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Abstract

We describe a parallel algorithm for computing optical Bow from
short-range motion. Regularising optical flow computation leads to &
formulation which minimises matching error and, at the same time,
maximises smoothness of the optical flow. We develop ax approxi-
mstion to the full regularization computation in which corresponding
puinis are found Ly compating local patches of the images. Selection
among competing matches is performed using a winner-take-all scheme.
The algorithm accommodates many different image transformations
uniformly, with similar results, from brightness ta edges. The opti-
cal flow computed from different image transiormations, such as edge
detection and ditect brightness computation, can be simply combined.
The algorithm is easily implemented using local operations on a fine-
grained computer, and has been implemented on a Connection Machine,
Experiments with natural images show that the scheme is effective and
robust against noise. The algorithm leads to dense optical flow fields;
in addition, information from matching facilitates segmentation.

1 Introdunction

Optical flow is generated on the reting of an observer by objects moving
relative 40 the observer. The changing patterns of image brightness on
the retina define a vector field, the optical flow. In restricted cases,
the motion of scene objects can be deduced directly from the optical
flow. Rich qualitative information on the motion of objects and their
boundaries is contained in the critical points and discontinuities of the
optical flow.

The velocity field of object moving space is & 3D vector ficld
Wiz, y,1). When projected into the retinal {image) coordinate system
of an observer, this field generates the projected velocity field of object
Wy(2,y). What is observed on the retina is the image brightness change
Elz.y), Erpac(z.p). The optical flow, V(z,p), is a time-varying vector
field describing image brightness change. In gencral, V and Wylz,¥)
are not the same.

In the Vision Machine project 23], our goal is to devise robust
methods for computing eatly vision modules and to integrate these
modules. The flexible, robust behavior of the human visual system is in
large part due o integration of many early vision modules [4, 22]. The
output of this integration stage is & map of the physical discontinuities
in the scene, in the image coordinate system. The optical flow and its
discontinuities are important inputs to the integration stage and can
provide cues to figure-ground separation, as bas been demonstzated in
the visual system of the fiy[25].

1.1 Assumptions

In our approach 1o computing the optical flow, we make several as-
sumptions about the imaging conditions. First, the time At between
images is small, on the order of one video time frame (1/30th second).
Differential spproaches to motion vision rely on the spatial snd tem-
poral derivatives of images to compute optical fow {10, 7]. When the
velocity, in the image plae, of image elements is small enough so that
the Taylot series expansion holds, temporal derivatives are meaningful.
The time derivative at & point depends on the projected velocity and
the spatial variation in surface luminance. This is the case of instan-
tancous motion; correspondence between elements in the two images is
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not & ptoblem. In the situations we describe, surfaces are moving too
fast for instantaneous temporal derivatives to be meaningful. Our algo-
rithm assumes that image displacements are small with respect to the
image sise, within » range (1§, £5), but that § can be Inrgez than 1 or 2
pixels. Unlike long-range motion schemes, as in structure-from-motion
{28], the distances are relatively small compared to the size of the ob-
Jects in the scene. We term the restricted motion situation short-range
motion. Since correspondence of image elements must be determined,
motion computation under these conditions resembles binocular sterco.

Between frames the appearanee of a moving object can change due
to ils own motion, camera motion, light source motion, or all three,
among other effects [30). However, when the local brightness variation
in the surface albedo is sufficiently large, the errors intzoduced by these
effecis are celatively small.

1.2 Constraints on Motion

We use the following constraints to identify the correct optical flow:
unigueness, each image point has a unique velocity, and continuity,
surfaces are locally smooth.

Physical coastraints on motion limit the spatial variation of the op-
tical flow field. First, the projected velocity field of & planar patch
under arbitrary, rigid 3-D motion is quadratic in (z,¥)- A constraint
that is true under more restrictive conditions is; the projecied veloe-
ity Reld of a planar patch, translating parallel to the image plane, is
constant. This is true in limited cases but it is often a satisfactory
local approximation (see {10, 12, 16]). Our algorithm uses the local
flow constancy astumption; our experiments with support determined
by linear variation have shown relatively litile improvement, aad only
at discontinuities.

