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MODELING AND SIMULATION IN AGRICULTURAL PEST
MANAGEMENT*

RICHARD E. PLANT#} ano MARC MANGELfT§

Abstract. This paper introduces some of the mathematical problems associated with the control of
agricultural insec1 pests. The view advocated here is that since agricultural crops arc managed biological
systems, much of the applicd mathematics developed for biological systems may be used in pest control.
The problem is broken into three components: (1) strategy selection, (2) tactics selection, and (3) stale
estimation. The concept of sirategy selection is illustrated through a discussion of the Sterile Insect
Technique (SIT) as a means of population suppression. Tactics selection is illustrated by a discussion of
the scheduling of pesticide applications. The concept of state estimation is illustrated through two examples,
The first example is a discussion of sequential sampling for pests to determine if the pest density has crossed
an economic threshold. The second example is a discussion of information provided by trapping for pests
when trying 10 determine the extent of an infestation.

Key words. pest management, agriculture
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1. Introduction. One of the most productive applications of mathematics in the
biological sciences has been the modeling of populations. There is a rich and elaborate
theory for single population dynamics (e.g. May (1981)), for predator—prey interac-
tions (e.g. Hassell (1978)), for microevolution {¢.g. Roughgarden {1979)}, and even
for ecosysiem dynamics (e.g. Ulanowicz (1984)). Agricultural crop stands are basically
managed ecosystems, and one of their principal management problems is the control
of populations of pests that consume the crop. In devising strategies for the control
of pest populations, pest management specialists have attempted to make use of the
mathematical theories of population dynamics 10 aid them in their task. In this article
we review applications of mathematics in insect pest management.

We do not intend to give a complete review of the literature; indeed, we are quite
selective. Several reviews exist already. Ruesink (1976), Shoemaker {1982a), and Getz
and Gutierrez (1982) provide an excellent access to the literature. A monograph
edited by Huffaker (1980) describes in detail many recent applications of mathematical
ideas in pest management. May (1974), (1981) and Hassell (1978) provide a detailed
discussion of and access to the literature on analytical models in population dynamics
and pest management. Qur goals are 10 acquaint applied mathematicians with some
of the problems of insect pest management, 10 show the wide variety of mathematical
tools that are used in attacking these problems, and 1o express our views about the
appropriate roles for mathematical models in the solution process.

Our opinion is shared by Logan (1982) who expresses it quite well in a recent
review of the modeling of interactions of mite populations. (Logan’s paper is in a
volume that is, to say the least, off the beaten path of most mathematicians. The
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paper is an excellent one, though, and well worth the trouble that might be necessary
to obtain it.) We feel that mathematical models may be called upon to play two roles,
a descriptive one and a predictive one. Traditionally, analytical models havc_been
used for the former role and simulation models for the latter. To be truly effective in
an applied context such as agricultural pest control, modeling must be done at both
levels, possibly linked by what Logan (1982) refers to as “composn_te“ mod_els.
Analytical models by themselves do not provide solutions upon w_hlch dg:ta.lled
predictions may be based. Simulation models by themselves do not provide the.m:ught
into the system that is necessary 1o have confidénce in the validity of the predictions.

Insects are commonly pests to agriculture, silviculture, or public health. In this
article we concentrate on the agricultural case. The other cases are mathematically
similar, but not identical. MacDonald (1965) provides an example of the application
of mathematical modeling to medical pest management (actually it involves worms
rather than insects); Ludwig et al. (1978) do the same for forest pest management.
The agricultural ecosystem may be described schematically as shown in Fig. 1. The
arrows indicate the primary directions of interaction between components. The pests,
including insect pests, consume or damage the crop and are in turn attacked by
natural enemies such as predators, parasites, and disease. The grower may intervene
in this system at the level of the crop or the pest. The most common and well-kno.wn
means of intervention is the application of pesticides. The grower's intervention
frequently extends, in an unexpected and often disastrous manner, to the natural
enemics as well. Finally, the environment, by which we mean primarily the weather,
imposes itself in an often stochastic way on the whole system.

QROWER

MATURAL

CROP PESTS [
CONTROLS

ENVIRONMENT
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The methods of intervention (i.c., of pest management) available to the grower
are generally divided into three broad categories: chemical, biological and cultural.
The most common form of chemical control is the general purpose pesticide, such as
DDT or malathion. Other means of chemical control include specialized pesticides,
which are toxic only 10 certain insect species; pheromones, which disrupt or confuse
the insects’ hormonal systems; and oviposition inhibitors, which impede the ability
of female insects 1o lay eggs on host crops. The most common forms of biological
control include sterile insect release, the breeding of resistant crops, and thc_release
of predators, parasites, or discase agents. The most common cultural controls include
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proper timing of the harvest, crop rotation, and the physical destruction of pests (¢.g.,
of cocoons). An excellent introduction to the methods of pest management is given
by Meicalf and Luckmann (1975).

The advent of inexpensive and efficient chemical pesticides after World War 11
led to the abandonment of many of the other methods of pest management. Repeated
application of pesticides, however, soon resulted in the development of resistant
strains of the target pest species. In addition, the chemical pesticides frequently
destroyed nontarget pests that acted as natural controls of pest species. In many cases
this resulted in massive resurgences of the target species as well as outbreaks of pest
species that had previously had no economic importance. Finally, the buildup of
pesticide residues in the environment has caused concern for the health of higher
animals, including humans (Metcaif (1980)). All this has resulted in a renewed interest
in nonchemical means of pest management, Starling in the late 1950s, this interest
has focused on the concept of integrated pest management, or IPM (Stern et al.
{1959)), in which chemical, biological, and cultural means are combined in a manner
specific to the particular agroecosysiem to create an efficient means of keeping pest
damage at an economically acceptable level. Developers of IPM strategics generally
assign a major role to mathematics in aiding in strategy selection. Perkins {1982)
provides an excellent introduction 1o the history and philosophy of 1PM.

The role of mathematics in pest management is to aid in decision making
(Norton (1976)). Decision making in agricultural pest management is complicated by
the highly stochastic and uncertain nature of the problem. Stochasticity has two
primary effects (Bertsekas (1976)). The first is that decisions to withhold pesticide
treatment may involve high gains and high short-term risks. For example, consider
the simple situation shown in Table §.1. The grower's expected profit is maximized
if he does not apply the pesticide, but most growers faced with this situation would
act in a risk averse manner and apply the pesticide.

TFasLE 1.1
Decision Apply pesticide Do not apply
Quicome (probability) $70/acre profit (1) $200/acre profit {.5)
§ 20/acreloss (.5)
Expected Profit $70/scre ™ $90/acre

The second primary effect of stochasticity is that frequently a decision must be
made before significant information is available regarding the outcome. For example,
many pest species are capable of persisting at low levels in the crop for an extended
period and then suddenly growing rapidly in numbers. By the time an outbreak is
detected, considerable damage to the crop may have already occurred. In such
situations, growers frequently apply the pesticide prophylactically.

