1 D oy 1
LR g A, T = 8% ¢ —— |* ,and M(T*) S* = H = —— .
-l puD, *pD, Ly D

|
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Since b < 0 whenever R > 1, the disease-lree equilibrium is unstable. For the endem
equilibrium (S°1.Y"), the characteristic equation is the cubic det (@-dmra 224

Henca, by Lemma 1, we have that I* = I, and therefore Y* = Y and S* = §° .

The-nature of the stability of the endemic equilibrium Is resoived in the following
theorem:

Theorem 2. if R > 1, then there is a unique endemic equilibrium
(§*.1%.Y*) which is locally asympioticatly stable, and the equilibrium

(ﬁ‘. 0, 0) is unstable.

Proot of Theorem 2. The Jacobian matrix of the functions on the right side of (1.1)-

(1.3) s
ETORAN
s -
“AW(M+SM)-p -2 5(M+ WM) ' -AS(M+WMY)
PAW(M + SM') PAS(M+WM')-q, PASM +WM')
(1-p) AW (M +SM)) (1-p)ASM+WM) (1-p)A S(M + WM))
—— . e A

where M’ denoles dM(TV/T. By evaluating this Jacobian at the disease-fres
equilibrium, that is, when W = 0, S = A/, and therefore SM = (A/) M(A/n)) = ClAsp) , we

arrive at the corresponding characteristic equalion:
dot{zt-J)=(z + p)z’ +8z + b) =0, where

a=a+ oy +ACA) . b= g0, - 402 § LB)] ug0,(1-).
M t g oy

azz+a,.ByleuinaW'-l'«a-Y'.'l"-S'+W’.M'-M(‘I").andM"-(dMldT)(‘l").wo
obtain the following expressions for a,, &,, a,, in which we have supressed the
asterisks in order to simptify the typography.

1 S 9.1
&m0 +toy —=+ U+ AWM [p—+ (1 -p) —] -+ jt + AWM
1t 1 D o_l U? D

>+ (1-pt)t e 50,
9 Ty
8 = g (o +0y) + (9 +a,) A (WM+SWM") +0,0,

“[#+q,(1-p) +0y p] 2 (SM+ SWM')

= A(0;+ Gy) (WM + SWM) +t {0+ 0, -1 SM) - p A SWM'
-[0,(1-p) + 6, p)ASWM',

where we have used the fact that
00y = {6, (1-p) + o, p]ASM = 0.

Since M' $0 and o, + G, - ASM > 0, we have that
8, > A (G,+0y) (WM + SWM) - [0, (1 - p) + po, ] A SWM' ,
and that

a, -lola‘,MM+SWM')+u[aluv - {1 ‘p)a'+poY)A.SM]

- 1{(1-p) o+ Yo I A SWM's

= 0,0y A (WM + SWM') - A [0,(1-p) +p 6,1 SWM'>0.



Using these relations and
Sy % 9
p " +(1 -Pl;;l-b-(ali- o) > g0, ,

One can show that a, a, > &, . Therefore, the Routh-Hurwitz stability conditions are
satisfied. This completes the proot of Theorem 2.
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Appendix B
Global Stabliity for System (1.1)-{1.3)
Case:p=zloro,=ay

When p =1 or ¢y =, then the system {1.1)-(1.3) reducas to

ds w
(81) -dT-A—me‘.l—."[ls.

(82) % - 3.cms-‘$ oW, where W1+ Y, a=a+y.

It S(0) = S5 2 0, W(0} 2 W, 2 0, then as we have seen SHzo,wW(t)z01fort> 0.

