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Visual Reconstruction and the GNC Algorithm ?

Andrew Blake and Andrew Zisserman

1 Introduction
Piecewise conkinuous recoastruction is & generic problem ia vision. Consider the
following visual sub-tasks:
1. Estimating the shape of & textured surface, viewsd starecscopically
2. Detoction of discomtinuities in intemaity
3. Estimating surface shape from a depth array obtained from an active
rangefinder -
4. Seginentation and description of curves, cither in an image or in 3D space
§. Estimation of reflectance (or of lightness) from inteasity data
6. Estimating the shape of & terfured surface from its optical flow field

T Sqmm;nou of taxtures

Each involves recosnstraction of soma piscewise comtinwous function from
noisy data. In the case of task 1, the data is a set of correspondences and the
reconstructed data in a depth map - a function encoding distance 3 to the visible
surfacs, for each image point. In case 2 the input is noiay intensity dats and the
output is a set of edges together with a amoothed intensity field. (Smoothing is
imhibited acroms edges however.)

There hine been & good deal of research interest in “cooperative” algorithma
to perform recoustruction taska. A cooperative algorithm is one that can be
executed by » number of iaterconnected processing cells working in parallel.

1 revissd extract from Viewsl Kiconsirustion, A.Blake sad A Zisserman, MIT Press.




Early work on stereoscopic matching was done by Juiess (1971) and by Marr
(1976). Subsequent algorithms however have viewed sterecscopic matchiog as a
combinatorial problem, cather tham as a problem of reconstruction (Marr and
Poggio 1979, Mayhew and Frisby 1981, Baker 1981, Ohta and Kanade 1985) .
although Pollard et al. {1985) retained some cooperativity.

Cooperative solutions to tasks 1,2,3 4 above are discussed by us in some detail
in a book (Blake and Zissermam 1987). In each case, piecewise continuity of a
reconstruction is achieved by impoming “wesk continuity constraints™. These
are constraints that impose continuity slmost everywhere, but can be broken
when forced to do so by the data. The mechaniem for sctually imposing the
constraints is the “GNC” {Graduated Nou-convexity) algorithm. This will be
described briefly bere, but ses (Blake and Zisserman 1987) for details.

Our approach to reconstruction originates from earlier work on edge detec-
tion (Blake 1983) and has been developed in (Blake and Zisserman 1985, 1986,
Blake et al. 1988). Mumford and Shah {1985) clarified the relationship between
piecewise cantinuous recopstruction and edge detection by linear filtering. Go-
man and Geman (1984) introduced a powerful statistical approach to recon-
struction, based on “simulated annealing”. Related algorithms have sincs been
used for reconstruction of sterecscopically viewed surfaces (Marroquin 1984), a
development of work by Grimson {1981} and Terzopoulos (1884), lor segmen-
tation of optic flow fields (Murray and Buxton 1887) and for segmentation of
texture (Derin and Cole 1988).

For illustrative purposes, in this paper, we coosider the simplest form of
reconstruction problem: detection of step discontiouities (edges) in 1D data.
The aimn is to comstruct a piacewise smooth 1D function u(z) which i» & good fit
to some data d{z). This is achieved by modelling u{x) as a “weak elastic string”
- an elastic string under weak continuity constraints. Discontinuities aze places
whers the continaity constraint om w(z) ia violated, They can be vismalised as
breaks in the string. The weak elastic string is apecified by its associated energy;
the problem of Ginding wu(x) is thea the problern of minimising that energy.

2 Detecting step discontinuities In 1D

The behaviour of the clastic string over an interval r € [0, ] is defined by an
energy, which is & sam of three components:

P:  the sum of penalties o levied for each break (discontinuity) in the string.
I: s mesgure of [aith{ulness to data.

D= j:'(- - d)*ds

S: & measure of how severely the function ufy) ¥ deforgyed.

s=x’j;"u"d;g

This is the elsstic energy of the string itseif thet 's stered when the string
is stretched. The constant A% is & measure of elagligity oc “stretchability” or
willingness to deform®.

The problem is to minimise the total eneryy:

E=D+S+p (1)

- hat is, for » give d{z}, to find thas functior u(itr which the total energy
E iz smallest. Without the teem P (if the energy sigrply E = D + S) this
problem could be simply solved using the calaus of yariations. For example fg
1c shows tho fumction « that minimises D + 5 given fhe datg d(z} in fig 1a. It
is clearly & compromise between minimising [} and mimmiting § - & trade-off
betwoen sticking close to the data and avoiding yery §zep gradients. The procise
balance of thes: 2 elements is controlled by A, If X ¢ )1, D {faithfulness to
data) dominates. The resuiting u(z) is aclooefl‘ tothe d(z). In fact, A has
the dimensions of leagth, and it will be showy$hal ) is ascharacteristic length
or acale for the fitting process. . .

