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A formal identity is demonstrated between the equations describing the dynamical evolution of a net of noisy RAMs and those
for a net of noisy neurons, under certain assumptions on the latter. The dynamical evolution of such noisy nets is investigated
both analytically and by computer, and found, in the generic case, to evolve to a unique stable fixed point for the RAM/neuron

outpul probabilities.

It is obvious that living neural nets represent a so-
Tution to the problem of the construction of intelli-
gent machines. However, the exact nature of that
. solution has not yet been discovered. This is so de-
" spite several decades of intensive experimental and
¢ theoretical effort, going back to the work of
McCullough and Pitts [ 1], whose description of the
neuron as a binary decision element {(BDN) has in-
formed much later work in the field. The activity of
nets of BDNs was also expressed in mathematical
~ form {2], which led to further atiempts to explain
brain activity [3], though without any fundamental
breakthrough. The McCullough-Pitts model was
subsequently extended by many authors, most not-

. bly Little [4], to include an account of thestochastic

nature of synaptic transmission, the so-called “noisy
neuron”, Little's model was not concerned with the
details of synaptic physiology, all sources of noise
(such as random variations in the number and size
of the packets of neurotransmitier released by a pre-
synaptic neuron, or spontaneous leakage of trans-
mitter substance into the synaptic cleft) being
absorbed into a single, neuron-dependent “spon-
taneit~ arame:i:-"; authors such as Shaw and

Vasudevan [5] were later able to inject a greater de-
gree of biological realism by modelling more closely
the details of synapse-synapse interaction. However
there are alternatives to models of the Little type, for
example the model due to Taylor [6,7]. This is
roughly equivalent to that of Shaw and Vasudevan
in the degree of biological precision involved, but
represents a somewhat different approach to sto-
chastic neurodynamics, one which emphasises the
primary role of individua! neuronal firing
probabilities.

The Taylor model for a noisy neural net will be
shown in this paper to be formally equivalent in its
dynamical development 10 a network of “noisy” ran-
dom access memories (RAMs); this equivalence
hoelds out the prospect of a direct hardware realisa-
tion of noisy neural networks, and the possibility of
designing nets which are capable of displaying a
modicum of “intelligent” behaviour and are able to
perform useful work. Conventional, deterministic
RAMSs are used throughout the electronics industry,
and nets of RAMs with a limited level of noise have
been suggested recently [8] to enhance the capabil-
ities of the WISARD pattern recognition machine
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{9], which in its original form used purely deter-
ministic memory units. The realisation of the Taylor
model as a noisy RAM-net - with cach electronic unit
playing the processing role of a single neuron - would
be very much in the spirit of current connectionist
approaches 1o Al [10]. To date the vast part of the
rescarch into parallel distributed processing (PDP)
models of cognition has been done using simulations
on conventional serial computers; such simulations
are slow and costly, Any direct implementation of
PDP ideas in hardware, using some form of neuron-
analogue, would surely be of great interest since it
would allow the construction and study of much
larger and more complex networks than is practic-
able with serial (or *modestly parallel” ) simulations.

Current research in VLSI technology, aimed at
building progressively faster machines, is tending to-
ward a situation in which only nearest-neighbour in-
teractions between components will be practicable;
such a restriction on connectivity would represent a
severe limitation for a machine of the type we en-
visage. However, it should be noted that for many
applications (for example in the ficld of computer
vision) this search for ever-increasing speed is re-
lated to the need to simulate on a serial machine the
operations of a vastly parallel one. Since we would
be working with a machine of the latter type there
does not appear to be any difficulty in hardware im-
plementation associated with transmission times be-
tween different RAMs (if commercially available
‘RAMs with response times of microseconds were
used, they could be joined by wires of metres in
length). We do not fecl that a restriction to micro-
second response times would be unduly damaging,
given that such a “peurocomputer™, although slow
by some standards, would nevertheless be able to op-

" erate at speeds several orders of magnitude greater
than the biological hardware which inspired it.

In addition to demonstrating the formal equiva-
lence of the Taylor model and the noisy RAM net we
present an analysis of the time-development of such
noisy nets. In particular both analytic and compu-
tational techniques are used 1o determine this be-
haviour, and our results compared with those of other
models.