Moreovar, dS/dt < A - uS implies that that lim sup S(t) s;}. Hence we restrict our

f=4m

discussion 10 solutions that satisty 0 < S(t) S Al .
Wo use the notation M(T) = C(TVT, the fact that S, W < T, and the assumptions
M(T) <0 and (TM(T))' > 0, 10 conchude that: SM'(T) + M(T) 2 )’ >0, and

Amcdy aw
SM(S +W) s —d— Hence, i oW(R- t). The same inequality holds when
m

C(T)) is constant. Thus, if R < 1, we have W(l) —+ 0 a8t — + = . Also,
t
S = 0"™%S; + [o"*(A-2M(S + W) SW) 0x) . Since SM(T) s bounded and W
0
tends to zero, it follows that S(t) = AN 8St — +ee,
Next, suppoge that R > 1. Then the system has a positive equilibrium (S",W').

With T = S + W, the system (81)-(B2) is equivalent to



8y e A-uT-aW,

daw
849 4 -KWI(T-MM(T)":).

This system has the pasitive equilbrium (T" W) where T = 5’ + W',
Using the equations salisfied by T° and W', we may rewrite (B3)-(B4) in the form

(BS) %r_ .‘-p(rur')-a(W-w').

(B6) S = AWL(TMT) - TMT)) + W (M(T) - MTH} - A WMITIW - W ) =

= AWG(T) - AWMT)(W- W),
where G(T) = TM(T) - TM(T') + W(M(T") - M(T)}.
Since TM(T) = C(T) is increasing, and M(T} is nonincreasing by assumption {H,).

then G(T) is positive when T > T and negative when T < T', We now let

T .

virw) = & [ gyax + W-w - win 25
«- w

T
Then V(T W) = 0, V(T W) > 0 for other admissible T.W. Furthermors, the derivative of V
along solutions of (B3)-(B4) {indicated by a bar over V) is given by

VOW) «- l:sem (T-T) - AMT)(W-W)Z, which is < 0 whenaver

- {TW) (T '.w'_) . Therefore, we get the following result:

Theorem B. if R > 1, then the equilibrium (T",W") for (B5)-(B6), and
consequently the equilibrium (S°,W') for (B1}-(B2), are globally

« asymptotically stable.

28

Appendix C
Stability and Instability for System (2.1)<{2.3)

In order to establish thase resuits, we proceed to rewrite the system (2.1)-(2

introducing the foliowing expressions: -

1) B@M= a.cmmsm-v%’- . Quu P@)e™", Julory.

Adding (2.2) and (2.3}, and using (C1), we can rewrite the system (2.1)-(2.3) in the

foliowing way:

€ S-a-By-us,

t
C3) W) = Wylt) + J' Bit-s)[pQys) + (1-p)Qyls)]ds,
. a -
(CH  Wylt) = L) + Yo, WO = I(0) + Y1)

Proot of theorem 3.
Because we are intergsted in the long-term behavior of system (C2)-{C4), we

can make use of the fact that Wp(t) has compact support and replace (C3) by

t
(C5)  W(h) = j B(1-5)[pQys) + (i - p) Q,ls)]ds , for t>1, (iarge anough).
0

Just as in the proot of Theoram 1, wa can assume that S{t) s AJu . and then show tha
B{Y) < AC(AA)W(T), and therefore for t > 1, we have thal

t
Wi s AC(H) fwie-s)(pags) + (1-p)Qyisllds
J % .

- xC(ﬁ\)th-s)[po,(s) + (1-p) Qs Hit-s) ds,
]



where H(s) denotes the Heaviside function (H(s} = 1 if s > 0, and zero otherwise).

Hence, I W = km supW(1), it toliows that W < R W , and therefore W = 0 whenever R

T=+m

< 1. This implies finally that W(t) — 0% as{ — + we,

For the case R > 1, consider the limiting system of {C2){C3):

ds
(Cs) & ~A-Bl-us,
]
©7) W) = jB(s)a"'P(t-s)e‘"‘ds ,

where,

Pl) = pQ,) + (1-p}Q, ().

Lemma D8. It R > 1, then (C6)-(C7) has a unique endamic equilibrium
(8*w")

The proot of this coroliary is assentially the same as the proof of Corollary A4,
Prool. Let
- 1 - - D . - . - D .
(C9) Sabiey | Y1) -l —
TRNTET) o, N1 Wml oY mopet

where D, Dy, and Dy, have been previously defined in Sectign 2. Then the prool is the

same as that of Appendix A.