When the P term is included in F, the mmﬂd’m pr obiem becomes more
interesting. No loager is the minimisation of F giralghtforwaed mathematicaily.
E may have masy local minima. For example for & proclen of fig i, b) and
¢} are both local minima. Ouly one is & glohal nisiimum; which one that is
depends on the values of o, A and the height of Hue step i a). If the global
minimum is b) then the reconstruction u(z) coptaing d discmzinuity; otherwise,
if it is c), w(z) is continuous. (See Blake and Zissrm.an : ]§§7) for variational
analysis that precissly characterines the sffect: of parametdrf o, J.)

3 The computational problem

The *“Bnite element method" (Strang and Fix §13) ks ;ooJ mmans of converting
continuous problems, like the one just descrityl, ink? wiscr=te problems. In the
case of the string it is relatively easy. The coplinugy interval [0, /] is divided
into ¥ unit sub-intervais (“elements”) [0, 1], .. E'V- L N],axd nodal values are
defined: w = w{i},i = 0...¥. Then u(z) is repprweniey by ¢ lizear piece in each
sub-interval (fig 2). The energies defined earlit/ now becoxtw:

N
D=3 (w-d) (2)
1]

Rgally, imterpreting 5 u:nmﬁiumhoﬂ)uﬁ*t siring s approwimately
aligned with the s axis. Another way to think of 5 Is thet it Jenk the fanction u{z) w
Rat as possible.
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Figure 1: Calculating energy for data conslating of & single stap. {a}) Data. (b)
A reconstraciion with ose discontinuity. (c) A continwons recanstruciion.
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Figure 2. Dividing a line lato sub-intervals or “slaments™.
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where I; is & so-called “line-process®. It is defined such that each {; is a boalean-
valued variable.

Elther: [ = 1 indicating that thers is s discontinuity in the sub-interval z €
i ~ L.

or: Y4 = O indicating continuity in that subinterval - oy, wj.) are joined by &
spring.

Note that whea &; = | the elaatic string is “broken” between nodes < — 1 and
i snd the relevant energy term in (3) is disabled. {Geman and Geman {1984)
coined the teron “Tina-process” as a set of discrete variables describing edges in
2D; hars wa have s sitaple case, appropriste in 1D.)

4 Eliminating the line process

The problemn, mow in discrets form, is simply:
min E..
{miki}

1t transpices that the minimisation over the {i;} can be done “in advance”. The
problem reduces simply to & minimisation over the {w;}. Exactly how this is
achieved i» explained in (Blake and Zisserman 1987). The reduced problem is
more coavenieat for two ressons:



© The computation is simpler as it involves just one set of real variables {x;},
without the boolean variables {I;}.

¢ The abeence of boolesn variables enables the "graduated non-convexity
algorithm”, described later, to be applied.

It will be shown that omce the line-process {} has been eliminated, the
problem becomes

.
minF, whers £ =D+ glwi — w-). ()
| §

The neighbour intaraction function ¢ will not be defined precisely bere but to
give some idea of how it acts, it is plotted in Ggure 3. The tetm S+ P in {1) bas
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Figure 3: Energy of Interaction between neighbours in the weak string. The
sentral. dip encourages continuity by pelling the difference u; ~ x;..; betwean neigh-
bowring valwes towards sero. The plateans allow discontinuity: the pull towards sero
diference is releassd, and the wesk continuily comstraint has been brokea.

been replaced by the T g(..) term in (5). Note that nothing of value hay been
thrown awsy by eliminsting line variables. They can very simply be expheitly
recovered from the optimal {w;} (Blake and Zisserman 1987),

5 Convexity

The discrete problem has besm set up. The task now is to minimise the function
F; but that proves difficult, for quite fundsmental remsons. Function £ lacks
the mathematical peoperty of “coavexity”. What this means is that the system
% may have numercus stable states, each corresponding to a loeal minirum of
omergy F. Such & state is stable to small perturbations - give it » small push
and it springs back - but a large perturbation may cause it to flip suddenly into
a state with lower energy.

