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ABSTRACT

A new paradigm is proposed for deriving from visual information certain
features of the 3D structure of the environment that are important for
obstacle avoidance. For a moving observer with two translatory degrees
of freedom, obstacles are defined as anything raising above the horizontal
plane. Detection of such obstacles either via the optical flow induced by
egomotion or via stereopsis can be facilitated by the application of a
coordinate transform which will be called snverse perspective mapping.
The formalism of inverse perspective mapping is presented in terms of
projective geometry. The method is related to principles of biclogical
information processing such as retinotopic mapping.

1 INTRODUCTION

Recent interest in neural networks is largely due to the information processing
capabilities of both real and artificial nets. If we understand why it is that neural
networks come in different anatomical types (such as nuclei, cortices, or formatio
reticularis) or are endowed with different physiological properties, we might be able
to learn something about the computational theory used by the brain. In David
Marr's [1] classical distinction of the levels in which information processing can be
analysed, this direction of inference, i.e. from the hardware to the computational
level is not included. The reason for us to pursue this line of thought is that the
brain, unlike a typical computer, is highly adapted to the tasks it performs. By
virtue of these structural adaptations, conclusions on computational issues can be
derived from anatomicel and physiological considerations.

How can one find in neural networks structural adaptations that correspond to
computational strategies? There is a well known answer to that question in classical
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biology: if a certain anatomical, Physiological, or, for that matter, behavioural
characteristic is correlated to an information processing task, it should show up as
an analogue or convergent development in various otherwise unrelated structures
subserving this same task. Therefore, comparative investigation of visual systems
can be used to identify structural principles that in turn hint to computational
mechanisms for vision. In this paper, we present an example of how this approach
leads to novel strategies for autonomous navigation. Neural networks are dealt
with on the level of architectonics rather than single neurons, since it is this leve]
of organization in which the differences and similarities of brain structures are
apparent.

Neural networks processing sensory information in the vertebrate brain are typ-
ically organized as cortices, i.e. as stacks of twodimensional layers. We have com-
piled a preliminary list of structural principles of the visual cortex and their possible
computational implications [2, 3]. At least two of these are found in the optic tec-
tum and the torus semicircularis [4] as well: the criterion of analogue development
15 therefore satisfied.

Average anatomy Most cortical neurons (e.g., the pyramidal cells) have strong
vertical connectivity with dendrites in the upper layers and both descending
and recurrent axons that constitute positive feedback. In the horizontal di-
rection, the connectivity is rather uniform. For a model based on this average
anatomy and related physiological results, see [2, 5).

Retinotopic mapping In the horizontally extended cortex, the retinal image is
represented in a roughly continuous (neighbourhood preserving) way [6, 7).

Patchy connectivity If connectivity from several areas converges in one area, it
segregates to patches, stripes, blobs, etc.

Columnar organization Intrinsic processing varies almost periodically with hor-
izontal position (e.g, orientation columns i the striate cortex).

Each of these features corresponds to a basic operation that appears to be
important for the way the brain works. For example, the principles listed above
correspond to local intrinsic operations such as spatio-temporal filtering, thresh-
olding, two-dimensional coordinate transforms, the interlacing of multiple images
in stripes or patches, and a spatial code for a variety of stimulus characteristics.
Taken together, these basic operations can be interpreted as an instruction sef
for neural computing. The knowledge of this instruction set would considerably
increase the understanding of biological information processing.

2.1 Obstacle Avoidance

In previous work [3], we have presented a number of results on the information
processing mechanisms associated with one or another of the structural principles
listed above. Here, we focus on the implementation of a vision task in terms of the

assumed neural instruction set. The selection of a suitable task is again motivated
by biclogical considerations: vision and visual behaviour have followed an evolution



Figure 1: Two perspective views of the same 3D scene. a. Projection onto the
image plane, P¢. b. Projection onto the horizontal plane of the world coordinates,
Py. Inverse perspective mapping directly transforms image & into image b and
thus undoes the perspective distortion of the plane

from simple but useful to highly sophisticated capabilities. The tasks for which the
structural principles have evolved are the simple ones that had to be solved early
in the evolution of visual behaviour. Therefore, it seems promising to study the
problem of obstacle avoidance and autonomous navigation. A discussion of the
sequence in which visual behaviour evolves or should be implemented in a mobile
robot, is given by Horridge [8] and Brooks [9], respectively.

