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Reversal Time Distribution in the Perception
of Visual Ambignous Stimuli

A. BorseLLano, A De Maneo, A Avtazerra, 8 Rinewt, and B. Barroring

Laboratorio di Cibernetica ® Hiofiniea del CNH®, Camogli, Istituto i Scienzo Finichs dell'UniversitA di Genovs, snd
Istituto di Fisica Generale dell’Universith di Terino, [taly

Reosived Augunt 4, 1471

Abstroct. Tioversal of "'r:)lentim for amhiguous aptical
stimuli {Necker cube, Schrider staitcwse, honeycomb) has
been studiel. detrrmining the statistical distrib 1 of time
intervals spent on cach percept. The sxperimental distributions
can be fitiod with the gsmma function, characterized by twoe
prramcters u, b. The two pacsmeter sre not independent,
showing & eortelation p = 0.74.

Subsequent intervaln appear 0 ho largely independent;
from the bets distribution for the fraction of time apent on a
given percepl, otie cun show that the subjecta differ only in
regard to the variance of thin variable,

1. Introdurtion

Ambiguous parceptua! ...uh are thowe able to
elicit different porreptions. A very notable fact is that
thesn perceptionn slternate during continued olwor.
vations of the smne atimulus, giving us the possibility
of registering the subsequent intervals of time for
sach perception and therchy oblaining infoemation
about properties of the neural machinery involved in
the processing of the stimulus.

A well known clasy of ambiguous stimuli are visual
forma eliciting pereeption of aolid bdies an seen in
two different porspectives. The oldest known in the
Necker cube (HK12), but many othera wore later dia-
covered; the Mach book, the Schrider staircase, the
homeyeomb, Another well known calegory ix given by
those visual forma gonerating the fizure-ground alber-
nations.

Interest in the ficld of vinuat ambiguouw stimuli has
varied in the past. What has been often unnsually
dintressing in the vory Jarge variability involvwd,
dependting on choice of subjects, theiv experimental
comlitioning, choice of the visusl stimuluy, dependence
on ity size, beightness, complexity, ete. All Lhis high
vatinhility has caused the disappointing result that,
not withstanding & century of extensive research, not

a single rpuantitative law has been derived from the
ex|wrimenta.

However Frederiksen et al. (1934} notd the high
reprosfucihility of the measurements of the reversal
rale for the Necker cube in 05 Sa, found ranging from
4.6 to 74.4 per minute, exprossed tho opinion that s
test with anch high reliability end such a wide range
of measurements must be a delicate indicator of rome
conatant factor or set of factors in the individual”'. The
smne opinion was expressed aa Inte an in 1968 by
Kiinnapas at the conclusion of an unaucessaful search
for & *' prryonal tempa, Lo be correlated to the reversal
rate of figural fluctuations®.

Due to the high level of neural mechaniam, cer-
tainly behind the optical chiasma (Cohen, 1958; Brown,
1082), responsible for the perceptusl alternation with
visnal patterns and to the gsimplo proemiure to get
“relinble” data, wo thought it was worthwhile to make
u more sophisticated approach st the individual lavel,
with the aim to describe the individual variability,
This approach sturted (Bormellino, 1967) with the st.
tenupt 1o separate a paltern ambiguity, as expressed
by un informational entropy H, from the additional
incertitude due to the statistical distribution of inter.
vitly, that coulkl pussibly be considered as an individual
characteristic of the observer.

We report here the resulta obtained for the interval
distribution, as a uselul tool in describing the observer's
behavior.

2, Procedure
The ¥ is sitting at a tuble, looking binocularly st
a wereen nb 2 modistance, un which the ambiguous
visual form iv projected, in size 30 x 40 cm?, from
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Fig. 1. Percentages of duration for one perception of the

Necker cuba {cube down), in 11 seasions for Lthe same subjoct.

The relative frequencies are given separately for intervals

ranging from 1-2 %o 5-6 sec. The vertical scgments represent
the statiatics] ervors of each seesion

slides. The room is dimly ililuminated and the § is
told to fixate the conter of the drawing, without any
effort to keep one of them o to favour the reversals.
At each reversal the § moves horizontally the index
tinger of his right hand, cutting small heams of light
impinging on phototeansistors. With thi minimal
effort, the & nends signals Lo a paper recorder (Sanbom)
and tu a magnetic tape recorder. The paper tracings
are used for direct control in the course of the ex.
periments and the magnetic tapes are used for sub-
sequent computer analysis.