There may be very many local minima in a given F. In fact thers may be
one local minimum of F corresponding to each atate of the line process I; - 2¥

AR ML dh Ml Ui ciiE WY WERUTIIRIN Oy

local minima iz alll The goal of the weak string computation is to find the plokal
minimum of F; this is the local minimum with the lowest energy. Clearly iv ia
infensible to look at all the local minima and compare their energies,

How do these local minima arise? The function F can be regarded as the
energy of a aystermn of springs, as illustrated in Gpure 4a. Vertical springs are
attached at one end to ancher pointa, represemting data d; which are Gxed, and
to nodes u; at the other end. These springs represent the D term in the energy
F (5). There are also lateral springs between nodes. Now if these springs were
just ordinary springs thers would be no comvexity problem. Thers would be
just one stable state: 00 matter how much the system were pezturbed, it wouid
always spring back to the configuration in figure 4a. But in fact the springs
are special; they are the ones that enforce weak costinuity constraints. Each is
initiaily slastic but, when stretched (oo far, gives way snd breaks, as specifiad
by the energy ¢ in figure 3. As a conssquence, & secomd stable state is possible
{Gigure 4b} in which the centra) spring is broken. In an intermediate state {Egure
4c) the energy will be higher thaa in either of the stable states, 3o that traversing
from one stable state to the othoer, the emergy must change as in figure 4d. For
simplicity, ooly 2 stable states bave besn illustrated, but in general each latecal
apring may either be broken or not, generating the plethora of stable states
mentioned above.

No local descent algorithm will suffice to find the minimam of #. Local
d-c-nttendltostick,likethu&ylhowninﬁ(ml,inaloulnﬁnimum,nd
there could be as many as 2V local minirma to get stuck in. Somehow some
global “lockabesd” must be incorporated. The next sectios explains bow the
Graduated Noa-Convexity (GNC) algorithm does this.

6 Graduated non-convexity

A method of minimising ¥ is nesded which avoida the pitfall of sticking in local
minima. Stochastic methoda such as "Simulated Annealing” (Kirkpatrick et al.
1982} avoid local minima by random fluctuations, spasmodic injections of energy,
to shake free of them {Bgure 5a). Although this guarantees 4o find the global
minimum eventually, the amount of computation required may be very large
(Geman and Geman 1984). & would appear, however, to be in the interests
of computational efficiency to use a non-random method. GNC, rather then
injecting energy randomly, uses s modified cost function (&g 5b).

in the GNC method, the cost function P is first approximated by a new
function F* which is convez and hence can only have oue local minimum, which
must also be a' global minimwm®. Descent on F* {descending, that is, in the
(¥ + 1)-dimensional space of variables {w;}} must land up at that minimum.
Now, for certain data 4; this minimum may also be a gleba! minimum of # -
which is what we were afiter. Thers is a simple test to detact whether or not this

Actually thers are some detaile 8o take care of here, distinguishing betwess converity aad
nrict convenity.
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Figurs 5: a} Stochastic methods avoid local minima by wsing rasdom motions to jump
out of them. b) The GNC method canstructs an approzimating convex fumction, free
Figure 4: Non-couvexity: the weak string is like & system of conventional vertical of aparious local misimna.

springs with "broaksble® Iateral springs as shown. The states (a2} and {b) are both
stable, but the intermediate state [c] has higher energy than sither {a) ar {b). Suppose
the lowest emergy state is (b). A myopic dy with vertigo, arawling alomg the energy
transition diageam (d) thinke state {(a} in best - ba has uo way of sesing Lhal, over the
hungp, be could get to & Jower state (b).




haa succeeded (fig 6a,b). In fact (Blake and Zisserman 1927) succems is most
likely when the scale parameter A is smail.

A more general strategy, that works for small or large J, is to use & whole
sequence of cost functions F*), for 1 > p > 0. These are chosen so that
FO = F, the true cost function, and F{I} = F*, the corvex approximation
to F. In between, i} changes, in & continuous fashion, between F(U) and F{0),
The GNC algorithm is then to optimise a whole sequence df #(), for example
{Fit, FQ/3) Fl174 p1/%) p{116)} one after the other, usirg the result of one
optimisation ss the starting point for the next. As an example, optimisation of
a non-convex F, using u sequence of just 3 functions, is itluserated in fig 6c. Ini-
tially, optimisation of F(!) & P* produces u* but (let nn suppose) this happened
ot to be the global aptimum of P. (Note that aay starting [ oint will do for op-
timising F{}). That is because F{1), being convex, has only one minimnum, which
will be attained by descent, regardicss of where descent stats.) But successive
optimisation of F*} as p decreases “pulls” towards the true global optimum of
7. Exactly how the functions FU} are constructed is bayomd the scope of this
paper. It all depends on making F* & good convex approxin.ation to F. Suffice
it to say that, like ¥ in (5), #* and all the F*} age wums of Rocal functions:

~
Fo) = D4 3 Ny - wing), (6)
1

and this is important when it comes to considering optimissiion algorithms. Of
course, the trick is to choose the right neighboar intetaction function glP).