We start by summarising the assumptions and fun-
damental results of the Taylor model [6] of noisy
neural nets. The assumptions are as follows:
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(1) There are N neurons, with arbitrary connec-
tivity, and total activity at time ¢ described by the
probabilities p,(f) (1<j<€N) that the neurons will
fire.
(2) Time is assumed discrete, t=0, 7, 21, .., in
terms of a smallest unit of time, 1, related to the re-
fractory periods, synaptic and other delays, etc. for
the various neurons.

(3) Neural firing is determined by the total amount
of transmitter substance arriving on a given neuron
from the other neurons (or itself ), with no spatial
delay of post-synaptic potential over the dendrites or
cell body up to the axon hillock.

{4) Transmitter substance is released into the syn-
aptic cleft in 2 Poison process with frequency ;' and
lifetime f,.. The probability density function of
transmitter substance is then

p(g)=e? ”};o (n!)~'A"3(ngo—q) , 1)

where A=1,.. /1, and g, is the quantum of transmitter
contained in a synaptic vesicle. The suffix s denotes
thar the activity arising from (1) is spontaneous. The
parameters A and g, will, in general, depend on the
indices j and /, where j denotes the presynaptic neu-
ron, i the postsynaptic one (and g; may be negative
for an inhibitory effect).

(5) The arrival of a nerve impulse from the jth to
the ith cell causes the reiease of n; number of vesicles
into the synapse; the density function will then be

p(@)=8(g~n,qt”) . (2)

(6) The ith neuron fires at a given time if the total
amount of transmitter substance (spontaneous, due
10 the leakage through the function p, of (1)}, or ex-
cited through p, of (2)) is larger than some critical
value g, which again may depend on i..

The above assumptions determine the equations
governing the time development of the set {p;(7)} as

(8]

p{t+l)= T dﬂﬁ qul'i‘f(q-;, qu)
a7
Xl;l (1) p§ () + [1=p () I (g)}.  (3)
This is a dynamical equation in which the r.hs. isa

7
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polynomial of degree N in the variables {p,(¢)},
1€ & N. The simplest case is for N=2, when (3)
takes the form

P+ )=(a /i oy

+a:pi Pt as popa) (1), (4a)
éz.(f'i' )=l D2+ B DD
+Bp B (1), (4b)

with f=1-p and with the constants

ag= :f dqjdq; 49, 6(¢— ¢\ —q2)

€

Xp"(g)0i' (1), (5a)
a= [ agpt(g-asm), (sb)
ai!
ay= j dgp{(q-qf'"), (5¢)
N
ay=0(g'"’ +¢f' —g{"). (5d)

The N-neuron case can be given as a generalisation
of (4), (5). Thus if a denotes a binary N-vector
a=({(a, .., ay), a;=0 or 1, then the probabilities P,
for net activity @ related to the probability vector
P=(p,, -, px) may be defined as [9]

N
1".(1")'“'_1"[l prpr. (6)
Then (3) has the general form
P(t+1)=Y al?P.(p(1)), )]

with the ol constants defined by & set of equations
" analogous to (5). It might be thought that the sim-
plicity of (7) makes the 2¥ state variables {F,} more
appropriate to use than the N individual firing prob-
abilities p; however it was shown in ref. [9] that
identitics beiween the P,'s make the linearity of (7)
{and corresponding possibility of a markovian ana!-
ysis of the system) only an illusion, and that the p,
are in general the more suitable variables (the recent
report of Clark [3] also contains a careful discussion
of this issue, in the context of his own markovian dy-

328
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namical model). It is relevant to remark that the po-
lynomality on the r.h.s. of (7) has been noted as
useful in ref. [10], where elements with such inputs
were called “sigma pi” units {2, ch. 2].

It is possible to relax some of the above assump-
tions and still preserve the polynomial form of (3).
Thus the distributions {1) and (2) may be modi-
fied, for example to include the ~ariability in size of
¢4¥ (as Shaw and Vasudevan did), or the assump-
tion of a sharp cut-off at ¢, for the response of the
total neuron i. It is also possible to discuss the dy-
namical development in continuous time [6,7]
though that will be considered in more detail
elsewhere.

We now turn to the noisy RAM net equations
which represent the other side of the identity we wish
to demonstrate. A single N-RAM is assumed to have
N binary inputs, so has 2 possible input vectors each
of which goes 10 one of the 2V possible addresses. We
let the set {a} denote these vectors, using the same
notation as above. It can be seen that an N-RAM can
perform any one of 23" binary functions on its N in-
puts. The resulting outputs are therefore given by the
same functions P,(p) of the inputs p as defined in
(6), and a general N-RAM has output

F(P)=§: uLolp) (8)

where @ may be regarded as labels for the different-
addresses, and where, in the deterministic case, the
constants u, are equal to zero except for one, which
has value unity. The behaviour of a net of such RAMs
can be investigated and these deterministic networks
have been analysed in detail by a number of authors
[11].

