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An Analyais of a Silicon Model of

Early Visuwal Processing

Abstract

A mathematical analysis ia given of an analog model of
retinal processing constructed recently in terms of a resistive
lattice network by Mead and Mahowald. The basic equations are
written down for a general laﬁtice, and their eonfinuum limit
described. For linear resistors the general molution is given in
terms of an arbitrary varying illumination input; special cases

are discussed in detail.

Keywords: Retina, Machine Vision, Spatial Filter, Neural Model,

Linear Network.
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Introduction

Neurcnal ;ctivitylhas.uaually been modelled in terms of the
all-ér-none responge of a cell to incoming stimuli; the resulting
firing patterns in networks of such cells arise from highly
non-linear processes. However certain important aspects of
visual processing, which occur at the retinal level, appear to be
reasonably well deuc;ibed by a linear system. These aspecis
include the deviopment of Mach bands {aspatial enhancement of
astimuli} and of trans_ient peaks or troughs in response to the
sudden increase or decrease of illumination respectivaly
(temporal enhancement of stim uii}. Such spatio-temporal
enhancements of stimuli have been shown to arise from inhibitory
connections in the retina both between neighbouring cells,and via
feedback loopa to the neuron under consideration lgelt-
inhibitioﬁl. The role of inhibitary interactions haz been
particularly well-studied in the case of the lateral aye of the
horse-shoe crab {limulus polyphemus} (tor?;evieu see Hartline and
Ratliff (1972)}, but lateral inhibition also seems to occur in
other invertebrate compound eyes, as well as in vertesbrates
(Dow} ing 198713 see also Ratlifg (18es).

Lateral inhibition in the vertebrate retina is thought to
arise from lateral connections in the initial stages of visual
processing, by means of the horizontal cells, These latter form
a dense arrangement of cells, called the outer plexiform layer,
where incoming information is represented by analog signals. In
the invertebrate retina the lateral and self-feedback connections
form a dense layer of tissue called the lataral plexus. This is

thought to contain collaterals from the axons of the eccentric
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cells, which appear to play the role of the ganglion cells. The

two types of retina are shown lchematipally 1n'£igs.1 and 2.

A very interesting hardware implementation of retinal
inhibitory behaviour has recently been presented (Mead and'
Mahowald 1988), using a resistive network which connects the
inputs from a set of photoreceptors, these latter responding
logarithmically to the incident illéﬁination. The resulting
voltage is fed acrosas a resistor and capacitance into a typical
node of a hexagonal lattice. Each edge of the lattice is com-
posed of a resistor; the general circuit is shown in Fig.3. The
output conaists of the amplified difference between the photo-
receptor potential and that at the node. The results of Mead and
Mahowald were obtained by using a milicon chip implementation of
fig.) with an experimental 48x48 pixel array. In order to under-
atand this syastem better a mathematical analysis of the network
iz presented in this paper. It ailoul-an axtenaion of the re-
sults to a general class of lattices with inhibitory feedback,
and so gives a way of finding the response for a whole range of

such lattices without detailed hardware implementation.

THE BASIC EQUATIONS

The photqreceétor associated with the node P of the lattice
ia assumed to produce a potential V,{P,t}. The resulting ‘
potential at P, V,{P.t), is obtained from the eircuit of fig.d{a)
in terme of the current flows 1, I, I3, where I; is the current
in the capacitor C, and I3 that entering the lattice at P. Let
I = £(V) be the resistor current for a potential V across its
terminals. Initially f will be taken as described by a general
S-shaped curve, but will be assumed linear in due course for
detailed calculations. The curreng and potential differences
between two pointa A, B in the lattice will be denoted
respectively as 1,5 (the current from A to B) and Vg = Vp-Vg.

Then from fig.4{(a)

I; * oV,
so that
Iy = 1;-Ip = £(V;5) - C¥y (1}
From fig.4(b)
T 1I = I.(P) {3)
Q. PQ 3

where the asummation in (3) is over the six nearsst neighbours in
the hexagonal lattice of fig.3l. Combining (1}, {2) and (3), with

V,I(P} = Vp, we obtain the basic eguation

F(V (P)=V)-CVg » I £(Vpg) (4
1 P P QP> PQ

This is a system of first order linear differential equations for
the set of functions Vp = V(P,t), given the input potentials

vyip, ) for all P and t. As auch they are expected to have
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solutions in terms of the initial data Vp(0) for a suitable class
of smooth functions f.