3. Analysia of Data
In the cases of figure-ground alternations {Kin-
napas, 1969} it has been shown that, ax for Inovement
alternations (Brown, 1953, 1955}, the rate of ulterna-

¥ I p— i‘"l_'i ——
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tions ineroasea regularly during the first 2-3 min of
obacrvatioms. After this initinl phase, the rate reaches
a value that remains constant within statistical fluc-
tuations.

Our S« were tested nsing as reversible perspectives
the Necher cube or the Schrider staircase and we found
in general the same increaso of the reversal rate after
2-3 min of continued fixation.

Since we sre intercsted in the more stable phase,
all our data that will e reported here, refers to this
“atationary” behavior, i.e. after the transient or
initial phase is finished.

For anch 8 the intervals {; appear to be spread
widely around the incan value I For 10 8s we repeated
the test in different hours and days, to get indications
concerning the reproducibility of the distribution of
intervals.

We give in Fig. 1 the resulta obtained for one sub-
ject (B.L%). Tn this case we messured, for the Necker
cube, the durations of one of the two perceptions,
collecting not less than one hundred values, and this
waa repeated fur 11 seasions. Tho percentages of dura-
tions taken in each seanion are presented separately, for
interval durations in the ranges 1-2sec, 2-Jmec,
4-5 pec, H-tnec. One can see how the sampled per-
centages fluctuste sround the total averages. We
reprosented with s vertical segment the amplitude of
the fluctustion in the percentages, for the submequent
seasjons, K ~1,2, ..., 11, as expected on purely sta-
tistical grounds. On the same diagrams we reported
aluo the fluctuation for the total distribution, and one
can peo that very few pointa lie away from the genaral
inesn by more than one sampled oy .

Analogoun results obtained for all these Ss indicate
that the high reliability already noted by Frederiksen
et al. {1934) for the mean rate can be considered valid
alsa for the distribution of intervala.

4. Diatributions and Their Representation

The distribution of the intervaly for one perception
in ali our 8¢ has been found Lo be unimodal, sasymmet-
rio, with a more or less fast growth and a long tail.
We givon in Fig. 2 the distribution obtained for the
proviously (Fig. 1) discussed subject B.C.

The vxperimental puints are shown in the diagram,
togother with their statistical errors (vertical bars).
Our next aim has been to get an analytical representa.
tion of the results, using some simple theorstical dis-
tribution.

[P .
R 0 e

Fig. 2. Distribution of the duration of ene porception of the Nocker cube (cube duwn) far the subject B.C. with » sample
of 1 100 measirements. The full line in the theoretical distribution (1) (seo lext) with s . 4.3 and b =08 wec !

10, Bid., Heft 3, 1972
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27 4 @ sec
Fig. 4

Fig. 3. Distribution of the duratiocnn of one pereeption of the Necker cube {cube down) for a “glow"” subjeet (A.G.); the full '
line is the theoretical distribution {1} with » - 4.3 amil b~ 0dmec t

Pig. 4. Diatribution of the durations of one perception for the Necker cube {cube down) for a *fust™ subject (A.C.). The full
line is the theoretical distribution {1} with a- 9 and b= 3.9 sec v

One possible distribution, wilh the general pro-
perties indivatedl by the experimental resulta, in the y?
distribution. This is o one parsineter distribution
{degrees of freedom m) and. upplying the method of
momenta, we tried it on our points, taking Pl UL
We had to discard it, because the beat fit gave a rosult
much below the | % lovel.

We tried than the 2-parameters gamma distribu-
tion:

(B e [ 1]

="

In)=n—1! 1)
where b and  are two free parsmoters. Using the same
method of mamenta, based on the relutions:
I s
b=0p m=y
where { is tho average and of is the vacisnve, the curve
fitting is satisfactory. Tn Fig 2 we show the curve
with b=08scc? and n =34, to be compared with
the experimentsl data proviously disciized.
If we apply the maximum likelihnl oriterion,
computationally more lsborious. we gel rosults not
very different.

&)

6. Exactnesg of Fit Tor Subjeei’s Fopulation

Our procedure was applis) on 24 8s chosen from
among our colleagues or from volunteering or hired
scicnos studenta. Tn wll coses we found that the dis.
tributions were such that o " fast” nubject coulld be
called also *regular’™ while s “slow " subject would
also bo called “irregular”. ‘T'wo extreme cases are
whown in Figs. 3 and 4. The same two different types
of 8s wore alredy found by Washburn ot al. (19314).