We now proceed with the proot of Theorem 4. Since R > 1, then Lemma C*
implies that there is a unique pair of positive numbers S*, W* withS* + W = T* < Ay,

and satistying the system

(C10) A - AM(TISW - S = 0,

(c11) AM(TSD = 1,
where D denotes the averall death adjusted mean infectious period and M(T) = C(TV/T.
We will show that lim sup S{t} 2 W".

[t

Proof of Theorem 4. Assume that the conclusion of the theorem does not
hoid. Then there exist at®> 0 and a W' > 0 (W' < W*) such that W(t) < W' whenever1 2

19, Using the fact that T « S + W, we nota that

AM(S + W)S)  d(M)T)  dM(T)
35 -=ar " Tar W=>o
(€11)

AMS «WIW) _ dMMT)  oM(T) o
oW a7 1] )

whenever § > 0, and W > 0. Hence, if we daiine the function

LS) = A - AMES+WI)SW?- 1S for S20,and W' <W<wr,

then since dL/dS is negative, it follows that L(S) is a strictly decreasing function of S. In
addition since L(0) > 0, and L(AM) <0, then there exits an S > 0 such that L(S° ) = 0.
Using (C11) we conclude that if ¢ 21 and S(t) < S°, then
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B e a - a50WUIMY) - uS(u)
> A= MTYs°W® - us®-s9) =0,

where T%= S+ W ©. Hence, im inf S{t) 2S %> 0 , and consequently, thereisat' > t®

I=t4=

such that S(1) 28°, 1 2 1". in addition, since
p(s?-8 maMT)W S -AMTY) S W°
> AMT)S W - MS% e W) S°WY, T =5 s W",

we must have that S%> S°. Therefore, for allt 2 1", we have that M(T()S(t) > M(S°+
. W(U)S°2 M(T")S", and hence there is a > 0 such that M(T%)S%= a + M(T")S".

Lot W* = lim inf W(t), and assume that W* = 0. Then there is a sequence it}

=+
such thatt, — + e85 n —+ + =, and W(t) 2 W(t,), 1 /2 <t s t,. Hence, for large enough 1,
we have that
b

Wit) = & [MTistew(s e ™ py, - sy ds
l.

] 2
= AMTS* + o) [ 0™ 'pis) ds,
[}

where p(s) = pP (s} + (1-p} P(s).
This implies that

L)
2

1 2 MM(TY)S" + ) Ie'“'p(s}ds." .
0

and therefore, by lalling n — + == we arrive at the contradictory statement that R < 1.

# W* > 0, then for any e > 0, there exists a positive integer N such that
t
Wi 2 (1-e)W(t) foral <t st .n2N.

Using the sama argument as above, wa can then show that
.

7
W) 2 MKT)S + ) (1 - eW(t,) j' o "** p(s) ds . This implies that
0

12 AMT)S" + Xt -e)j ¢ "**p(s) ds, since € is arbitrary this again implies
]

thatR<1.



34

Proof of Theorem 5, First we rawrits {C8) as

Appendix D
r
Asymplotic Stability of the Endemic Equilibrium (% () = ﬁ + [S(0) - fﬁ e M\, J‘Bm g k-9 dr,
In Appendix C, it was proved in Lemma C8 that# A > 1, the limiting system has a °
d
unique positive equilibrium (S°, W*). We will now complete the proof of Theorem S by - and as
TR/
shawing that this equikibrium is asympiotically stable for the system (2.8)-(2.9), or (D2) Bit)e" " m Ag . ‘1'('3_(29_1_
T
equivalantly (C&)-(C7).
Using these two expressions, we can write W(l) as follows:
The proof of this resuit reduces to the study of the local stability of the trivial
equilibrium ( X = 0) for a Volterra integral equation of the type (03) W(t) = S(0) e '"'P(t} . f;L - [S(0) - ﬁ‘] o P!
1 ’ 1] t
- .q - -
) X(t) = F(O) + J’ Alt-5) G(x(s))ds, _ + IB(t) e " Yo -vydr + IB(:) PR
) [ cmt 1 0