The agricultural pest management problem may be divided into three primary
subproblems: strategy selection, tactics selection, and state estimation. Strategy selec-
tion involves determining, in a general way, the appropriate mix of chemical,
biclogical, and cultural practices to be used in controiling the pest. Tactics selection
follows strategy selection and consists of the determination of the specific way in
which pest control will be applied in response to a particular state of pest infestation.
State estimation involves the attempt by the grower or his agents to determine whether
the pest infestation has reached a level where active pest control is appropriate. This
level is called the economic threshold (Stern et al. (1959), Headly (1972)); the
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economic threshold concept is the keystone of IPM. A few workers have attempted
1o incorporate more than one of these particular aspects into a theoretical study of a
given problem (e.g. Shoemaker (1982b), Stefanou {1983)). Most effort has been
devoted, however, to one or another aspect of the problem. )

In actual application, the triad of strategy selection, tactics selection, and state
estimation would be related 1o the same problem. It so happens, however, that the
primary research effort on individual components has focused on different applica-
tions. We therefore consider each component separately, focusing on an individual
application unrelated to that of the other two. This may be somewhat disorienting,
but in the last section we discuss a hypothetical case in which all the components are
combined to form a single pest management strategy. In our discussion of the
individual components, we begin with strategy sclection. In §2 we discuss the appli-
cation of mathematical modeling to a particular case of strategy selection, the selection
of an appropriate combination of pesticide application and sterile insect release for
the suppression or eradication of an insect population. In §3 we discuss tactics selection
in the context of determining the appropriate schedule for the application of a
pesticide. In §4 we give two examples of the state estimation problem. The first is the
estimation of the population of a pest species in a particular field. The second is the
rapid delimiting of the extent of infestation of an invasive pest. Section 5 contains a
summary and discussion of the ideas that we have presented.

2. Strategy selection: The IPM concept. In the modern theory of pest control,
strategy selection is generally done in the context of an integrated pest management
(IPM) plan. The basic concepts of IPM were put forth by Stern et al. (1959). The
primary ideas are first that chemical controls should be used 10 complement, not
replace, biological and cultural controls, and that no control action should be taken
until the level of insect pest infestation surpasses a level, called the economic threshold,
at which the cost of treatment becomes econcmically justifiable. Barficld and O'Neil
{1984) discuss in some detail the principles of IPM and their use (and misuse).

The role of mathematical modeling in strategy selection in the IPM context is 1o
aid in determining the optimal strategy for a given situation. In this section we
consider one example of how mathematical analysis has helped to identify the
appropriate situations for the optimal use of the strategy of releasing of sterile insects
(generally males when separation by sex is possible). In addition to helping to
determine the circumstances in which this method is appropriate, mathematical
analysis shows how chemical controls can best be used in conjunction.

In 1955, E. F. Knipling published a landmark paper on eradication or control
using sterile male release (Knipling (1955)). The simplest model of the sterile insect
technique (SIT) is the following. Assume that the pest population has nonoverlapping
generations, and a 1:1 sex ratio. Let P, denote the number of females in generation
n. In the absence of sterile males, the population is assumed to grow exponentially so
that

2.1) Posr=rby,

In this equation, 7 is the intrinsic growth rate. Assume now that a constant number,
S, of sterile males are released in each generation. Then (2.1) is replaced by

P
2.2) Funi =rP..[ Pt S] .
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The term in brackets in {2.2) represents a dilution of fertile males; it effectively reduces
the growth rate. Figure 2 shows results of applying the simple formula (2.2) with two
different values of S, given that P, = 105

Equation (2.2) has an unstable fixed point at P=S/(r—1). Treating § as a
parameler, this implics the existence of a threshold release level S*, where for a given
initial population Py, S* is given by '

2.3) S*=Pyr—1).
The behavior of (2.2) is characterized by
0 ifs>S8",
(24) : P—yo ifS<S*,
Po lfs- S‘.

The existence of a threshold level of release was observed in eradication efforts against
the screw worm fly (Baumhover et al. (1955)).

As indicated in Fig. 2, when sterile insects are applied in the same numbers over
a period of several generations the natural population declines at a greater than
geometric rate. This is known as the “Knipling effect” and makes the SIT potentially
very useful for eradication campaigns. Sterile insect release may also be useful as a
part of an integrated program 10 keep a pest population at a fow level, particularly if
the adult stage of the insect is not the stage that causes crop damage. The SIT is
obviously not effective as a rapid population suppressant since it requires several
generations 1o achieve its effect. In this review we focus on the SIT as an eradication
tcol.
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The economic threshold concept discussed in §1 was not intended to apply
directly to eradication programs, A similar concept docs apply, however; the eradi-
cation effort should be conducted if its expected cost is less than the cost of managing
the pest population (i.e., maintaining it below the true economic threshold) if it is not
eradicated. Included in the cost of SIT applications must be the cost of developing
sterilization techniques and plants. Bradbury and Loasby (1975) discuss the future
commercialization of SIT. Spharim (1975) also considers the economics of developing
the SIT procedure commercially.
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Equation (2.3) shows that when the initial population is reduced, the threshold
level of release is correspondingly reduced and the number of generations to eradica-
tion may also be cut. Pesticide application has been used to bring about this initial
population reduction in eradicating the melon fly from an island in the Maranas
{Steiner et al. (1965)). Cultural methods (primarily fruit stripping) were used for the
same purpose 1o eradicate the Mediterrancan fruit fly from Flonda (Carey (1982)).
These are examples of the application of the IPM concept, in which more than one
control or eradication measure is applied.

In extending the work of Knipling, Prout{1978) studied a model that incorporates
a carrying capacity. Prout’s basic results, however, remain valid whether or not the
model incorporates density dependence. His model is

K
(2.5) P"”:P"[Kﬂr—l)f’,.]'
Here K is the carrying capacity of the population, since (2.5) has a fixed point at
=K

Prout considers two forms of release. In hard release, the number of sterile males
released is held constant. If S is the (constant) number of sterile males released in
each generation, then reasoning analogous to that leading to (2.2) shows that (2.5)
should be replaced by

P, rK
(2.6) e ”P'{P.+s} {K+{r‘- i)P..IP../(B.+S)I} ’
Simplifying (2.6) gives
@n Prer rKF,

KB FS+(r= P’
The equilibria of this model are the roots of the cubic equation
(2.8) (r-DX*—K(r—-1X2+ KSx=0.

Equation (2.8) always has X =0 as a root. If K(r — 1) > 45 then there are also two
positive roots. It is easy 1o show that the origin and the upper root are stable and that
the middle root is unstable. If K(r — 1} < 45, then there are no other real roots of
(2.8) and the population is driven to extinction. Figure 3 shows the results of
calculations using this model. In this case, the critical value of .5 for eradication is
S = 10%. Figure 4 shows the number of generations until eradication for P=5 X 108,

Prout (1978) also considers “soft-release™ in which the ratio of released to native
males is held constaat. If 2 is the ratio used, then P, is the new equilibrium level
defined by

r-l-a
2.9 =
Clearly, the condition for eradication in this case is that
l+a>l
or
(2.10) a>r—1.
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In most pest infestations, there is immigration of pests into the release area. In
the recent California Mediterranean fruit fly infestation, it was suggested that migra-
tion effects were a primary cause of the failure of the SIT to achieve eradication
(Lindquist and Nadel (1982)). Prout considers hard and soft migration. In hard
migration, the number of migrants M is constant. In soft migration, the ratio of
immigrants 1o natives is constant. There are now four different population dynamics:
hard/soft migration combined with hard/soft relecase. For example, if both migration
and release are hard, then the population dynamics are given by

- rK(P+ M(P,+5))
KPS+ (r— IXPL+ M(Pa+S)

.10 Py

The equilibria of this model are the roots of the equation
(2.12) (r— DX+ X(r— IXM = K)+ X(MS(r— 1)+ K(S— Mr)= rKMS.
Unlike (2.8), X = 0 is not a solution of (2.12) if M > 0; this means that eradication is
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not possible. To see the effect of migration on an eradication program, assume that
(2.13) K(r—1)<4S5,

which is the condition that leads to eradication in the event that there is no migration.
To help simplify the analysis of (2.12), introduce scaled variables by

(2.14) xs%, mn%, s-%.