It is to be noted that this model may be generalised to
allow for more than nearest neighbour connections. FPor example
in limulus (Bartline and Ratliff 1972) there is lateral
inhibition from several neighbouring ommatidiae, with a Gaussian
decrease in effect (see almo Brodie, Knight and Ratliff, 1978a).
A similar feature occurs in the vertebrate retina. Thus in

general (4) may be @xlended to-
£V (P)-Vp)=CVp = I £0p(Vpq) (5)
' Q

where fQP depends essentially on the distance between Q and P,
and the summation on the r.h.s. of (5) is no longer over nearest
neighhbours only. A suitable choice for thia weighting function,

in the range where the resiator is linear, would be
£qp(V) = G expl-d(@,P)2/alv (6)

where G is a basic conductance constant and 4{Q,P) is the
distance between Q and P; a is the Gaussian spread of the lateral
inhibition.

It is possible to linearise (4) in a range of values of the
variables Vp sufficiently close to ongoing activity provided the
input illumination V; (P} does not vary too rapidly. In the
linear regime {(4) hecoﬁes

G {V,{P)-Vp1-CVp = GyINVp - (pr)yql m
In (5) the possibililty has been allowed of having different
resistors in the lattice of fig.4{b) as compared to in the
detector unit of fig.4{a); N is the number of neighbours to which

e¢ach node is connected (6) in the case of Mead and Mahowald}.

7

It is not clear whether the discrete lattice equations of
{4) or (5) are an appropriate description of lateral inhibiiion.
Be that as it way, it appears easier to handle the equations ip
a continuous version when working at the linearised level of (7).

This requires re-expressing the r.h.s. of (7) in terms of smpatial

" derivatives of V(P), now regarded am a differentiable function of

" .
the contqpou- real two-dimensional variable P." In the cne-~dimen-

sional case,

Wy - I Vg, = ~b2v3 + 0(bt) ta)
Pogem @ P

where b is the distance batween the nodes, in the limit as b =0,

In the two-dimensional case

6V ~ I Vo =—2b2v2y « 0(bt) (9)
P @R
where 9% ig the usual laplacian, Vz » azloxz*azlayz. Thus in the

continuum limit, (7) becomes the aystem of second order linear

partial differential equations
V » (G/CIV ~3(Gyb%e1vdV = (Gy/0HV, (10}

where terms 0(b%) have been dropped from {(10). The equations
{10) will be analysed in the following section. The lattice

will be taken to be infinite to avoid edge effects, . these-

a s icateb bl he—di .

versiene-presehbed—aboua. The negative mign in front of the

laplacian correctly indicates the presenca of lateral inhibition,

at will be seen.
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t is possible to consider a continuous version of (6) or its . |
eneralisabion  €o Knight and Ratliff 1978b). 1If ¥ik,w) is the Fourier transform of

Vir.t), where r denotea the two-dimensional position of the node,

. t10a) - '
Spoyct V)= ) .V 2 Pikow = [at aZr e HiWEREly(p ey (11)
Nt

then (10) becones

[iw+(Gy/C) +3%2(GbF2GYV = (Gy/700%, (12)
here is now a density of contributi it -
g?ﬂ'*’i Y utions per unit. with solution
rea. Then the coefficient of the laplacian on the r.h.s. of
, V = [1iwc/G ) + 1 +3k2(Gb%ac, 171V (13)
gp) is replaced by % Sdzg.gz.h(}gll, being a weighted sum 1 = 192 %h 1 1
2, . The tranafer function
tr> of a quarter of the squared distances of nodea away from ’ :
ach other. It is to be noted that in the hexagonal lattice case Pik.w = [(iwC/Gy) + 1 ’3E2(sz%bﬁl'l-l (14}

iscussed heretofore the weighted sum reduced to

n {9),

q . .
3 b?, ag used may be compared to that of Brodie et al (1978b) {especially fig.4

of that reference) and with eguation 10 of Brodie et al (1978a). 31

NETWORK RESPONSE of equation {14) falls off more slowly for large w than does

The most natural approach to the analysis of the system (10) the corresponding function of Brodie et al (which behaves like
-8, - 2 2,-1

is by means of Fourier transformation; this approach was basic in w™9); (14) also has a slower fall-off in k“, asm (k“)™", compared

the analysis by Brodie et al of the limulus retina (Brodie., to the Gaussian fall-off of Brodie et al (1978b).