Noise has been added in ref. [8] to RAM outputs
by assuming that for each binary input vector { (or
cquivalently address location @) the output is one
with a probability 0, § or 1. In order to draw a par-
alle] between the noisy RAM and noisy neuron we
extend that idea further, having output one for each
of the addresses of the RAM with some fixed prob-
ability between O and 1 (thus we may regard the con-
stant &, in (8) as the probability for giving output
1 at the associated address a). This is & natural ex-
tension of RAM activity, one which would be ex-
pected to allow a much r~ore flexible encoding of the
features of theexternz”  .rid th: - the case where the
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output probabilities are restricted to {0,1} or {0, 4,
1L

‘We may describe the connectivity of a net of such
noisy RAMs by introducing a connectivity matrix
C'*, which will be an N n matrix if there are n N-
RAM:s in the net, so that C!p is the binary input
entering the ith RAM, where the net is in state p=(p,,
= Pn). Assuming a discrete time-development and
synchronous operation of the network we obtain from
(&) that

P+ 1) =3 ulP(CVp(1)), (92)

withO<u{" 1. (9b)

For n=N and C'" =1, the identity matrix, the set of
equations (9) has identical form 10 (7), with iden-
tification of the constants uf"’ and a!”. Thus we
have arrived at the following result:

Every neural net composed of N noisy neurons, and
satisfying assumptions (1)-(6) above, has identical
dynamical development o that of a net composed of
N noisy N-RAMs with suitable connectivity.

It appears that the converse is also true (although
then the constants (5a)-(5d) have to be defined in
terms of more general probability distributions, since
otherwise ar; will only have the value 0 or 1, when
N=2, for example). It is also clear that & net of n
noisy N-RAMs, for n> N, will behave identically to
a net of noisy neurons in which only N contribute
output to any one of the neurons. These ideas may
be further extended to the case of a set of N-RAMs
with different values of N, so giving the more general
result:

The dynamical behaviour of any net of noisy neu-
rons satisfying assumptions (1)-(6) (with arbitrary p,,
pa replacing (1) and (2)) can be mirrored by that of
some net of noisy RAMs, and conversely.

The above result indicates that further investiga-
tion of the behaviour of (9) is of interest both from
the viewpoint of modelling brain activity and that of
developing intelligent machines. The remainder of
this paper, then, is a study of the equations (9). These
form an infinite family of families of polynomial
maps. Thus for each N, (9) is a polynomial map of
degree N from [0,1]" into itself. Furthermore, for
each N, the map depends on 2VXN constants. The
existence of such an infinite set of maps was already
realised in 1971 [6], but their properties were not
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understood then, in spite of attempts at analysis [12].
The development of electronic computers, and the
incereased understanding of the properties of maps
of finite (or infinite} dimensional spaces into them-
selves associated with the development of chaos [13)
have now allowed a better understanding of the be-
haviour of the maps (9), and in particular of their
dependence on the parameters ",
To begin with let us consider the N=2 case

p(t+1)=(app po+a, fi p2
+axp ptaspy p2) (1),
Pa(t+1)=(foPy + B 02D _
+Bnbi+Bipap ) (), (10)

which can be realised as the net of two 2-RAMs of
fig. 1a. A detailed analysis has been given of two-di-
mensional maps [14], where numerous maps with
chaotic behaviour have been described; it would seem
likely that this simple network could also display such
behaviour. It is possible to analyse ( 10) analytically,
since the two fixed points (p,:, p;+) can be ob-
tained as the solution of a quadratic equation in one
or other of the variables p,, p; by elimination of the
other from the fixed point equations for (10). If we
denote the r.h.s. of (10) as F(p) (F= (F,, F)), then
a stability analysis can be given in terms of the ei-
genvalues of the 2 X 2 matrix dF(p. ). Using 10° ran-
domly-generated values of the parameters ay, ..., Sy

(=

Fig. 1. (a) The detailed connections between two 2-RAMs de-
scribed analytically by eq. (10). (b) The connections between
four 3-RAMs used in computer simulation 10 analyse the number
and nature of convergence 1o fixed points. (¢) The connections
between the three 3-RAM;s used in the same computer simula-
tion as (b).
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in (10) we found, somewhat surprisingly, that in all

cases p_ was the only fixed point in [0,1 )%, and either

had cigenvalues 4 of dF(p} with |4| <1 (so no Hopf
bifurcation), or one real eigenvalue A _ with _< 1.