Dividing (2.12) by K* gives

(2.19) rms=(r— x*+x%r— 1Xm=1}+x(misr—s~r)+5).
Denote f(x; m, 5) by

{2.16) fie,m, 5)=(r— 1)x3 4+ x2(r— Dm— 1)+ x(m(sr—s—r)+5)
so that (2.15) becomes

(2.17) S(x;m,5)=rms.

The objective is now to study the behavior of (2.17) as a function of m and s.
Figure 5, which sketches the curves f{x; m, s) — rms for various combinations of r, m,
and 5, schematically shows the behavior. First set m = 0; then (2.17) becomes

(2.18) Jx;0,5)=0,

which is the same as (2.8). The critical value of s for eradication is 5* = (r —1)/4.
Panels (a) and (b} in Fig. 5 illustrate the solution of (2.20). When m is slightly larger
than zero, with s> s*, as in Fig. 5(c), the possibility of eradication disappears. The
equilibrium at x =0 moves to x > 0 and thus the population becomes endemic. For

{a) {b}

[ERIY fluos) i
X b x

(c) (d)

fla,m,u} filx.ms

(e}

tHn:ms)
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lasger values of m (Fig. 5(d)) & region of multiple equilibria may exist, depending
upon the values of r and s. For even larger m, the multiple equilibria disappear and
only a high level of population remains (Fig. 5(¢)).

The region of muitipie equilibria can be computed as follows. The critical points
of f{x; m, 5) are solutions of f’(x; m, s} =0. Denote them by xz(m, 5) and x,(m, 5)
with x;(m, 5) & x,(m, 5). The first vaiue of m at which multiple equilibria may exist s
given by

(2.19) J(xy(m, 5), m, 5)=rms.
The largest possible value of m for which multiple equilibria exist is given by
(2.20) J(xy(m, 5, m, s)y=rms.

Equations (2.19), (2.20) can be used 10 construct a bifurcation picture in the (m, s)
plane characterizing the region of multiple equilibria. The algebra is somewhat tedious,
but we encourage the reader to try it. Prout considers the other combinations of
release and migration. Conclusions are drawn in an analogous fashion and the
methods are similar.

The papers of Knipling and Prout are deterministic. Deterministic models may
be unsatisfactory for a number of reasons. First, populations are discrete and often
mate randomly; the deterministic models usually do not take that into account.
Second, environmental “shocks,” essentially random phenomena, are probably very
important in pest management. For example, a severely cold or very wet winter may
more effectively control a population than any human action. Deterministic models
do not account for such random shocks. Third, extinction is inherently a random
phenomenon. .

Costello and Taylor (1975) introduce a general stochastic model for the analysis
of SIT problems. Let P(1) denote the population at time 1. They replace the Knipling
model {2.2) by the continuous time, discrete state space model

1
b o),  n<Kk,
2.21) Pr [P(t+ Al =n+1|P(t)=n} =4 A+S

0, nak,
Pr (Pt + At)=n— 1|P(t)=n) = dnAt+ o{Al),
2
2.22) PrlP(t+A1)==n|P(l)=ni-=(l--;"_.-%.Al-dnm)+o(u),
Pr {any other transitions| P(¢)=n} =0.

In these equations, b and d are birth and death parameters and S is the number of
sterile insects. Let A, = dn?/(n + S) and p, = dn. In the stochastic case, one must deal
with the moments of the time 10 extinction, instead of the time itself. Of most interest
is the first moment. Let T be the time 10 extinction and set

(2.23) W,= E|\TjP({0}=n}

where E{-] denotes the expectation. It is easy to show that W, satisfies the following
equation

(2.24) Wamro—t 7 Wen +
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The terms on the right-hand side of (2.24) are, respectively, the mean exit time from
the state P(0) = n, the probability of a jump to population level # + 1 times the mean
time 1o extinction from that state, and the probability of a jump to population level
7 — 1 times the mean time 1o extinction from that state. Equation (2.24) is best solved
numerically. Table 2.1 shows some of the numerical results. The « in the table
indicates that extinction does not occur within a time span they could compute. The
numerical results suggest that, regardless of the number of sterile insects, the lower
limit for the first moment of the extinction time is 1.5 generations.

TABLE 2.1
Expected number of lifespans to extinction.

Number of sterile males

Initial
population 300 600 1000 >2000
100 . 1000 7 5
50 . 10 5 4
2 . 1.5 i.5 1.5

The following conclusions can be drawn from the analysis in this section.
Determining the threshold of the number of sterile males to be released is an important
operational question. Missing this threshold makes the procedurc meflective, In the
presence of immigration, eradication is impossible and the best that one can hope for
is reduction of the population to an endemic state. The sterile insect release method
is therefore most effective in a geographically isolated setting such as an island, or
when usad to cradicate an insect population that is not widely distributed, for example,
one that has been recently introduced. In conjunction with a sterile insect release
program, chemical or cultural methods are most effective in reducing the initial
population of the insect pest.

3. Tactics selection: The scheduling of pesticide application. Having sclected a
particular strategy for dealing with an insect pest, the grower must next determine the
tactics to be used in implementing this strategy. In this section we give a specific
example of the application of mathematical modeling to tactics selection. We assume
that the grower has selected the strategy of complete reliance on a single pesticide,
and that he plans to apply that pesticide prophylactically, without monitoring the pest
population. The problem is then to determine the best time or times to apply the
pesticide. We assume that the grower wishes 10 maximize his net profit, subject to
discounting, over a fixed time horizon.

It may happen that a tiny fraction of the pest population has a genetically
conferred resistance to the pesticide. Resistance may be due to any number of factors
(Georghiou (1972)), for example, to enzymes that break down the pesticide, or 1o a
thickened cuticle. Since resistant individuals are more likely to survive a pesticide
application, the succeeding generation has a higher portion of their descendents, and
consequently a higher portion of resistant individuals. Repeated applications of the
pesticide results in still higher portions of resistant individuals, and eventually the
portion will be so high that the pesticide will no longer be effective. This transition to
ineffectiveness may take place with remarkable speed, frequently occurring in just a
few years. Georghiou (1972) provides a good explanation of the reasons for this.
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Since resistance is a genetic phenomenon occurring in a population, it should be
amenable 10 study by the theory of population genetics. Although some work (e.g.
Plapp et al. (1979)) has been done using multilocus models, in general the simplicity
of the single locus model, and the reasonableness of the results obtained by using it,
make this the model of choice. In the model, resistance is conferred by a single genetic
lacus with two alleles, R (resistant) and S {susceptible). Homozygous resistant (RR)
individuals are more resistant to the pesticide than homozygous susceptibles (S5), and
heterozygotes (RS) are somewhere in between, depending on the degree of dominance
of the resistance gene.

Assume that the pest population exists in discrete, nonoverlapping generations.
If there were no difference in the survivorship {i.c., fitness) between the phenotypes
corresponding to the R and S genes, the natural assumptions to apply would be those
leading to the Hardy-Weinberg law (Ewens (1969)). These are an oversimplification
in that they ignore the sex of the individual and assume random mating, but experience
has shown them to be sufficiently accurate for a model such as the present onc. Under
these assumptions, the Hardy-Weinberg theorem states that after one generation the
genotypes of the population attain a stable distribution in the ratio

3.1 RR:RS:SS=p%:2pq:q*

where the values of p and g are the gene frequencies in the original population.