Consider an observer with two degrees of freedom to move. As for a typical
mammal this means that movement is confined to a horizontal plane. In this
situation, which of course is familiar in autonomous navigation as well, an obstacle
can be defined as anything raising above this plane. This is a minimal definition
of an obstacle which does not require additional information about the nature of
the object. We will now show how the proposed neural! instruction set can be
used to detect obstacles, i.e. elevated points, in motion sequences or stereoscopic
image pairs. The proposed algorithms are minimal in the sense that no information
Processing capacities are wasted to derive superfluous informations.

2.2 Inverse Perspective Mapping

With no obstacles around, both the optical flow generated by translatory egomotion
and stereoscopic disparities take a simple form which is determined by the camera
(eye) geometry. Any deviation from this expected pattern must be due to an
obstacle which is the more important, the larger the deviation is. Unfortunately,
variations of optical low or disparity can be due to both, perspective foreshortening
and the 3D structure of the scene. Since we are only interested in the latter part,
i.e. the presence of elevated points, we could try to use a coordinate transform to
eliminate the effects of perspective (cf. Fig. 1).

Fig. 2 shows how this can be done: consider a point £ somewhere in 3D space.
Perspective mapping means that we draw a line through this point and the center of
projection N and intersect it with the image plane to find the corresponding image
point. In order to remove the distortions of the horizontal plane, we now want to
undo this perspective map for points in the plane. We define an ‘inverse perspective
mapping’ by the following procedure: for a point E' in the image plane, we trace
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Figure 2: Coordinate systems for inverse perspective mapping. N: center of projec-
tion (nodal point). v,w camera coordinate axes. Y, 2 world coordinate axes. The
additional axes u and x are perpendicular to the paper plane and are omitted in
the Figure. F: fixation point. E: a point in 3D space; E¢, Eg: its representations
In the image and the horizontal plane; E: homogeneous representation of E.

m

the associated ray through N towards the horizontal Plane. The intersection is
the result of inverse perspective mapping applied to the image point E'. If we
compose both perspective and inverse perspective, the horizontal plane is mapped
unto itself, while elevated parts of the scene are distorted.

Another way to look at inverse perspective mapping is that we assume a fixed
relationship between the position of a point in the image and the distance of the
corresponding 3D point from the observer. For a void plane, such a relation exists.
Next we magnify the parts of the image depicting distant points and compress the
parts depicting close points. For the plane, perspective forshortening would thus
be undone. However, for an elevated point, the assumed relation betweeq image
position and distance does not hold. Therefore, inverse perspective results in a
magnification of elevated points, or obstacles.

Mathematically, inverse perspective mapping is a Projective collineation [10]
which can be written as a Linear mapping in homogeneous (or projective) coordi-
nates [12]. For & coordinate system B := {a,b,c} and a plane at distance d from
the origin parallel to a, b, Perspective mapping is described by :

T L e
E E‘B—(b')'_(E-c) ((E'b))' Y

where (.) denotes the inner product. The 3D-line of all points projected to Ep =
(a',¥)7 is given by

Aa’
Ey — Eg:=| A for A€eR. (2)
~Xd

Ep is the ‘homogeneous representation of £ in the frame B. By construction, we
have Pp(Ep) = Ep forall A £ 0.

Next, we introduce a world coordinate system H := {x,y,z} where x and y
span the horizontal plane while z points in the upward direction. The camera



model is described by a second coordinate system C := {u,v,w} where u and
v span the image plane and w is the optical axis. Both frames ghare a common
origin, the center of projection or nodal point, N at distance A (height) and f
(focal length) from the horizontal and image planes, respectively. The coordinate
transform from the camera centered system to the world system is described by an
orthogonal matrix T which is composed out of the column vectors u,vand w (cf
Fig. 2).

In inverse perspective mapping, we start with a point Ef in the image plane
end want to find the corresponding point Ej in the horizontal Plane, i.e., the x, y-
plane of the world coordinate system H. In homogeneous coordinates, this is a
Linear mapping of a point B to a point £, characterized by the orthogonal 3 x 3
matrix T

Q@ R% —~ R3 E'H:=T-E'c

p.:' Uy vy wy Ay
uy' = Uy v; wy |- A (3)
—‘uh Us vy wy -t\f
Here, u;,...,ws denote the components of the axes of the camera frame ¢ expressed
in world cocrdinates. We project Eg onto the horizonta] plane (Eq. 1):
Q:R* - R?