2 Regularization Formulation
2.1 Aperture Problem

When a contout is locally a straight line, over an extent large relative to
the feature size, the range of possible match points is a one-dimensional
sei of poiats lying oo the contour. In the formulation of Marr and
Ullmax [18], only the velocity normal to the straight contour can be
tecovered; they lermed this the Aperture Problem because s moving
edge, seen through a circular aperture scems to be moving normal to
itself, while the transverse component of the velocity is not perceived.

In the optical Aow algorithm of Hotn and Schunk [10], at each point,
there is one equation in two unknowns:

wdE/dz + v dE/dy + dE /dt = 0 {1}

Here, the optical flow computation is always locally underconstrained;
an additional constraint must be provided by choosing the smoothest
optical Aow subject to the single data constraint at each point.

When the image within the aperture is not simply a portion of &
line, i.e., when the matrix of second partial derivatives of the image,
the image Hessian (Eij): is not sero, then the velocity can be correctly
identified [26]. For example, if the aperture contains & cotner, the con-
straints for each edge form a line in velocity space, and the correet ve-
locity lies on their intersection(19). The aperture problem is an instance
of the corzespondence problem. When the window used in matching is
large, i.e., the features themselves have large spatial extent, then theze
will likely be some variation in otientation of the included contour and
the aperture problem will not occur.

In order to make the optical flow computation well-posed, we
regularise(2] the solution, adding constraint to the computation, for



example, by chocsing the smoothest optical fow field fitting the data.
This leads to formulations of optical fow which apply the regularising
constraint to compute the smoothest velocity field which matches the
data, both azea[10} and contour based8),

2.2 Regularization for Short-Range Motion

When the projected motion of objects is small relative to the image sise,
we can restrict the search for corresponding points to small regions
in the image. We look fot a discrete motion displacement V(z,y) =
(u(z, ), v(2. ¥)) € (26, 28) to minimize:

jlé(ﬁ‘:(z.r]. Evalz + wAt,y+ vat)) +
Adu/de" + dufdy’ + dvfdz? + dv/dy’)|dady (2

where ¢ is a comparison function which measures the pointwise match
between two images. Even with the smal! motion sssumption, the com-
plexity of this procedure is high; st each point, the pamber of possible
displacements is (2¢ + 1)* The number of possible vector fields fot an
N = n x n image is:

(26 + 1)3¥ (3)

Of course, many of these vector fields are faz from smooth.
2.3 Approximate Algorithm

We approximate the above equatian, uting the constraint of piecewise
planarity. Recall that the projected motion of a plagat patch orthogonal
to the viewing direction is constant over the projected ares of the patch.
Choose a patch diameter v, dependent on distance to objects in the
scene and their expected sise in the image. The maggaitude of § depends
on the expected velocities of objects in the scene, their distances from
the camera, and the time separation Al between frames.

We construct the optical flow pointwise. For each displacement, each
point determines evaluates ¢ at that displacement. Then we sum the
match scores over the region P,. Eack point chooses the displacement
which maximises the patch seare, over all displacements. This is the
operation of “non-maximum suppression”, or “winner-take-ali® across
velocities ont of the finite allowed set. We identify & displacement only
at those locations (z,y) at which the maximum vote is unique; ties are
ambiguous and ase climinated. Fig. 1 shows s schematic diagram of the
computational stages, using the Ly norm ss ¢. The resulting velocity
field is the union of these pointwise vector displacements. The number
of poasible fields is enormously reduced:

(2 +1)°N {4)

The spproximation, in each overlapping patch P,{r,y} of diameter v,

2 #Ei(2.3), Evarla + 8ty + vAY)) ®
[ 4

¢ is & comparison function, for example, [y norm. Drumbeller mnd
Poggio [6] use a similar voting scheme 1o select cortect matches in stereo.