For our problem the assumption of differential survivorships between the geno-
types is essential. Assume that in the nth generation the RR, RS, and S8 genotypes
confer survivorships A,, B., C., respectively. Then the frequency of the R gene in
generation n + 1 may be calculated from the formula (e.g. Ewens (1969))

Aﬂ lzl + Bl n
Do Dobnln__ 4 Fo( pa)

3.2) Pt =A,P£+ZBnPuQu+Clq"

where p, and g, denote the frequencies of the R and S genes in generation n. Taylor
and Headly (1975) derive fairly general equations for the dynamics of a population
under these assumptions. They point out that these equations are difficult or impos-
sible to analyze without some simplifying assumptions. The standard assumption of
population genetics, that A., B., and C, are approximately equal, docs not hold in
the case of pesticide spraying (Comins (1977b}). Indeed, the primary assumption is
that A, 3 C,. Other simplifying assumptions are, however, possible in this case.

Comins (1977b) assumes that p, << 1. He then expands F,(p,), defined in (3.2),
to obtain

(3.3) E.(p.)=%p,. +o( pa).

Several inferences may be drawn from (3.2) and (3.3). If, as is often the case, each
generation of the population is treated with roughly the same level of pesticide, so
that B, and C, may be considered fixed, then the frequency of the resistance gene
grows geometrically during the carly stages. Moreover, the intrinsic rate of increase
depends on the degree of dominance of the resistance gene, If the gene is dominant,
so that B, C,, then the rate of increase is high; if the gene is recessive, so that
B, ~ C,, the rate of increase is low.

Comins (1977b) continues the analysis by assuming that the pest has m genera-
tions per growing season. He further assumes that B,=C{™" where f varies
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between O for a dominant gene and 1 for a recessive gene. If we let
m B”

(3.4) S= =i Cll

{3.2), (3.3), and (3.4) imply the relation
3.5 Aln p,=giin §)

where Aln p, is the change in In p, from one season to the next. Comins identifies
(3.5) as the measure of the decline in pesticide susceptibility from one year to the
next, and concludes that the time for resistance to develop in a population is inversely
related to In S. By assuming that the total yearly cost of applying the pesticide is
proportional to In S, and that the perceived cost of resistance is a function of this
same quantity, Comins derives a set of m coupled equations defining the optimal
strategy for a single season’s pesticide application schedule. An example of this strategy
applied to the control of the sugarcane froghopper is given. The conclusion is that
pesticide should be applied in such a way that the damage done to the crop is roughly
the same for each pest generation. In a later paper, Comins (1979) refines and exiends
his theory.

An alternative simplifying hypothesis to that which led to (3.3) is that the pesticide
kills all of the homozygous susceptible individuals. Mathematically this implies that
C. =0 in (3.2). Note that in this case the function F in (3.2) is not analytic at zero,
so that a Taylor expansion as in (3.3) is not possible. In a series of papers, Georghiou
and Taylor (1977a, b) and Taylor and Georghiou {1979} explore the consequences of
this second hypothesis. They assume that the population reproduces itself in a density
dependent manner according to equations of the form

(3.6) Nier =N, exp (r[ K- NJ/K).

In their mode! each genotype obeys an equation of this form, and the genotypes
interact according to dynamics as in (3.2). The three population equations of the
form (3.6}, together with an equation of the form (3.2) in which

(3.7) Ax= W[m.N,,

and similar relations apply to B, and C,, comprise the model. Georghiou and Taylor
conduct a series of numerical experiments to analyze the effect of vanious factors on
the rate of increase of resistance. These factors include controllable variables such as
pesticide dose, selection threshold, scheduling, and maintenance of refugia; and
uncontrollable variables such as degree of dominance of the resistant gene, and rate
of migration of the pest (this latter was also studied by Comins in an early paper
(1977a)). They conclude that the maintenance of refugia, where a portion of the
population is leRl untreated, may significantly retard the growth of resistance. They
point out that resistance growth may also be retarded or even eliminated in a
population with a high rate of migration, if the resistance gene is recessive.

The models of Comins and Georghiou and Taylor do not include the dynamics
of the crop. If intraseasonal scheduling is to be a part of the modeling study, then
such crop dynamics are an essential part of the model. Gutierrez et al. (1979) study a
model for the interaction of the Egyptian alfalfa weevil and cotton. These models are
quite realistic in that they include as dynamic variables the adult and larval weevil
populations, gene frequency of the resistance gene, and a measure of the state of the

cotton plant. These equations are quite complex in their form and we do not reproduce
tham hara: rathsr we decrrihe them nualitativelv
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Adult weevils are assumed to enter the field only by immigration so that the
number of adults N, at time 2 (lime is measured in units of degree days in most
agriculiural models since all rates are icmperature dependent) is given by

(3.8) Nuner =Ny (8, P, X0

where /; is a time dependent function taking into account immigration and death, p,
is the frequency of the resistance gene, and Xx, is the pesticide application intensity at
time n. Larval population N; depends on prior adult population, on the frequency of
the resistance gene, and on the pesticide spray rate through a complicated function,
which we write as

39 Nrass =fs(NA.m Xy Pu)

where the assumption is that larvae emerge six time periods after eggs are laid.
The frequency p. of the resistance gene foltows the random mating dynamics
described by (3.2). The survivorships are modeled by

(3. 10) An= C~ennxa

and similarly for B, and C,. The dynamics of the cotton plant are described by an
equation of the form

(3.11) Lus =j}_(~z.n, NA.-- n)

where L, represents the dry leaf mass per unit area of the cotton.

The problem of maximizing Jong-term grower profits, as a discounted sum of the
cotton, less pesticide costs, could in principle be solved by dynamic programming.
The complexity of this type of solution is avoided by assuming that the grower follows
a myopic strategy of simply trying to maximize his profits in each year. Gutierrez
et al. {1979) examine the effect of the grower’s knowledge of the level of resistance to
the pesticide in the population. They find that when pesticide resistance is taken into
account, the optimal myopic behavior is to gradually reduce the level of pesticide
application, thereby slowing the growth of resistance,

Shoemaker (1982b) gives a dynamic programming solution for a model similar
to that of Guiierrez et al. Her formulation of the model is more detailed than that of
Gutierrez et al. in that it specifically includes the effects of weather and of parasitization
of the pest insects. In order to reduce the model to 2 manageable form, she makes
certain simplifying assumptions which allow her to formulate the dynamic program-
ming problem in terms of four variabies representing pest population level, resistance
gene frequency, level of parasitization, and weather. She considers the case of
univoltine (i.e., having only one generation per year) pests, and formulates the decision
problem in terms of a binary decision on the application of pesticide (spray or no
spray), along with an optimai date of harvest. By using some ingenious simplifications
based on linearities in the model she is able to reduce the dynamic programming
preblem to a tractable form. Her results provide an estimation of the economic
threshold, that is, the intensity of pest infestation that warrants pesticide application.
If the economic threshold is exceeded, then pesticide should be applied. Under proper
weather conditions, however, pesticide application may be avoided by harvesting the
crop carly. Shoemaker's model provides an estimate of the proper conditions for this
latter strategy.

The models of Gutierrez et al. (1979) and Shoemaker (1982b) are dramatically
different from those of Comins (1977b) and Georghiou and Taylor (1977a). The latter
are formulated in relativelv simple terms and have a significant analytical component,
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while the former are quite detailed and are intended to provide precise numerical
predictions, at the expense of providing insight into the interactions that lead to these
predictions. If mathematical models are to be used as a management tool in which
the grower simply provides as input his observations of the relevant parameters and
the model responds with an optimal strategy, such models will have to be detailed
and precisely calibrated. Efforts are currently underway to provide such models to
growers of a variety of crops {(Huffaker (1980)).