+ Ao P e fsmevtd Rl-9 4
where X & R", G(0)=0,Ge C' (R"— R", F e C([0,=) — A7, A ls an nxn matrix such 0 6 dr

that A(t} € L'[0.1] for each t > 0. R" denotes real n-space with a norm | X and
W let WA(t) = W(t) - W and S4(t) = S(t) - S° denote perturbations from the endemic

| Aldenotes the corresponding matrix norm,
equilibrium. By substituting WA and S* into (D1) and {D2) (which are satisfied by S°
andW’), we arrive at the following system for S* and WA:

Theorem (Miller 1968; Theorem 4). Assume that the following conditions hoid: (i) the

Jacobian matrix DG(0) is nonsingular, ' B '
(09 S4(1) = s"{on'"'-j[aﬂm-B']e"‘""’dc . -
]

(iiy det(l - Ie' "A(t)DG(O)dt) # 0, forall zwith Re 220 where I denotes
[+]

the nXn identity matrix), and (i) thers is a sufficiently small e, > 0 such that sup | Fy ;

0st <-}sanndF(l}—aOasl-t-.ThonX{t)—-’Oasl_—»:-
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(05) WA = S*0) [P(1)- 1)@ " J' BYv-8)8 " Vg then the system (C13)-(C14) is in the form needed 1o apply Miller's theorem.
It remains to show that the conditicns specified in Millar's theaorem are satisf
IS"(t) g H0:® gPit-1) t)
dt We stan by showing that DG(0) is non-singular. First note that
I[B‘(t) Ble ™" ¥ pi- vy, . L L
AW(MT) « SM'T) AS(MT)+W M(T)
) DG(0) =
where B’ = A MT)S"W', BA=A[SA + S'IWA + WIMT* + T, TR« T-T", Ta S ¢ W, 3 0
and T'= S'+ W', Finally, by letting —
” — and since (TM(T))' 2 0 and M'(T) 5 0, than del{DG(0)} » 0 .
sxo)e™ -
06 F) = . : Next we show that det(l-!o'"A(t)DG(O)dt) » 0, for all z with Re z 2
s*(O)[Pm-1]e'”‘+f[a*(t)-a'}e 0 ok-na |, - ,
-- — First, we note that H(z}-detu-ja'"A{t)DG(o)m)
[}
B*-B rig rET
1+mJe W"'dr myfe g I”'dt
(D7) G(SAWA) = o .
= det
S . - - -
- J‘ ﬂu-z]t J’a an-z)tdF' 1- mzj‘e-mi-z]tm -
0 0 ._J
© 0 where m, = AW'(M(T') + S'M'(T"), m, = AS"(M(T") + W'M'(T")) . After expanding arc
8) T} =
A collecling lerms. we have that
: e-y. © dP(t) -
= [ m - - b 1
o HE) = 1 e ol mzje wedl Plg) o

(D9) X(i) =
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Observe that (C7) implies that 1 = A S M(T) J‘e""Pmdt. Using this equality, we
0

m,
nez

can show that whenever Re 20, |H(z)| > | 1+ I =[m,i Io'"'P(t)dt >0.
°

‘Funhoﬂnoro.doanyhrmy q,:-O.lherélsa&pOwcl-uthatwde(d:ost <w}se,
andF(l) +0ast— e, forany| SAri <5y, [WATNS S, - = <T50,
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Fig. 1: Fiow diagram for a si
the text.

Legends of Figures

-

ngle group model with exponential removal, for details see

Fig. 2: Flow diagram for a single group madel with distributed periods of
infactiousness, for details see the text.