By the Fourier inversion theorem and use of (11},
-4 :
vig,t) = {21)'3Id2kdw(1+1',w%+3-l£2|>: ' TT ket tEerwe
) G

* {15}

Thus V is known, at least formally. for any input V,. Let us
consider some special cases to compare with the results of Mead

and Mahowald (1988) {(who consider amplification of V-Vy}:
{a} uniform illumination(step function in time)

In this case V2V = D, and the solution is givén as
t

Vip,t} = vnp.on(c;l/c:f dt'V, (P, t" lexpi-(G, /C) (t-t"}] (16)
0

For a temporal atep function input



Viie,t) = a + felt) o . (17)

(where o(t) = ¢ for t ¢ 0,1 for t > 0) (16) gives, with
viP,0) = a,

Viter-v (t) = § expl-Gyt/cl ft) (18}

This response ias shown in fig.5a, and may ba compared with the

responae fuaction of their figure 4(a) (large) of Mead and

Mahowald (1988). The similarity is realonahle and is expected to

he Suachion

be improved by the addition of non-llnearzty inLﬂ)of eqn.{1} and

cofile

on taking account of the actual shape of the LllumlnatlonLused by

Mead and Mahowald (1988), where the e-function in (17) is

smoothed off. In particular this may lead to the rounding off of

the initial sharp peak.Tt &  beodded b i tix, Mm
B, nodos i iix valiat- f_n-ua,x. %im.u- hﬂti’aa{r-‘ﬂl- -~ &wu'tﬁfr- 5‘. ™~
(b} general pixel zlluuljlnat:l.on {step function in txme\kﬂ_»:md)w ﬂ’m

One can show, with »* =3b26d361 and Q(f) b Simhmi disbrbutbion

of Inl'e.aslla GS Wlwminabibm, Ehab

Vile.t) = ptrl[a+§e(t)l (19}
Vir,t)= afj(r) + §e(tIFy(r,t) (20}
Fyple) = (2:!“2Id25315>tlog?le'leiﬁ'i - (2181

Falz.t) = (2"'2fd2£5¢£’l1+&2x21'1[1-exp¢-¢1+k2x2;tc1/c:|e15'£

{21b}
In general these integrals cannot be evaluated, though one can
ase from (21) that

Vg Bl Vg, t) = (2|ﬂ'2Id25§l£)e1‘£'—{ll-(l*kzxzi'll(a+belt)!

-11+k®n2)tq, /
+(1+k2x2)'¥§o(t:e 1 cl (22)

10
The expression (22) will depend on the detailed form taken by

plr), the input illumination distrihgtion. ‘In—genatal 122 will
. k of beial . ] bt L it}
: ] . 1-to—tanf ho—faileots £ :
. K will tad tol . n . tad .
The detailed form of (22) can be calculated if p(r) is
assumed to have a Gauliian distribution

242
Plk) = o K (23)

For d ?>> » {when the width of the illuminated regqgion is much
shoea. constant
larger than the19££¢a&isa—4attaaa—apaeaaq) it is possmible to

evaluate (22) in powers of »/d), with value

£G, /C

2
- n
v,(0,£)-v(0,t) = fottle + vy g7 + ondzahy 20

This has the behaviour shown in fig.3b. There is very close
similarity to the results of Mead and Mahowald (1988) in that
there is an initial peak whose height is independent of the siie
of the illuminated patch, and thean an exponential decrease to a
constant asymptotic value. It is to be noticed that this latter
value decreases as the size of the patch increases, until in the

limit as d » » {total illumination} case {a) is reached. Such

" “behaviour is precisely that seen in Mead and Mahowald (1988),

fig.4a. As in case (a) above the sharpness of the initial peak
is expected to be removed by taking account of the detailed shape

of the illumination increase and'by non-linearity'in £.
{c) Step function in mspace