3 Matching

In computing optical Bow for short-range motion, correspondence
smong image elements must be determined by some form of search,
as in sterco. In optical flow, the seazch for a matching peint is two-
dimensional, whereas in sterea, the correspondence is restricted 1o one-
dimensional loci, along epipolar lines. However, by assuming that the
magnitude of the projected motion is small, we can constrain search to
a small region in the image plane.

3.1 Matching Primitives

We formulate matching, using the planar patch assumption, as miai-
mising the difference between a patch of one image containing & feature
and & patch of the second image containing the, possibly transformed,
feature, Edges are useful descriptors. Edge are localisable, and provide
constraint in their normal direction, and record location with sharp
variation in image brightness, which are less likely to be disturbed by
optical cffects (changes of dlumination and surface orientation due to
rotation). However, other locations not on edges are also useful. Edge

maps are jusl a particulaz transform of the input brightness. Brightness
can be used directly. Generally, matching minimites the comparison
function ¢ between a site in the image at time ¢, E,, and a site in the
image at time {+At, Ey, 4. The comparson function ¢ may include an
edge-detection step ot some other image transformation, for exampie,
convolution by V3G, Transformation by ¢ yieids:

I = ¢(E,) 03]

The general matching eriterion, under motion 2 = (v,,1,) is to mini-
mise:
Iz, ¥), Lrarlz + v Al ¥ + vy At)) (7

Typically, 7 is sn binary edge map produced by an edge detecior such
as the sero-crossings of VG or the output of the Canny edge detec-
tor {5]. For a binary edge map, ¢ reduces to logical and, or logical
multiplication, of the binary edge maps, and the optimization becomes
maximigation. However, this does not ireat the two images symmetri-
cally, since it only counts matches; it is beiter to minimise & matching
function ¢ which is the logical difference or ezclusive or of binary im-
ages. Further refinement to the comparison function can be introduced
by labeling edges with the direction of the gradient VG« £ at Lhe edge.
The comparison function then must check that the difference between
edge directions is within an allowable range. The comparison func-
lion ¢ becomes more complex, but still retains the flavor of a logical
comparison. This coupling of comparison function and transformation
produces an output only at edge points. An obvious extension to the
edge-based method is to use:

I'= signum(V?G+ E) {8)

letting ¢ again be the czclusive or. Nishibara {20] bas utilized this
compatison function in a stereo system, PRISM. Going one step furthez,
one can use the brightness values directly, letting I = E; the compazison
function then becomes:

#pgl=lp~q (9}

where the norm is suitably chosen, for example, the Ly norm. We
do not match brightness directly, since the presence of noise makes the
process unstable; rather, choosing the pixel whose brightness minimises
Eq. 9 regularizes the solution of matching [2]. There are theoretical
erguments that support the equivalence of cross-correlating the sign
bit of the Laplacian filtered image and the Laplacian filtered image
itsell. The argument is based on the following theorem, which iy a
slight reformulation of & well-knowa result, ’
Theorem

i f(2,y) and g(2,y) are 3¢20 mean Jointly normal processes, their
czoss-correlation is determined fully by the correlation of the sign of f
and of the sign of y ( and determines it). In particular

Ry, = garuin(ﬂf,,)

where f = sign Juand f=eigng

Thus, cross-corretation of the sign bit is exactly equivalent to cross
correlation of the signal jtself (for Gauasian processes). Notice that
from the point of view of information, the sign bit of the signal is com-
pletely equivalent to the sero-crossing of the signal. Nishihara first used
patchwise cross-correlation of the sign bit of DOG filtered images{20].

Recently, Uras et al, [29] bave reformulated the instantaneous mo-
tion problem to use the brightness gradient constancy assumption.
Then there are two constraints at each point in the image and the al-
gorithm oaly suffers from the apertuze problem when in fact the image
only contains, in the pateh (or apetture), one-dimensional information.
The gradient VE can also be ysed as a primitive in our algorithm, and
the comparison function ¢ is the magnitude of the vector difference of
gradients.