(z’) - -k (u;u’+v1v'—w1f). (4)

y Ust' + vt —waf \ w4 vt —w,f

By construction, the composition of perspective and inverse perspective map-
Ping 1s identical to the projection through the camera nodal point onto the hor-
izontal plane. It is only this projection @ o Pc that we need to discuss in the
applications,

RQoPe(E) = Py(E)

31
QoPo:| e | — _i(h) (5)

[4 [ 4
(-] 3 3

Here, e,,..., ey denote the components of E, expressed in the world coordinate
system /. In the final result Pg, the dependence on the camera coordinate system
was removed by the inverse perspective map. In practice Pg can not be obtained
directly, since the original image acquisition used the projection Pc in the first
place.

In applications it is convenient to shift the center of the world coordinate system
into the intersection point of the horizontal Plane and the optical axis, i.e., the
fixation point F := Q(o, 0) if such an intersection exists (ie, if wy # 0). In
homogeneous coordinates, shifts can again be accomplished by linear matrices. We
state the result for the example presented in Figs. 1 and 2, where the camera is
tilted by an angle 80° + ¢ towards the horizontal plane:

@ :R? = R?

z' h o
(V') - -—v‘cosgp-i-fsinw'(v:/sinw). (6)

Note that @°(0,0) = (0, 0),i.e., the map is centered around the fixation point.
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Figure 3: Flow field of the projected image. a. without inverse perspective (cf.
Fig. 1a) b. with inverse perspective (cf. Fig. 1b) c. detected obstacle after
thresholding d. relation of obstacle elevation and motion distortion in the inversely
mapped image (cf. Eq. 10)

2.3 Optical Flow

If the camera frame, i.c., the observer is moving in the horizontal plane at a constant
speed m, a stationary 3D point E will move relatjve to the camera frame with a

motion vector dE/dt = —m. In the image plane, its motion m'c is determined by
, dPolE
me = ———%-_) = ~Jp (E)-m (7)

where Jp. denotes the Jacobian matrix of the projection (cf. Eq. 1). Fig. 3a
shows the resulting motion field for the scene depicted in Fig. 1a and translatory
egomotion. If we apply the inverse perspective mapping @ prior to the computation
of the image flow, i.e., if we compute the image flow from the transformed image
shown in Fig. 1b, the result is:

mlg = —Jggpc(E) -m= —JpH(E) -m
_ ~l/es 0 e /el g
= -k ( 0 —1/es ez/es ) . ( :: ) ®

The Jacobian was obtained by differentiation of Eq. 5. Since egomotion is bound
to the plane, we have m; = 0. From this, we obtain

*

== 4R g
e e (10)
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Figure 4: Application of the algorithm outlined in Eq. 12 for obstacle avoidance
In & custom autonomous vehicle. a. Left view (P.). b. Right view (Pr). c.
Left view (a) mapped to the right camera coordinates by @r-r°Pr. d. Thresh-
olded difference image of b and ¢. The obstacle can be clearly distinguished from
background textures '

where elev. ;= h + e, is the elevation of the point E above the ground plane, le.,
its importance as an obstacle. (Note that ey < 0in typical cases.) From here, it is
easy to detect the obstacle by a local uniform operation, such as an unidirectional
motion detector. Thresholding the result to cut off the egomotion vector itself,
the obstacle can be made stand out clearly (Fig. 3c). No further information
concerning the obstacle is required to trigger some 'avoidance behaviour’.

The relation of the velocity of the mapped flow and the elevation of the obstacle
(Eq. 10) is shown in Fig. 3d. The effect scales with the elevation, i.e. the
importance of the obstacle, and approaches infinity for objects at the height of the
observer. As compared to complex logarithmic mapping [11], inverse perspective
has two advantages:

o Not only are the motion vectors in the mapped image unidirectional, for
points in in the ground plane they are also of constant length.

® The position of the focus of expansion is not required to apply inverse per-
spective mapping.