‘Thers are numerous ways ta minimise each FI7), including direct dencent and
gradient methods. Direct descent is particularly straightforwvard to implement
and ruas like this: propose a change in one of the nodal valnes w;, see if that
leads to & reduction in P} (this only involves a local computation); if it doss
then make the change. A simpie program which implemests GNC by direct
descent is outlined in Bg 7. It can be made to run quite satilfactorily with fixed
point arithmetic. As I is sxpressed as & sum over i = 0, ..., ¥ of local tarms
(8), the effect of altering a particylar v (tested in the if andalee i statements)
can be computed {rom just & few of those terms. For example w; appears only
in glPH{e, — 1), 91 (ws1 — w) and, in D, in the term (s ~ d;)3. Not only
does this simplify the computation of the effect on FI*) of -hanging w;, but it
is also possible to perform such computations on many w in parallel. Mora
efficient algorithims, based on gradient descent methods, are Jescribed in (Blake
and Zissermas 1987).

Figure 8 shows the GNC method in operation, solving the 1D weak elastic
string problem. A suoccestive gradient descent scheme (nom-l nesr SOR) is used.
For reasonably small values of the scale parameter A the total time for execution?®
is about 0.001X secouds, whers ¥ is the leagth of the data vector. This works
out ut about 50 arithmetic operations par data element.

“On a 3UM] computer, with TCY fostiag point board

N v

X

b) v
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Figure 6: Thﬁhmdamhuth!-thmdhmhiﬂhga
coRvex appromimation 5~ (a). If that doss wot work (b), the minimum may still be
found by the GNC algorithm, which rans dowshill on esch of a sequence of fenclions
{¢], to reach the trus global optimum.
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for p € {1,1/2,1/4,1/8,1/16,1/32} do
for §:= 158 2 Spuini# = 5/2d0
changed := troe
while changed do
changed := false
for i =0..N do
i F"‘{"l, —y W+ ‘a -u'N) < M('l- <y By ney 'N) then
w = ug 4§ ‘
changed = trne
else iff"’(ﬂhn.l(— 5,.,ux) < P(')(“lp--b'iv-n.ﬂ) then
o =w-6
changed := true

Figure T: A direct descent algorithm for GNC - see text for detalls

7 Analogue hardware

Hoen (1974), Tersopoulos (1984) and others bave pointed out that linear coop-
erative systems can be implemented as analogue networks. Simple, continnous
mmtrucﬁonbrmmplembcimplmudby-mhﬁnnemﬂ,uinﬁ;-
are 9. In the case of reconstraction with discontinuities by the GNC algorithin,
udoguhnphmntuionmyahobopo-ibh,min;sminmnfmm
saitably chosen now-linear elements. The complete system would consist of a
uﬁudbuﬁudm,moﬁpmupmdingwnchvducdpmdinthu
GNC algorithm. Provided the spatial scale {1} of reconstruction is sufficiently
amall, jwst one or two stages are sesded. For larger values of A the number of
stages increases as log()). ‘

An outline circuit diagram is shown in figure 10. The non-linear element
used in the network {Egure 10a) operates in three modes

e a resistive mode

s an open-circuit mode
« a trausitional mnode

switching between them st built-in current trigger lavels. Work is currently in
progress to build a prototype system of this sort. Swuch a systermn has the attrac-
tion that in can perform the reconstruction computation very rapidly - perhaps
a8 much as two orders of magnitude fastee than a fully paraliel, digital system. It
could also, in principle, be suitable for implementation as az intagrated circmit.

P e EL LT SR TR LY e Lt L] 1S

ud ud
298 - pe13 299 4 p=1/2
4 (e = 1/2) 4 e = 1)
158 - A 15'1
1 -
3108 - . .. -:_- :-.-..l 109 - et g - -—
[~ =i - L P =
;! |-
[ ] v ey v [} - - -
s 50 180 199 28 725 [ ] 1 159 MM 2%
{a) -+l b} £ —e
ud ud
208 4 p=1/8 ||2g9 pet/8
1 (c =2) (c=4)
13} 158
188 4 -—v——-:-.. [ ] ——
e et - P S
5 50 4
. v vy v ] A A ~—
s 5 1090 t30 208 238 9 3 188 139 208 250
{c} * = )id} ek
ud ud l
298 4 p =119 m.{ p = 1732
§ (c = B} ] {c = 18)
158 -+ 158
i ——— L1190 ——
4 ]
8 4 5 4
1 4
_— v T r (] v v
g S5 1M 150 200 2% P 5 18 15 8 258
{e} - n—=lleg) -

Figure 8: Snapshots of GNC: Isitial dasa {a). As CNC progresses, parameter p is
decreased (b)-{f). Parametors }, Ao {masked on (b)) are mensures of characiaristic scale
and sensiivity to discontinuities, respectively. ‘



Figure 9: Resistive aetwark for continuons reconstraction.