3.2 Local Support from Features

Patchwise comparison in the voting method implicitly creates larger
featuzes from individual elements. A solitary pixel, of course, is not a

suitable primitive for matching {17]. A single edge pixel, by compatison,
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Figure 1: Schematic of the slgorithm

is the result of computation which has suppott over a large ares, specif-
ically the area of the filter used in the edge detection step, typically,
bundreds of pixels. The edge point is a compact local description of
brightness variation st that point. Consider using as a feature a patch
P of pixels surrounding each point. Then the compatison fanction for
the L; norm becomes

$20) = 3 ((h(2.9) - Livarlz + v Aty + v AP (10)
P

and the matching minimises the sum of the squared differences in
brightness. Of course, this reduces to maximising

Zplllay) x Liyailz + 9o AL,y + v, At) (11)
Lrllyails + 9,4ty + v A1)

which is the normalised cross-correlation.

3.3 Local Support from Constant Optical Flow
The assumption of locally constant optical flow leads us also 1o find the
matching which minimises Eq. 10; the sise of the patch is determined by
the assumed size of the Projected planar patches on the object surface.
We are assuming a constraint on the local variation of the optical flow.
Local support is, of course, in our {ormulation, overlapping from
pixel to pixel. Each pixel, surrounded by its patch, of diameter v, inde-
pendently chooses the optical flow to maximise matching in its patch.
Beeasuse the paiches ovetlap, the optical flow field has a smoothness
property, depending upon v. When o > 0. the local support region
{assurmed to be squaze) of each point shares o7 of its area with the
support regions of its near neighbors in the grid. When v is sero, the
data used by each pixel is entirely independent of all other pixels; as v
increases, the flow field becomes smoother, because the support region
of adjoining pixels are essentially identical,

3.4 Choosing between Primitives

Finally, the output of the detection process can be defined either at
some subset of the pixels, typically the edge points, or at all pixels in
the image. Edges produce reliable tesults, because edge elements are

less affected by optical effects, and their sparseness reduces ambiguity.
When cutput is restricted to edge points, this sparseness is also o lia.
bility, requiring subsequent interpolation. We do not distinguish points
where there is an edge feature, so that, even if the input is sparse, the
output selection of a displacement is defined everywhere,

On the other hand, brightness primitives are dense, and are de-
fined everytshere, but may be subject to ambiguity and be perturbed
by optical eflects. However, working directly with brightnesses over
large regions has several advantages: sssuming that noise is indepen-
dently distributed, the expected sum of brightuess differences over large
regions should be binsed by the noise, but to the same extent every-
where. By avoiding the edge detection step, the effects of noise are lim-
ited. This effect is apparent in our experiments. We bave found from
experimentation that brightness primitives are reliable, and will outline
a scheme for combining both brightness-based and edge-based schemes.
The reliability of brightness-based methods can be increased by sim-
ple preprocessing to remove any offset introduced between frames. In
practice, we transform brightness values by subtracting the local aver-
age brightness, computed by eonvolution with & large Gaussian.

4 An Iteration Scheme

The implementation of the local quadratic variation constraint is com-
putstionally expensive, even for coarse discretization of the velocity
values. The simple assumption of local constancy is adequate in prac-
tice. Though it may be unnecessary in practice to consider quadratie
support, it is of interest to develop & scheme that allows for a fast
approximate solution based on the constant field assumption that is
then tefined in tezrms of higher order assumptions such as linear and
quadratic support. It is natural to consider an iteration that first finds
the best “constant” solution, then refines it with the best “linear” cor-
tection and finally finds the best “quadratic” correction, In general, the
best quadratic correction does not provide the best quadratic approxi-
mation. Results however about the estimation of polynomial operators
(see for instance (21] theorem 4.2) suggest that iterating the procedure
should converge to the best quadzatic approximation, In this way we
can find the best “constant” estimation of the optical Aow and then re-



fine it by successive iterations that cycle from the lowest to the highest
order and to the lowest again. For the best linear estimate, the field
contains six coefficients, the two constant terms, plus the four linear
coeficients (two each for z and y). Then the number of possible fields
{compare with Eq. 4 depends on the range £« over which the linear
cocfficients vary:

(26 + 1)(2e + 1)*N (12)

5 Parallel Implementation

We have implemented the local voting aigotithm on & fine-grained par-
allel machine, the Connection Machine[9], which is particularly well-
suited to the form of this algorithin (14). The initial image transfor-
mations E, — J,, smoothing, gradicnt operations, and edge detection,
are all implemented on the Connection Machine. These operations de-
pend only on data found in nearest-neighbors in the image coordinate
system. Iterating over the displacement range (4, +46) is sccomplished
by shifting I, over I, 5, using focal data movement operations, which
are telmtively Tast for any machiae, such as the Connection Machine,
that embeds & two-dimensional mesh. Evalustion ¢ on the shifted 1,
is & purely pointwise computation. Then, the sum over P, can be per-
formed in a vatiety of ways: first, region summation ‘14] computes the
sum of any large square region in a mesh on the Connection Machine in
constant time, using hypercube wires, and, second, shifling and sum-
ming ${, L.an) Berazively over the width v in 2 and y will calculate
the sum in time proportional t¢ v. “Nos-maximum suppression”™ or
“wigner-taxe-adl” is, of course, pointwise.

6 Combiwning Severa]l Transformations

Iz Section 3.4 we argue that the distinction between brightness values
mad edges should wot be sharply drawn. It is, however, advantageous
whea using brightness values Lo consider the effects of local variation of
illumination, noise, and other optical effects on brightness values. Vaz-
ious analyses have shown that, when brightness values vary rapidly in
the image, their position can be tracked well scross time. So, we com-
bine edge-like information with brightaess computation by suppressing
the votes at pixels where the gradient magnitude is low. This allows
more relinble data to dominate the less reliable data, An rnative
scheme for combining edge and brightness primitives simply pums the
votes and proceeds as before.

T Discontinuities

The optical flow field derived by our algorithm is & 2-dimensional vector
field defined in the image plane. It is customary 1o detect the projected
boundaries of objects in the projected velocity field [1]. Motion discon-
tinuities can be found by using an algorithm that was suggested by data
on the imseet visual system (25]. The ides is 1o inhibit ot veto the value
of the optical flow at each poiat by the average value of the field overa
large region centered at that point whenever the motion is of the same
type. The scheme suggested by the fy meithod is the following: at each
&,y corsider sepatately the # and the y component of the optical fow,
take its value and divide it by the average value, computed over a lazge
region. Fig. 4 shows the output of this operation on two examples. The
average may be Gaussian weighted. Interestingly, the basic operation is
very similar to & recent proposal by [13]. It is also similas to rorming
& center-sarround operation (such as the Laplacian of & Guauspian, but
with murch lazger surround) on the logarithm of the optical Sow.

Alternatively, discontinuities ean be detected during the computa-
tion of optical flow. At motion discontinuities the assumption of a
constant (or liaear or quadratic) motion field is obviously wrang. Two
surfaces, undergoing different motions, are in the patch. One would
expect therefore that the “votes™ at & motion discontinuity (spy in the
case of the “constant™ motion algorithm) would fail to suppost cleasly
any single velocity. In fact, regions of close “ties”, or equivalently of
winaers with locally minimum votes, ofien delineate motion disconting-
ities. Our implementation of this proceduze scales the number of votes
at & location by the total number of features in the voting neighborhood.
Close ties teceive values near 0.5. This idea can be developed further
by considering more complete statistics of the votes [6, 27]. Berause we
compate discrete displacements, rotational motion causes optical flow

Figure 3: Sparse output from edge-based algorithm

varistion which generates discontinuities between neighboring flow vee-
tors. This type of discontinuity can be identified by examining coarser
discretisation of the displacement range, or by examining the higher
order cocfficients in the flow variation (see Section 4).

8 Expeériments

The algorithm with various image transformation and comparison
schemes has been run oo several images acquired under telatively uncon-
-strained conditions. All images are taken in indoor lighting conditions,
where illumination is far from constant, even under small displacements
in the world.