In the latter case the associated one-dimensional map

was investigated and always found stable. In a fur-

ther simulation, using paras-<.rs from the set {0, 1,

1}, the only case when converz ace to a fixed point

did not occur was for parameters such that p,, lay on

the boundary of [0, 1]°. In that case there was con-
vergence 1o p_ under iteration except for these spe-

cial values of the a’s and f's for which the 2-cycles
(1;, €)= (¢, u3), u, =12€{0, 1} or (3), €)=+ (16, 4),

u, % uye {0, §, 1}, occurred. One could also have cases

where {10) were linear, when up to a 4-cycle could

occur. Though it was unfortunately not possible to
obtain a purely analytic result, we feel that the com-
bined analytic/computational evidence is suffi-
ciently strong to conjecture that for generic values of
the parameters, the dynamical evolution of an N=2
noisy net is always 1o a unique stable fixed point; for
special values of the parameters on the boundary of
0. I} the evolution may be to a 2- or 4-cycle, in which
case the detailed behaviour may depend on the initial
state of the network.

One cannot extend this approach to the case where

N>2: even for N=13, with equations of the form

p(t+1)=(a+bp, +cps +dp. o)1),
p(t+1)=(e+/p, +gps +hp,p3) (1),
Pil{t+1)y={(l+mp, +np,+gp, pz)(1) , (11)

elimination of, say, p; and p; 10 determine the fixed
points of (10) gives a quintic equation for p,. Thus
there is no analytic solution. Of course the Brouwer
fixed point theorem shows that there is always a fixed
point of {9) in [0,1]%, for each N and any set of pa-
rameters 25, Moreover this can be proven unique
by the contraction mapping principle, for values of
the parameter i suitably close to 1wy (where 0,= (0,
s 0)). This can be seen immediately for N=2 in
(10), and by a generalisation to higher N, since for
any solutions p{¢), »' (7) of (10),

330
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ip(t4+1)=p\(+ 1} € e, —ao| [P (1) =P ()]
+ |azfau| 1P (1) =pa(t) | + | @y + oo — oy — a2 |
X[ (D) =P+ ipA)=p2(t} ], (12)

with a similar equation for {p;(t+1)~pi(t+1)].
Thus (10) is a contraction map if, for example

max {(|a, —ag |+ |z —ap]
+2|as+ag—a,—azl),
(1Bi=Fol+1B=Fol
+2| B+ BB =B 1)}<]1. (13)

However the region given by (13) is considerably
smaller than the total regional {0,1]® of (a,,
a,, 03, &3, Bo, B, B2, B3), and becomes an even
smaller proportion of the allowed region for higher
N.

We have investigated the behaviour of eq. (9) for
higher ¥ by wholly computational techniques. The
program chose at random values of the memory and
initial-state parameters in [0,1}», where M=
2Vx N or 2¥% (N+1) is the total number of param-
eters. For each such choice, interations were made of
(9). and the iterations deemed to have converged if
the difference |p,(14+1)=p,(1)| <0.001. 5x10*
such runs were done for a net of four 3-RAMs con-
nected maximally, as in fig. 1b, or a net of three 3-
RAMs as in fig. 1¢. In both cases we again discov-
ered no behaviour other than convergence to a fixed
point. It was found difficult 10 proceed to much
higher N for such maximally connected nets, so n N-
RAMs (n>» N) were connected together randomly,
and the above iteration procedure {with conver-
gence criterion |u{r+1)—u;(1)|<0.001, 1<ign)
repeated, using randomised starting values, but the
same memory content parameter and connectivity
for each 100 runs. The results of these computations
are presented in fig. 2 where the ordinate is the av-
erage run length to convergence, the average being
taken over 100 runs for each N. The graph shows in-
creasingly fast convergence as N grows, with a limit
of around 4 iterations. .
Our computational results thus lead us to propose
that:

(i) For generic values of the network parameters,
the dynamical evolution of a net composed of n N-
RAMs has only 1 stable fixed point..

o
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Average iterations to convergence

5 = n =80
10
s}
u 1 L] A L L
v 2 4 ] ) 10 12

N (order of connectivily)

Fig. 2. The average run length {averaged over 100 runs) to con-
vergence, for a randomly connected net of n N-RAMs, for var-
ious values of 7 and N, Convergence was tested by {u{r+1)
~u, (1} <0.001 for 1gign.