A different application of mathematical modeling is to attempt to use the model
10 gain an understanding of the processes underlying the behavior of a complex
system, and to use this understanding to provide general recommendations to the
grower for strategies which, while they may not be optimal, are at least an improve-
ment. For example, the model of Georghiou and Taylor (1977a, b) indicates that a
useful way to delay the development of resistance in a pest population is to maintain
refugia where a portion of the breeding population is spared from application of the
pesticide. No attempt is made to precisely quantify the extent of such refugia.

The two applications of mathematical models described above are not mutually
exclusive; indeed, they are complementary. The nature of the model used in each of
the two applications is, however, quite different. While detailed models must generally
be quite complicated, models that are intended to provide insight must generally be
quite simple. An excellent example of the complimentary nature of such models is
provided by studies of the spruce budworm. A team of workers at the University of
British Columbia developed a detailed model of the dynamics of this pest in its
interactions with the forest ecosystem of New Brunswick. Jones (1976) provides a
description of the model. Using this model, forest managers can determine the effects
of various management strategies. The model, however, is so complex that it provides
little or no information as to why it behaves the way it does. Ludwig et al. (1978)
developed and analyzed a simple version that simulates qualitatively the pesi-
ecosystem interaction. While their model does not provide precise information, it
does provide insight as to what is causing the more complex model to behave as it
does. It should be noted that a recent article by Royama (1984) questions the
fundamental assumptions of the model described by Jones (1976).

Mangel and Plant (1983) and Piant et al. (1985) attempt to use the same sort of
approach with a model for pesticide resistance. They begin with equations that are
quite similar to those of Gutierrez et al. (1979), except that the equations are
formulated in continuous time. The specific system that Mangel and Plant consider
is motivated by the spider mite as a pest of cotton. Spider mites have a very high
reproductive rate, so that outbreaks may occur very rapidly. For this reason, many
growers typically treat for them prophylactically. Mites have as many as ten genera-
tions per growing season, so a continucus time model is most appropriate, The model
ignores a number of complications, such as predation and pesticide induced fecundity,
that are thought to occur with spider mites. This is done to focus on the development
of resistance, which is generally independent of these effects except as they influence
the intensity of pesticide application,

Mangel and Plant consider the events in a ficld that suffers immigration of mites
from a nearby “pool,” which may be weeds or a different crop, such as an orchard.
During a given season time is measured continuously and the dynamics are described
by differential equations. At the end of each season the crop is harvested and the
initial conditions of the model for the subsequent season are set, based on the state
of the variables at harvest time. Interseasonal time is therefore measured as a discrete
variable, while intrascasonal time is measured continuously. Pests immigrate from
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the pool 1o the field throughout the year. They establish colonies which then grow
and reproduce. For simplicity the original immigrants are not counted in the popu-
lation,

Mangel and Plant begin with a detailed model in which age is measured as a
continuous variable and the population has genetics similar to those of (3.2). Through
a series of simplifications they reduce the model to one in which the population has
only one age class, and two resistance classes, resistant and susceptible. They show
that the behavior of this simplified model is qualitatively identical and quantitatively
similar to that of the more complex model. The equations of the simplified model for
intraseasonal dynamics are

Ex"’f=Pi(I;ls(")n ﬂ("))xi"'#r(”)l(”- i=R,§,

dt
de_Jre—v(iXxp+xs), ¢>0,
(3.12) dz_{O. by

x(0)=xs(0)=0, c(0)=cp.

Here the subscript denotes the resistance class (resistant or susceptible), x;{t; n) is the
pest population of class { at time ¢ in season #, p, is the population growth rate, I(!) is
the immigration rate, and y, is the fraction of members of the pool of susceptibility
class i. The growth rate p.(¢; £,{n}, n{n)} depends on the time t; and intensity »n of
applications of the pesticide in season n. The terms #, and » are the control variables
of the model. The variable c(f) represents the amount of crop at time {, and v{f)
represents the rate of crop consumption per individual pest.
The multiseasonal management problem may be stated as

maximize J= i ¥ (T n) = cyn(n)],
(3.13) =l
subjectto  up(n+ 1)= h{ug(n), £,(n), n(n))

where v is a discount factor and the function / is obtained by solving (3.12) in season
n. Mangel and Plant show that a useful approximation to the problem may be
obtained by fixing » for all n. Plant et al. (1985) obtain solutions to problem (3.13),
using this approximation, by dynamic programming. Sevéral qualitative conclusions
may be drawn from these solutions. One is that as the discount rate increases, the
optimal sirategy moves closer to that of applying the pesticide at the single season
optimal time ¢! in each season. The susceptibility of the pest population to the
pesticide may be regarded as a nonrenewable (or slowly renewed) resource {(Hueth
and Regev (1974)); from this perspective the effect of the discount rate may be
interpreted as an example of the fact that as the discount rate increases, the optimal
strategy for extracting a resource moves 1o one of extracting it as rapidly as possible.

For moderately high values of the discount rate the best strategy is to apply the
pesticide at time ¢} during the early seasons. The high relative value of the crop in
the early seasons due to discounting of later crops outweighs the cost of increased
resistance in later seasons. When a significant fraction of the population becomes
resistant, the best strategy is to apply the pesticide earlier than the single season
optimal. This gives time for immigration of susceptibles to dilute the resistant
popuiation. As the time horizon is approached, the best strategy is again to spray at
the single season optimal time {7, since there is nothing 10 be gained by spraying at
another time.
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The optimal strategy evidently depends on the values of the discount rate and
the time horizon. In general the grower does not know these values with any precision.
This motivates the formulation of a closed loop strategy that, although possibly
suboptimal in a deterministic sctting, is nevertheless preferable in actual practice to
an open loop strategy. Such a closed loop strategy could be to spray at the optimal
time ¢* when there is no evidence of declining yield due to pesticide resistance, and
to spray earlier when resistance buildup begins to cause a reduced yield. Simulations
using such a suategy do indeed provide for an increased total discounted profit over
the time horizon.

In conclusion, the work of Plant et al. (1985} provides a method of interpreting
the results obtained from simulations involving more complex models. While large
scale models are essential in the development of precise predictions about a system,
simplified models can, at the expense of quantitative accuracy, provide qualitative
insight into the workings of both the more complex simulation models and the real
system that they are intended to simulate.

4. Estimating the state of infestation: scouting and trapping. One of the key
principles of the integrated pest management concept is that intervention should not
occur until the pest population has reached the economic threshold, that is, the level
at which the cost of treatment is economically justifiable. Adoption of this concepl
pecessitates some means of estimating both the economic threshold and the level of
infestation of a particular insect pest in a crop. There are at Jeast two possible ways
of estimating the population of pests of a given species in a particular location. One
way is to employ scouts 10 sample the plants, either by visual inspection, by using a
sweep net, or by removing certain plants 10 insepct them in a greater detail. The
second way is by setting out traps that contain a species specific attractant and
inspecting them regularly. This is particularly appropriate for highly mobile insecis
or for pests whose cconomic threshold is so low that their presence implies interven-
tion. Ln this section we review research in both of these state estimation methods. We
first discuss the application of sequential sampling theory 1o the method of scouting
along rows of crops. We then examine the type of information that may be gleaned
from trapping studies.