Acknowledgments

This work was supported by SERC grant GR/D 1439.6 and by the University of
Edinburgh. The Royal Society of London’s IBM Research Pellowship supported
A. Blake. We are very grateful to Bernard Buxton and David Willshaw for
heipful comments.

References

(1] Baker,H.H. (1981). Depth trom edge and intensity based stereo, IJCAJ
conf. 1981, 583588,

(2| Blake, A. (1983). The least disturbance principle and weak constrainta.
Pattern Recognition Letters, 1, 393-399,

[3| Blake, A. aud Zisserman, A. {1985). Using weak continuity constraints.
Report CSR-188-85, Dept. Computar Science, Edinburgh University, Ed-
inburgh, Scotland. Also in Pattern Recognition Letters, 1987.

{4 Blake, A. and Ziseorman, A. {1986). Weak continuity constraints in com-
pater vision. Report CSR-197-86, Dept. Cowtrputer Science, Edinburgh
Univecsity, Edinburgh, Scatland.

(5] Blake, A., Zisserman, A. and Papouiiss, A.V. {1988). Weak continuity

construints generate uniform scale-spuce descriptions of plane curvea. Prec
ECAL Brighton, 1986.

[6] Blake,A. and Zisserman,A. (1987). Viswal Recomstruction. MIT Press,
Cambridge, USA.

a) —ZZZ~  non-linear element

s

2

2

AL

propagation control

b)

|

A

l_l

L.

.

I,

Figure 10: A non-laear network for recanstruction with dlecontinuities. (a}

LELTRR )

p=l

AL .

A single stage. (b} A cascade of stages forme the complele netwark.

setararAp



(7] DerimH. and Cole,W.S. (1988). Segmentation of textured images using
Gibbs rnndom Gelds. CVGIP, 35, 1, 72-98.

{8} Geman, S. and Gemsa, D. (1984). Stochastic Relaxation, Gibbe distribu-
tion, and Bayesiaz restoration of images. IEEE PAM], 8, T21-741.

(% Grimsos,W.E.L. (1981). From imeges 2o surfaccs. MIT Press, Cambridge,
USA.

(i0] Juless,B (1971). Foundations of cyclopean perceplion. University of Chicago
Press.

[11] Kirpatrick, S., Gallatt, C.D. and Vecchi, M.P. (1982). Optimisation by
ginmlated annealing. IBM Thomas J. Watson Research Ceatre, Yorktown
Heighis, NY, USA.

[12] Marz,D. {1976). Cooperative computation of stereo disparity. Sciemcs,
194, 283-287.

[13} Marr,D. and Poggio,T. (1979). A computstionsl theocy of human stereo
vision. Pree. B. Soc Lond. B, 204, 301-328.

[14] Marroquin, J. (1984). Surface reconstruction preserving discoatinuits
Memo 792, Al Labaratory, MIT, Cambridge, USA.

[15] Mayhew,J.E.W and Frisby,J.P. (1981). Towards 3 computstional and psy-
chophysical theory of stersopein. Al Journal, 17, 340-385.

(16! Mumiord, D. and Shah, J. (1965). Boundary detectios by minimising
functionals. Prec. IEEE CVPR cenf., 22

(17] Murrsy, D.W. and Buxtoa, B. (1986). Scene segmeatation from visual
motion wsing global optimisation. JEEE PAMI, 9, 2, 220-228.

[18} Ohts,Y. sud Kanade,T. (1985). Stareo by intra- and intec-scaniine ssarch,
using dynamic programming. Prec. [EEE PAMI T, 2, 130-154.

{19) Pollard,S.P., Mayhew J.E.W. and FrisbyJ.P. (1083). PMF: a stareo cor-
respondence algorithm neing a disparity gradiemt limit. Perception, 1,
449-470.

[20) Strang,G. and Fix,G.J. {1973). An enelysis of the fnits element method.
Preatice-Hall, Englewood Cliffs, USA.

[21] Terzopoulos,D. (1984). Multi-resolution computation of visible-surface
représentations. Ph. D. thesis, MIT, Cambridge, USA.