(i) If n2» N 10 the convergence is extremely fast,
within 4 iterations.

(iii) Cyclic behaviour can only occur for boundary
values of the parameters, with maximum cycle length
2N.

Again we stress that we do not have an analytic
proof of the above results, but that there is strong
support from our computer analyses. The results are,
to us, somewhat surprising, since the class of map-
pings (9) certainly contains chaotic maps for some
ranges of the parameters; it contains, for example,
the Hénon map [15]

p(t+1)=1—api(t)+p.(1),
pt+1)=bp, (1), (14)

for which the dynamical behaviour becomes chaotic
when a~ 1.4, b~0.3. However the restricted param-
eter range (9b) seems 10 aveid the chaotic regime
completely, having for N=2 only period 2 or 4 maps
on the boundary of the parameter space. Thus eqgs.
(9) lead to rather different dynamical behaviour than
other models of neural nets, many of which do ex-
hibit chaos such as that of ref, [16].

How do we reconcile our results with those of other
neural modellers? It is first worthwhile to point out
that whilst many authors have indeed reported com-

_ plex dynamical behaviour leading 1o chaos [16-18]
this has not been observed in equations of the type
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(9); indeed there has been no previous study of such
systems of equations, to our knowledge. It should also
be noted that Clark [3] has applied non-equilibrium
statistical mechanics to & Little-type model {which
is assumed 1o define an aperiodic, irreducible, ho-
mogenous finite Markov chain) and has discovered
that the generic behaviour of such a model is evo-
lution toward a single, stable fixed point. Further-
more we note that at the moment there is insufficient
neurobiological data available to make any choice
between the various “roisy neuron™ models, some of
which exhibit chaos or metastability, whilst others,
like ours, apparently do not. We do not feel our re-
sults contradict those of other workers, since the
model we have analysed differs in its structure from
those which have been found to give rise to complex
attractor sets and chaos; it represents an aliernative
path of enquiry, although one which has the singular
advantage of a possible hardware implementation.
With this last point in mind , we note that it is not
yet clear 1o what extent chaotic activity occurs in liv-
ing neural nets (see also the numerous references in
ref. [20]) and especially whether such activity is of
benefit 1o an organism; if chaos turns out to be some-
thing nature prefers to avoid it would clearly be an
undesirable feature 10 build into our machines. Thus
the result that the generic time development of our
noisy nets is that of rapid convergence to a single
fixed point may indicate that the Taylor model ex-
tracts a useful and hardware implementable feature
of the activity of living neurons whilst discarding
other, unhelpful, features such as chaos.

It may be interesting to note that the response of
one of the simplest living neural nets, that of the ret-
ina of Limulus can be described well by a system of
linear equations for neural activity which also have
a single fixed point [21]. The possible description of
this living system, and others, within the framework
of the present paper is under investigation.

There are three outstanding problems to be ad-
dressed before we can understand the way in which
the properties of the noisy nets described above could
be used in intelligent behaviour. These are (a) ex-
tension 1o a continuous time description, (b) the na-
ture of the input—output transformations which such-
nets could perform, and (c) the manner in which
learning might be achicved in these nets: what is the
algorithm for modifications of the parameters u$"??
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Problem (b) may be resolved in general by taking
certain of the p's in (9) as given, input, variables
and others as the given output variables. The total
system of equations (9) is thus reduced to & poly-
nomial mapping of the remaining variables, which
have parameters uf” which are functions of the in-
put and output variables. If the latter vary more
slowly than the number of iterations to convergence
(of the order of 4 iteration times, say 5 ms) then the
output will be a faithful representation of the fixed
point of the net, which would itself be a function of
the input. We propose to discuss the problems (a)-
(c), as well as how such fixed point nets may be use-
ful, for example as pattern recognisers, in more de-
tail efsewhere [22].

We would like to thank D, Rand for a helpful cor-
respondence, and one of us {J.G.T) would like to
thank Professor A. Salam and the International
Centre for Theoretical Physics, Trieste, for hospi-
tality where pant of this work was carried out.
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