The objective in crop scouting is typically to estimate the mean number of pests
per plant. This statistic is then compared with a predetermined economic threshold
and if the mean population exceeds the threshold intervention is begun. The tradi-
tional method for determining the appropriate decision under these circumstances is
the sequential probability ratio test of Wald (1945). One of the first to discuss the
application of scquential sampling 1o a biological problem was Oakland (1950), who
showed how it could be used to estimate the average number of tapeworm cysts ina
batch of whitefish, Since then there have been numerous papers describing sequential
sampling plans for insect pest control. We cannot give an exhaustive list of these
publications, but a sequential sample might include Waters (1955), Allen et al. (1972),
Sterling (1976), and Onsager (1976). The latier papers contain many other references.

In the sampling of insect populations in a crop, one often assumes that the
population’s spatial distribution may be represented by a negative binomial {Bliss
(1956)). This distribution involves two parameters, the mean n and an exponent k. It
is characterized by (Anscombe (1950))

_ n -tI‘(k+r)( n )'
@n P"“""(”Tc) ATt \nt k)
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The value of k reflects the degree of overdispersion (i.c., aggregation) of the population.
The smaller the value of &, the more aggregated the population. As k approaches
infinity, the distribution approaches a Poisson distribution, while as k tends 10 zero,
the distribution becomes logarithmic {Bliss(1 956)). Natural populations almost always
yieid a small value of k, indicating aggregation.

One frequently-used sampling procedure, called sampling with a common &, is
10 assume that the value of k is a fixed paramecter determined by the species and
location. One then does a preliminary, fixed size sample to obtain an estimate for the
value of k. Unfortunately, in actual practice k is often found to depend on n {e.8.,
Sylvester and Cox (1961)). This increases the number of preliminary samples that
must be conducted and complicates the formulation of the probability ratio test. The
problem of mean dependent k may be avoided if the economic threshold is sufficiently
tow that n, is relatively small.

Allen et al. (1972) provide a good description of what might be considered the
wstandard” application of sequential sampling to insect pest population estimation.
Two alternative hypotheses are tested. Hypothesis Hy is that there is an average of ny
or fewer insects per plant, and hypothesis H, is that there is an average A, Oor more
insects per plant, with n, = 7> 7o where T is the economic threshold. The average
values np and n, are compuied from the distributon {e.z., (4.1)). The scout walks
along the row and periodically counts the number of insects on a plant. He maintains
a record of the cumulative number of insects counted, T, and the number of plants
sampled, m. After each count is recorded the scout must decide from among three
options: accept hypothesis Ho, accepl hypothesis H,, or take another sample.

An efficient procedure for selecting from among these options has been derived
by Wald (1947).

Wald begins by assuming that there is a known prior probability ge that Ho is
true, and a prior probability g = 1 = £ that H, is true. Let g denote the postenior
probability of H, after m observations, and pi(x) denote the probability function in
the m-dimensional space under hypothesis H;. Then Bayes theorem gives

8‘ = gl'pun(x)
- .SoPOm(x)"'glPim(x)'

The procedure for sclecting among the alternatives proceeds as follows. Choose two
numbers do and d, between 3 and 1. Hypothesis H; is accepted if gim & d,fori=0o0rl.
If neither of these inequalities are satisfied, another observation is made. Wald shows
that these events are mutually exclusive and exhaustive. The inequalities gon & dp and
gim & d\ are equivalent to

4.2)

(4.3) %’:‘ s%———' ;f“
and

Pim o_di
4.4 pngl =

respectively where pim = Pimlx). 1t is from (4.3) and (4.4) that the name “sequential
probability ratio test” is derived.

Since the prior probabilities go and g, are rarely known, in actual practice one
selects two constants, A and B, with B< A4, and acts according to the following
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procedure: accept Ho if pym/Dom @ B; accept H, if piw/Pom & A and make an additional
observation if B < pu/pom < A.

To select the constants A and B, one considers the possibilities for error. There
are two Lypes of errors that may occur, One, called an error of the first kind, is to
accept H, when Hy is true; the other, cailed an error of the second kind, is to accept
Ho when H, is true, Let O be the event that H; is accepted, and let P(Q) be the
probability of event O conditioned on the assumption that H, is true. Then Po(Q)) is
the probability of making an error of the first kind, and P,{(%;} is the probability of
making an error of the second kind. The constants 4 and B are selected to keep the
probabilities of these errors at specified levels, in particular, 1o establish the equations
FPolQh) =a and P,(Qo) =8, where o and 8 are exogenously given error rates.

To relate « and 8 to A and B, Wald (1947) first establishes that P(Q, + Q)) = |
for i=1,2, ie., that with probability | either Hy or H, is ultimately accepted. It
follows from the definition of 4 and B that P,{Q,) & APy(Q,) and P\(Q\) S BP:{Qy).
But Po((o) =1 — & and P{(Q,) = | — 8. Therefore

(4.5) LEPL B

l_aSB.
Wald suggests replacing the inequalities in (4.4) with equalities to obtain as an
approximation

(4.6) A=—-,

The sequential probability test is therefore the following: Accept Hp if 2im/Pom S
Bl —a), accept H, if pim/fpom&(l ~8)/a; take another sample if
B/(1 = a) < pim/Pom < (1 — 8)/a. In practice these tests are usually accomplished by
1aking the logarithms of both sides of the inequalities and thereby expressing them in
terms of the parameters of the distributions p,(x). This avoids computational overflow
or underflow problems.

If the mean population density varies over a fairly wide range, it may be advisable
1o abandon the sequential probability ratio test. A second sequential test, called
sequential estimation, has been developed by Anscombe (1949} and, independently,
by Kuno (1969). This method exploits the observation (e.g. Taylor (1971)) that in
natural populations the variance of a population sample may frequently be expressed
effectively as a function of the mean. As before, let n denote the mean number of
insects per plant, and assume that the variance may be expressed as a function f(n)
of the mean. Let T, denote the cumulative total of insect counts after sampling m
plants. Suppose that T, is plotted as a function of #1. The problem is then to determine
the equation of a curve y = F{m), called the boundary curve, such that when the plot
¥y = T., crosses the curve y = F(m), the mean n is estimated with a given coefficient of
variation. Anscombe (1949) shows that if the mean is estimated by

_Fom)

4.7 A o

where m, is the value of m at which the crossing occurs, then under certain conditions
f is asymptotically normally distributed with mean n and variance f(n)/myo, where m,
satisfies

(4.8) n= ﬂi’.’&! .
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Anscombe implicitly assumes that a solution o of (4.8} exists, i.., that the sampling
process terminates in a finite time. In practice the sampling process is of course always
terminated at some point, with a decision being made arbitrarily if no acceptable
estimate has been found at that point.

Therefore the equation for the standard error of the mean is

“4.9) % f(nl«) =q?

where a’ is the variance of the estimate. To estimate # with a coefficient of variation
b, one divides (4.9) by the sample mean, i.e., by (y/m)~. Substituting b? = a*/( y/m)?,
the equation of the boundary curve becomes

(4.10) f‘; f(%)——-b’.

The primary condition that these equations be valid is that the probability of
intersecting the boundary curve be small when m is small. For example, if a Poisson
distribution is assumed, then f{(n) = n, so to estimate n with a specified variance a,
(4.8) yields y = a’m?. Since this curve passes through the origin, it must be moved
upwards near m = 0. Allen et al. (1972) work out a sequential estimation plan using
the assumption that f(n) = c;n + ¢2n*. As with the sequential probability ratio test, a
preliminary survey must be conducted, in this case, to estimate ¢, and c;. Strictly
speaking, (4.10) is valid only if m is fixed in advance., However, Anscombe (1952)
shows that for large m the error introduced by implementing the estimation procedure
sequentially is small, In addition, (4.10) may be derived by Bayesian arguments,
which are insensitive to the stopping scheme.