Fig. 2 shows an image of a mobile robot as jt undergoes trans]ational
motion in the direction its cameras point. The projected motion is
relatively small, under § pixels per frame. Fig. 3 shows the optical
flow, output at edge elements, where the input is the thresholded sero-
crossings of V(Y and the comparison is & ezclusive or. Fig. 4 shows

the output of the discontinuity detection scheme suggested by studies
of the fly.



Figure 5: Rotating and translating persons

The next seties of figures show the algorithm operating on images
taken at time interval spproximately 0.1 seconds: in Fig. 5, the person
oo the right is translating upward, while the person on the lefd is ro-
tating toward the camera, The time between frames is relatively lurge,
bus the projected displacements on the image remain less than 8 pixels
per frame. Fig. 6 shows the output (st edges) of a matching scheme
using Canny edges and logical and comparison, sbove, and the dense
output from brightness-based comparison below. [n Fig. 7, discontinu-
ities detected by local minima in the voting function wre displayed ~
above is & continuous skeleton of the local minima regions, while below
is & disctete skeleton of the same local mibima. Note how these skele.
tons correctly identify the figure-ground boundaries associated with the

moving figures. Gaps in these boundaries occur when the optical flow,

fields are ambiguous - at ebject boundaries where motion js tangent to
the surface normal. Further details on ¢xperiments with the algorithm
may be found in [15].

Figuee 8: Top: Canny edge-based flow; bottom: brightness-based flow

9 Discussion

The algorithm will not find, in geaeral, the 2.D projection of the true
3-D velocity field, This will happen only when the features used for
matching correspond 1o markings on the 3-D surfaces and when either
the features are sparse {no ambiguiiy) or the disambiguation step (the
voting aad non-maximum supptession stage) finds the true cotrespon-
dence (ie., the underlying assumptions are satisfied}. Even when the
vesult is not the true motion field, the algorithm will usually preserve
its most importaat qualitative properties(30). Most importantly, dis-
continuities in the derived optical flow will, very often, correspond to
object boundaries.

The optical flow algorithm we desctibe exhi bits the same behavior ag
the buman visual system as seen in psychophysical experiments {3] in-
cluding the barberpole illusion and motion capture(24]. Unlike other op-
Lical flow algorithms {11, 31], our scheme is one-step, non-iterative and
does not require later smoothing steps to regularise the computation,
Further, the mechanism dizectly provides excsllent cues for segmenta.
tion. Qur future work includes investigation of multiple scale methods
for Iarger motions, Currently, the algorithm operates on single frames,
but multi-frame analysis, with the use of spatio-temporal flters, should
improve the results, Adaptive chaice of neighborhood size, ncar discon.
tinuities, either during the feed-forward step ot during a feedback step,
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Figute 7: Continuous skeleton of low relative vote regions

will significantly improve performance near boundaties, In addition,
the size of the patch (the neighborhood sise} should be reduced when
our main assumption is not satisfied. ie., when the prajecied velocity
£eld i ot locally comstant. Fottunately, it is relacively inexpensive 1o
evaluate multiple neighborhood sises on the Connection Mauchine, dur-
ing the comparison stage. Ambiguity arises duting matching when the
image paich does not contain significant detail. Wheze the selectivity
is low, our algorithm can expand the patch sise (or choose one of the
larger, pre-selected sizes), o reduce the accurrence of ambiguity.

10 Conclusion

There are several advantages of our method over differential approaches
to motion detection. Fiest, it handles larger motions (we have used it
for displacements up to 20 pixels), without sacrificing discrimination
of small motions. Second, noise is reduced by summation over Inxge
support regions and not using derivatives, Our method uniformly in-
tegrates many image transformations, and leads to dense optical flow
fields. Dense flow fields remove the necessity of interpolating or smooth-
ing the output field. Further, scgmentation ia improved since it is not
combined with interpolation. Additional information for segmentation
is provided by the statistics of the voting step.
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