The illumination is taken independent of time t but not of

. so that (10) reduces to

Vv -3t6,b%26, 193V = pig) o (28)
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iIn the one-dimensional case with p a step function-ge!:-xol. edge of the illuminated patch is going to infinity in this case.
n - r

The other extreme, when has a different feature, in that the
{25} has solution

central valne is close to twice that of the maximal interior

v = §-jge (x> 0 (26a)
value in case (b). This asymmetry between in and outside for
. &e*l/\ (x ¢ 0) {26b)
case (a) is to be expected in that there is only a small central
so that region from which to obtain external inhibition, whilst there is
- Y
V-V = iﬁ{; 'Ikolx}-ex/ 0('3’3 (27 a very large external region to give central inhibition.

Thia agrees closely with the corresponding fig.6 of Mead and

Mahowald 11988) and the discussion associated with fig.7 of In particular it may be poasible to obtain a value for <;2>. the
a

that reference mean squared effective connection distance between nodes, as
at r B

The above discussion may be extended to the two dimensional described in the second and previous section, in particular
ase For rotationally synmetric $llumination it ia possible to associated with eguation (34). This may be compared with the
case.
o solve (25), and ingtead of (27) averaged observed distance between nearest neighbour horizontal

use cylindrical co-ordinates t

h luti (in distance units of »} cells to give a general measure of the overall range of
obtain the solution

V| -V = A Io ({) 3("_.0'—‘:)""3 K‘,({) g(f'-fo’) (28)

connectivity between the horizontal cells.

{d} Moving edge
where I, and K, are the modified Bessel functions of the first The response to a moving edge should show anticipatory ef§ecks

and second kinds of order zero, and A B are constants given by

A= S K/ T, B=STie)/ T (28a)

with

T = T(e) Keltw) = Tol) Kd o) (28b)

The shape of {28) is similar to that of (27}, with an
extreme fall-off; near r=r, the behaviour shown for the
extreme cases of rg#o and rgv®@ in figure 6. It is to be noted

Q

that fia 6{bl. Far r_3>1. corresponds indeed very cloeely to that




12

just before the on-transient, as noted by Brodie et al

(1978a). Taking the edge moving along the x-axias with velocity v

then

vite.t) = adfolx-vt) (29a)

for which
1..2 2 ! .
¥, = (2m3as?tkiatw+. 5027 18tk ) (= 4/ Ky )i8lwrk,v) (29b)
It is possible to compute from (29) and (15) that

V-V --[ﬁ.‘E
uhe:e uk+!ﬁi

~k_tx-vt) ~k, (x=vt}
"ae - e(x~vt}] (30)

k-t )t (!k-*)

k, = (1702 (vesGp e we(viescd it

Equation (30} reduces exactly to equation (27 ) when v = 0. The
shape of the response (30) iz similar to that of the second
figure in fiq.7 of Mead and Mahowald (1988) (though now with the
transient moving with the edge at x = vt). It can also be
compared with a very similar response to a stationary stimulus
for an on-centre C-cell of a cat in fig.6(b) of that reference
and with the in general more asymmetrical responses to moving

stimuli for limulus in fig.l15 of Brodie et al (1978a).

1lol
The actual shape of (30) may be obtained in the limits vwo or
Ves 0o , when
k ' vC Ovs)
g ~ —(¢1+ ——\+ (v2). {vwo)  (31a)
Lo ag)
ke ¥ +CX1)-G| + Of + {vwod (31b)
-: —
Gx > 3 ("‘ o

In these limits {(30) reduces respectively to

~(vE-x) -
i’g[‘(' . ;_c%)e( *o(vt-x) + (1- :&q.i)e‘ (x-vb)g(x_vt_)]

{32a)
ond
§[-& TEIC oy + ‘iﬁ% )e.'“cc""’ﬂ/q‘)“«a(x_vt-)]
vy C?
(32b)

These extreme cases are drawn in figure 7. It is interesting to
note that the slight asymmetry for wwo in the heights of the
upsurge and subsequent downsurge, in which the latter is slightly
smaller than the former, is accentuated enormously as v~ , The
downsurge is twice as large as when v~o, whilst the upsurge
decreases as C)(iﬁ) . Moreover the rise and fall times
are also highly asymmetrical, the former going to zero as C)Céi))

the latter increasing as O(v). All of these effects are to be

expected on general grounds, the above asymmetry arising

. L. . _ 3.3 himn fam bha affanbm ba ha aveawiancad
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ahead of the step function as v increases, compared to the

increased capacatative effects behind the step function.