A third estimation technique intended explicitly for agricultural insect surveys
has been developed by Wilson and his collaborators (Wilson et al. (1983)). Retaining
the notation of the previous paragraphs, let i denote the sample mean number of
msects per sampling unit, i.e.,

4.11) i=— Y x

A< Tg, the economic threshold. Suppose for the moment that m is fixed. By the
central limit theorem we have for large m

¥ x;—mn
(4.12) Pr{-Z. < —aZnr=l—a
" Jmitm
where Z.; is the standard normal variate. We implicitly assume that the variance
may be described as an exact function fof the mean n. Wilson et al. use the variance-
mean formula, developed by Taylor (1971),

{4.13) Simy=un*.
Equation (4.12) may therefore be written
(4.14) Prifi—Z.pvun'imsSnsa+Z,pvun'iml=t—a.

To ensure with confidence | = a that the population is below the economic threshold,
we require that

f4 15} ? ol T _ 5
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Equation {4.13) then becomes
(4.16) Pri2i-TeanaTe=1-o

In addition to providing an interval estimate for n, (4.16) ensures that the probability
of an error of the first kind is at or below a.

As with (4.10), (4.16) is valid only if the sampling procedure is implemented in
such a way that m, the number of samples, is held fixed and the equation is used 10
compute . While this is sometimes done in practice, often the rules are bent so that
the procedure may be implemented sequentially. This is done by substituting the
estimate n = ji into (4.14) to obtain a boundary curve equation of the form

_ Zinun
" Te-Ay

An analogous sequential sampling procedure may be derived using Bayesian statistics
(Plant and Wilson (1985)), which avoids the distinction between fixed size and
sequential sampling procedures.

Each of these threc sampling plans may be suited 10 a different situation. A
detailed comparison of the threc has not been made and would be a valuable
contribution.

Having described state estimation based on scouting, we now turn to rapping.
Insect traps are used to detect the presence of pest insects when scouting is not
practical or when the economic threshold of the pest is so low that intervention occurs
at pest population densities too low 0 be detected by scouting. For example, the State
of California maintains traps for several insects, such as the gypsy moth and the
Mediterranean fruit fly (medily), that are not currently pests in the state and that the
state wishes 1o prevent from becoming established.

A medfly population became established in Santa Clara County, near Sap Jose,
during the late 1970s. Under climate conditions such as those of Northern California
a medfly population can double every one Of 1O weceks (Carey (1982)), so the Santa
Clara population grew rapidly. It was the subject of an intense eradication effort from
1980 to 1982, In Sepiember 1982, after an expenditure of many million dollars, the
population was declared eradicated.

During the height of the eradication campaign over 100,000 medfly traps were
placed in areas susceptible 1o medfly infestation. These traps were used for two
purposes: 1o indicate the presence of an infestation in a given area, and 10 delimit the
extent of the infestation once it had been detected. The accurate delimiting of the
extent of an infestation is an important part of an eradication program. If the extent
is overestimated then pesticide treatment, sterile insect release, and the establishment
of quarantines may be applied 10 areas that arc not infested. The consequences of
pnderestimating the extent are more serious. The eradication program may fail or be
seriously set back if infested areas go untreated. For example, Lindquist and Nadel
(1982) suggest that one primary reason the sterile insect technique (SIT) failed 10
eradicate the medfly in the Northern California campaign was that the infested area
was not accurately defined. The original “epicenter” of the infestation was selected
because the first medfly in Santa Clara county was found at this point. The actual
epicenter was later determined to be some distance away.

The problem of using trap catch data to obtain good information about the
presence and extent of a pest infestation may be divided into two subproblems: setting

AV
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out the traps in the best possible way, and interpreting the trap catch (or lack of
catch).

The early theoretical work on insect trapping is concerned with using the traps
to reduce, as opposed to detect and delimit, the population. Much of the theory is,
however, similar for both guestions. Wolf et al. (1971) develop a theory for determin-
ing the trap density required to reduce a pest population by a given fraction. They
identify three parameters as necessary 0 estimate the performance of a trap placement
strategy. These are (1) trapping areas, i.e., the effective area of a single trap; (2) trap
performance, i.e., the fraction of insects within the trapping area that are caught by a
single trap; and (3) trap density function, i.e., the relative degradation in performance
with multiple traps due 1o overlap of trapping arcas. Wolf et al. give experimental
procedures that may be used to estimate the values of these parameters in the field.
They also provide formulas showing how the trap density is related to the estimated
population reduction.

Hanstack et al. (1971), drawing from the work of Wolf et al. (1971), attempt to
establish a theory based on more realistic assumptions. They first use mark-recapture
studies 1o estimate the performance of an individual trap. They express this perform-
ance by fitting their data to the equation

ER?

(4.18) P-——(—;;—R—‘),-

100

where P is the percentage recovery of pests released at a distance x, and E and R are
parameters. Hartstack et al. identify E as the single trap efficiency and R as the
effective radius of the trap. Using (4.18), Haristack et al. derive formulas for estimating
the density of insects in a given area, assuming this density is uniform. By assuming
that traps operaie independently, Hartstack et al. derive an expression for the
probability that an insect will be caught by a grid of traps. This is an aliernative to
the trap density function of Wolf et al.

Using a mathematical formulation similar to that of Hartstack et al., McClendon
et al. (1976) designed a computer simulation of insect population reduction. The
simulation computes the expected fraction of insects captured based on assumed
insect responsiveness and on trap placement configuration.

Cunningham (i981) identifies three physical variables as being the control
variables in selecting a trapping strategy. They are: trap density, attractant dose per
trap, and attraciant vaporization ratc. He shows how experimental data may be used
10 generate a simple model to predict the fraction of insects trapped in a marked
insect release-recapture study as a function of the dose per trap. Cunningham and
Couey (1983) expand on the work of Cunningham. They report the results of marked
release-recapture studies, analogous to those of Hartstack et al. (1971), with medflies.
Cunningham and Couey show that the percentage recovery function of (4.18) may,
in the case of medilies, be well fitted by an exponential decay function.

Mangel et al. (1984} consider theoretical aspects of trapping an insect population
10 gain information, rather than to reduce the population. They show that the trapping
process may be approximated as a Poisson prooess and treat the Poisson parameter «
as the single trap efficiency. The value of the parameter is proportional to the product
of two other parameters: the fraction ¢ of the population that is “trappable,” and the
cliective area /2 of the trap. Based on the single trap efficiency, and on the ratc of
spread o of the population, Mangel et al. derive a Bayesian expression for the postenior
probability that a region contains pests, given that none were trapped. The normalized
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difference between this posterior probability and the prior probability of the presence
of insects represents the amount of information provided by the traps.

The spatial extent of the region is assumed 10 be divided into square mile “cells.”
Thus, with a given dispersal parameter ¢, the prior probability p(i, j) is defined by

(4.19)  pli, j) = Probability that another medfly is in cell with coordinates (i, j),
given that a medfly was found in cell (0, 0).

The posterior probability is defined by

{4.20)  pUi, j, n} = Probability that pests are present in cell with coordinates (7, j)
given that therc were n traps in this cell but no pests were

trapped.