2.4 Stereopsis

The second paradigm applies similar ideas to stereopsis. Again, if no obstacles
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Figure &: Iso-disparity surfaces for normal and inverse perspective stereopsis. Left.
In normal stereopsis, two images with slightly differing perspective are acquired.
Disparities between corresponding image points translate into distance from the
observer. Points with constant disparities correspond to horopter surfaces in space,
namely vertical cylinders on the corresponding Vieth-Mullercircles. Right. If we
map both the left and the right image by their inverse perspective mappings, &
and Qg, disparities in the mapped images correspond directly to elevation above
the horizontal plane. Constant disparity in the mapped images translates into
positions on isoelevation planes.

were present, the image generated in the left camera would be identical to that in
the right one, up to a coordinate transform that includes the inverse perspective
mappings for both cameras. Thus, an obstacle can be defined as & deviation from
that rule without any higher leve) information involved. The comparison of the
two images is performed via a topographic mapping and a subsequent subtraction
which leaves only those regions above threshold that display an obstacle.

Let L:={u;,v;,w;} and R := {ur, vz, wg} denote the left and right camera
coordinate systems, respectively. We assume that both camera nodal points Ny, Ny
are at the same height h above the horizontal plane. The separation of the nodal
points is given by a vector in the horizontal plane, (s;,5,)7. In homogeneous
coordinates, this shift corresponds to a matrix

10 81/}1
S = [ 01 sy | (11)
00 1

The mapping of the image obtained by the left camera onto that obtained by the
right can thus be written

Q-r:R’ = R® ,
Ey —~ Eg=T7.5.7,-B,. (12)

This algorithm is currently being implemented in a custom sutonomous vehicle
[13]. The two upper frames in Fig. 4 show the normal, l.e., perspective views
of the two cameras. At the lower left, the view of the left camera is distorted in
such a way that its image appears under the perspective of the right camera. If



no elevated points are present, the difference of the two frames is small (Fig. 4d).
However, if an obstacle comes into sight, the true right view and the one predicted
from the left view (under the assumption that no obstacle is present) differ.

While Eq. 12 is convenient in practical applications, since only one image
transformation has to be computed, we will use an equivalent description in the
sequel, where both image planes are mapped to a common ‘cyclopean’ plane. We
will now derive the disparity of the two images of a 3D point E in this common
plane. We choose the origin of the world coordinate system to be at Nz and obtain
Ngr = (3;,3:,0)7. Therefore, the point E appears at a position F — Npg for the
projection onto the right image plane. Next, we define a disparity vector D in the
common horizontel plane by

D:R* - R?
D(E) = QLO’PL(E)—QROPR(E'—NR)-—(’]). (13)

LF]

From Eq. 5, it follows

o= -a(a)a(am)-() e

DI = |2 v = . (15)

h —elev

Asin Eq. 10, elev. := h + ¢5 is the elevation of the obstacle above the ground
plane, i.e. a measure for its importance.

Eq. 15 shows that disparity in the mapped image depends only on the z-
component of the imaged point. Surfaces of constant disparity are therefore the
horizontal planes. The situation can be made clear by Fig. 5. By choosing other
mapping functions, different three-dimensional surfaces can be made ‘horopter’-
surfaces as well.

2.5 Inverse perspective mapping in biology

We have shown that coordinate transforms such as the inverse perspective map-
ping are powerful tools for visual information processing. In neurophysiology, on
the other hand, pure inverse perspective mapping has not been described as a
retinotopic map. However, as Epstein {14] has noted, the deviation of the area
17 map in the cat cortex from a conformal mapping can be accounted for by the
inversion of & perspective as it occurs when the cat fixates a point about one meter
in front of it on the floor. Interestingly, no such correction is found in animals
living in a three-dimensional surround, where it in fact would be useless.

8 CONCLUSION

We propose a low-level detection scheme for obstacles where obstacles are defined
as deviations from some expected image. Topographic mappings, as are common in
the visual cortex, are used to facilitate the detection of such deviations. In future
research, we plan to explore the value of other principles both of brain anatomy
and explorative behaviour.



In more general terms, we think that our results give an example of how hard-
ware considerations can have fruitful implications on computational theory if the
hardware is adapted to the task it performs. A strong contribution that biology can
make to the science of information processing is the formulation of what exactly
these structural adaptation are.
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