(e} Harmonic inputs.

From egn. (15)it is seen that

V-V = 1 = [14 ©C, ]
G,

(33)

This simple expression should be compared with experimental data
on vertebrate retinae in the same manner, for example, as done

for the limulus retina by Brodie et al {1978a,b).

. (sard —
The behaviour of v, =V} is shown for different k*

and w in fig 8.
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DISCUSSION

It has been shown here that
{1) a mathematical framework can be conatructed to describe tﬁe
silicon analog model of early visual processing of Mead and
Mahowald (1988)

(2) in the continuum limit of the lattice network used to model
lateral inhibition, analytic sclutions can be given both for the
gystem tranafer function and for the response to various simple
forms of illumination (which agree with the analog rodel
behaviour!.

Such results indicate that a full-scale computer simulation
of the basic equations (4) might lead to even better agreement
with the analog resulta. Moreover there is now the possaibility
{as discussed in association with (6}) of modelling.the response
of lattices other than the simple nearest-neighbour hexagonal
one. This may allow some elucidation of the connectivity
between neurons in the vertebrate or invertebrate retina, by
choosing the lattice structure which gives the closest fit to the
known response of that retina.

It should be remarked here that, as discussed in the secéﬁd

section, the gquantity » for a net with general connectivity is
given by

W= 'T<£1>.[%) (34)

Therefore if it is possible to measure % by the above effects in

a living retina, and at the same time independently measure GL

and Gm' then the mean-squared value of the distance over which

horizontal cell connections are effective may be obtainable.

e —E
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There is also the poseibility of a hybrid model which
‘combines the 'slow potential' approach considered here with a
noisy neuron model presented earlier (Taylor 1972)., The

behaviour of such noisy networks has been discussed recently

(Gorse and Taylor 1988a,1988b), and extended to a description of .

inhibitory effecta in the lateral eye of limulus (Gorse and
Taylor 198Bc). This latter analysis did not take detailed
account of the slow potential contributions. It should now be

possible to combine the approach discussed in this paper with the

earlier noisy neural model.

The author would like to thank Dr. D. Gorse for many helpful

and stim_ulating discussions on viaual prot¥asing.
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Fiqure Captions

Figure 1. : ) : .

Schematic diagram of a crogs-section through a vertebrate retina.
R: photoreceptor, H: horizontal cell, B: bipolar cell, A:
amacrine cell, G: ganglion cell.

Figure 2

Schematic diagram of a cross-section through an invertebrate
retina (limulus polyphemus).
R: photoreceptor, E: eccentric cell, ﬁ: retinular cell.

Figure 3

The silicon retina of Mead and Mahowald (1988). This is composed
of a resistive network made of a hexagonal lattice. The single
pixel element at each node is shown in the next figure.

Fiqure 4

{a) The circuit diagram of the mingle pixel element comprising
each node of the hexagonal lattice of figure 3. V; is the
generator potential arising from the photoreceptor, I, is the
current carried by a capacitor, and Ij the current flowing into
the network at the node P.

{b) Current flow from cne node to a neighbour in the resistive
network.

Fiqure 5

(a) Response of a single pixel element to a step function
illumination in time which covers the whole retina.

(b) Responze as {a) but now to a step-function illumination in
time only over a limited part of the retina. '

Figqure & 16ao,
The dependence of the response function (V,-V}, given by
equation (28), to a circular patch of light of radius rg., in the

limits () rgvo and (b) ry~voa

figure 7.
The response function (V-V} of equation (30} for the response
to an illumination edge moving with velocity v in the limits {a)

veo (zee equation) (32a) and (b) vwoo  (8ee equation (32b).

Figure 8
The modulus of the response function GVFVI, in Fourier trans{orw
space , given by equatiom (33}, and plotted for varying 52( for

different values of w.

allg———— =
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