The amount of information provided by tapping is estimated from

Ae [p(l,f)-pga.J.n)] X 100,
pliJ)

which is the percentage reduction in prior probability caused by trapping. Mangel

et al. plot A as a function of » for given values of o and o, In this way they are able

to estimate the trap density that provide, the greatest per capita information gain.

To examine the efficiency of various trapping patterns, Mangel et al. conducted
Monte Carlo simulations of the trapping process. These were designed to simulate the
events taking place during the first 48 hours afier a medfly is detected. Within 48
hours of the detection of a medfly, protocol (Anonymous (1982a)) calls for the aerial
spraying of malathion bait. Aside from the obvious killing of many flies, spraying
distorts the infestation in complicated ways that are not clearly understood. Mangel
et al. therefore restrict their considerations to the interval between the detection of
the first medfly and the aerial spraying. They assume that all increased activity takes
place in a 9-mile by 9-mile region centered at the detection point. Current protocol
calls for the placement of 360 additional traps in a 9-square-mile region surrounding
the detection point during the first 49 hours. The primary question is whether these
360 traps couid be placed in a more efficient pattern.

In a simulation the infested region is a square, centered at (0, 0), whose perimeter
is a randomly chosen odd number between | mile and 15 miles. The simulation runs
for 100 units of time, so the time unit may be considered as .02 days. At each time
unit a medily becomes “trappable™ in one of the cells in the grid. The infestation is
assumed to be uniformly distributed so that at each time each cefl is equally likely to
contain the trappable fly. The fly appearing at the first time unit is automatically
caught. The cell in which the first fly is caught is the center of a 9 by 9 grid that
contains all the traps. There is no possibility of catching a fly outside the 9 by 9 grid;
this corresponds to not inspecting traps outside this region during the two day interval.
Within the 9 by 9 region traps are placed at a basic density of ten traps per cell, and
then 360 extra traps arc added in some pattern. Note that not all of the 81 cells in the
9 by 9 region around the epicenter need be in the infested region.

If a fly becomes “trappabie™ in a given cell in the trapping region, the probability
that it will actually be trapped is assumed to be .02 times the number of traps in the
cell. Thus for example, the fly is always trapped if there are 50 traps in the cell, and
is trapped with probability .4 if there are 20 traps. The number and location of the
flies trapped in 100 time units is recorded and the simulation is repeated.

(4.21)
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Several patterns of trap enhancement were tested using this simulation procedure,
These included the current practice of focusing the extra traps at the center of the 9
by 9 grid, placing them at the periphery of the grid, placing them uniformly across
the grid, and placing them in a cross shape centered at the center of the grid. The
resulfts indicated that placing the traps near the center maximized the number of
insects trapped, but that placing the traps at the periphery gave the best indication of
the extent of the infestation, The cross shaped pattern was a good compromise, giving
both types of information.

5. Summary and discussion. Our review is not meant to be exhaustive. Rather,
our goal is to show the variety ofanalytical tools that appear in problems of agricultural
pest control. It is unlikely that a “general theory™ will ever be developed. Each specific
problem requires an in depth study and detailed understanding of its unique features.
The appropriate analytical tools are then chosen according to the needs of the problem.
This, of course, is the way that the best applied mathematics and operations analysis
is done.

In our discussion, we have broken the problem of theoretical analysis of pest
management into three components. This subdivision is to a large extent artificial,
since in actual practice the three areas influence each other considerably, [t is, however,
useful as an aid in fixing ideas. Because of the overwhelming complexity of agricultural
pest management problems, there have been no individual works that consider the
overalt problem of pest management for a given crop (some, such as those listed in
the introduction, do come close). For purposes of illustration, we conclude our article
with a brief consideration of some of the effort that would be required to develop a
complete analysis of a crop system.

For our exemplary crop, we choose the tomato. Qur discussion draws heavily
from that in Anonymous (1982b). In beginning the analysis, one might consider the
problem of selecting from among various strategies for the management of some of
the moth larvae that are major pests of this crop, such as the tobacco budworm, beet
armyworm, and tomato fruitworm. These strategies include cultural practices such as
discing immediately afier harvest to destroy larvae and pupae; biological practices
such as the release of parasitic wasps; and chemical practices such as the application
of broad spectrum insecticides. *

In analyzing the strategy selection problem one must be cognizant of the various
possible tactics. For example, in the application of chemical insecticides, a common
practice is to spray the field twice, once early in the season, and once late in the
season. The carly season spraying of a broad spectrum insecticide will, however, kill
predatory insects as well as the target pests. The removal of predators may resalt in
outbreaks of secondary pests such as mites and stink bugs, so if possible, this early
application should be avoided. It will be possible 1o avoid the early application if a
reasonable means of estimating the numbers and types of pest insects present is
available. Such a means is given, for example, by Zalom et al. (1983).

In addition to the means of estimating the current population of each major pest,
the grower must also have available a reasonable estimate of the level of economic
damage that would be caused by that pest, thus enabling the grower to establish an
economic threshold. We bypassed a discussion of the economic threshold in §§2 and
3 because the specific examples considered in those sections did not incorporate the
concept. We therefore take up the matier now.

The notion of the economic threshold was first made explicit by Stern et al.
(1959), who define it as “the population density at which control measures should be
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determined to prevent an increasing pest population from reaching the economic
injury level,” where the economic injury level is the lowest population that will cause
an amount of injury sufficient to justify the cost of the control, Headly (1972) provides
the first attempt to quantify the idea. He constructs a simple mathematical model of
the pest population density. In this model, the value of the crop as a function of pest
population is a decreasing, concave function that reaches zero at a finite value of the
argument. Cost of control is a monotonically decreasing, convex function of popula-
tion density. The derivatives of these functions are equal at exactly one value of the
population density, and it is this value that Headly defines as the economic threshold.
The justification for this is that by maintaining the population at this level the farmer
maximizes his profit. The problem with this definition is that in most cases of control
by a pesticide the pest population cannot be maintained at a given level; rather, it
increases to a certain level and is then drastically reduced by the application of the
pesticide. Hall and Norgaard {1973) extend Headly's definition to take this fluctuation
into account.

The determination of the economic threshold is one of the most challenging
aspects of the modern theory of integrated pest management. The threshold varies
from species to species, even among closely related species, from time to time, and
from place to place. The literature does not contain much specific information on
economic thresholds for tomato pests. The review articte by Stern (1973), and the
references therein, is a good source of information on the work involved in actually
establishing the economic threshold for a given crop—pest system.

In summary, the development of a theory that would allow an adequate strategy
selection procedure rests on a consideration of tactics and ultimately on the ability to
successfully monitor the state of the crop. If 2 monitoring method is available, then
the state estimation procedure generally involves a periodic sampling of the field to
estimate the insect population. Pesticides are not applied until the population passcs
a predetermined economic threshold. If economically justified, cultura! and biclogical
means of control may be used to try to keep the population below this threshold.
Mathematical models may be used to aid the fasmer in establishing the economic
threshoid and to determine a suitable combination of chemical, biological, and
cultural practices for a particular crop-pest system.

One of the primary reasons for the wholesale acceptance of chemical pesticides
by farmers is that these pesticides provide a sure, simple means of controlling the
crop damage done by pests (Perkins {1982)). Unfortunately, the ability to rely on this
means of control is rapidly diminishing. The challenge for applied mathematicians is
10 aid in providing the theoretical 10ols necessary 10 provide an environmentally
sound alternative to simple reliance on pesticides that is accceptable to the farmer.
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