Al our 83 were tested on 3 wnsbiguous stimuli, the
Necker cube, the Schrider stairease and the honcy-
comb. For each stimulus we obiained the distribution
of intervaly scparately for cach of the twa posaible
perceplions,

Kor 24 of these Sa we computed the g§, W express
the exactness of the fitking of the theoretical curve ()

an the experimental points, Out of the 144 =24 x Ix2
distrilmtions, we found 43 of them for which the
probubility Piy® > i) was less than | % so they would
be discarded.

It is well known that in some few cases the 3 gets
blocked or get in troubles in signaling correctly. We
thought that we could pussibly keep under control thia
type of “inconvenience™, by discarding al} intervals
for which we would have £+ 30, Accepting this
yuite arbitrary eriterion, we computed again ali the I’
distributions, their 3} and we found that only in
24 canes out of 144 did we get Pyt x3) < 0.01.

I what we refer now sbout. properties of our popu-
tation of Sy, all the theoretical curves und the dater-
mination of the twu parameters n, b arc obtained with
the above said computational rule, i.e. disrogarding sil
the measured intervals 17430,

Naturally we are aware that we cannot give a
justification for the above procedure. But in the pressnt
wituation we consider it satiefactory to bo able to use
the same distcibution function for our S, within the
confidence level for B65% of them.

We tried also other possible two parameters dis-
tribution functionas, e.g. the Wiener distribution for
random walk with drift with one sbsorbing barrier.
Due to the faster rising and slower descent of this
distribution, the fit resulted worse.

4. Correlaiion hetween n, b

With the statistical rules previously described, we
expeeted that all the varinbililty of the Ss behavior,
in the ambiguous perceptual situation of the experi-
ment, woubkl be taken into aceount by the distribution
of intervals as fixed by the two parsmeters n, b. Our
next wiep was therefore Lo see how the value of the
parumelers would be distributed and we plotted thoe
seabter shingrum, in which & point (&, ») corresponds
toad.

The result is shown in Fig. 5, for the Necker cube.
We have taken for noand & the mean value of the
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Fig. 8. Scatter disgram = va. b for the Necker cube for 24 Sa.
The eorrelation coefficient is p = 0.74 wnd the besl regression
line (full line) is

a=4685+4+02

reapective values of the two perceptions which are
practically equal.

The two parameters are not independent and we
obtain a correlation cocfficient p =0.74.

We have calcolated 3 regression linem; the first
one (dashed line) supposing b as independent variable,
the second (dotted line) supposing n as independent
variable and the last {full line) with the methade of
orthogonal projections. The linear relationships ob-
tained are, respectively:

n= 16+270b
n=—01-4408h
n= 02+46b,

We must admit that this guite strong correlation
was unexpected in view of the difficulty of fitting the
interval distributions with a single parameter curve.
In fact, we need both parameters to get a satisfactory
fit for sach 5 at the assigned confidence level, So the
second degree of Ireedom is necessary, but the sbove
result indicates that, once the first parsmeter is
determined, the chancea are high that we will pick a
partially determinate value for the other one.

7. Interval Independence and Equivalencs
to B Distribation

Our data have slao been submitted to a further
analysis to find out if the duration of & pereeption
keeps in some way the memory of the duration of the
prior one.

We have so calculated the correlation coefficient
between two succosaive perceptions and we have found
for it & valuo arcund 0.19.

‘Wo can no conclude that in the transition from one
porception to another, about all the memory of the
duration of the prior perception has been destroyed.

This important fact permita ua to display our dats

in annthar wav: lat ha ? tha utachnatin variolda ralitiva

Kybernetik

A

Fig. 6. Dintribution of the vlementary probability relative to
the subject A.A, The full lin: i tho theoretical distribution (8)
with p= 545 and ¢ = 4.55

1 A L i 1
0 [ ] ™ n % a

Fig. 7. Hcatter dingram of paramcters p and g of the distribu-
tion {8), The correlation corffiviont in p = (193 and the best
ragrompion line je p = 1.094.0.7

to the duration of the perception “cube down' and
4, that relative to the *“cube up”.

If the distribution of 4, and i, follows (1), with
parsineters ny, b amd ng, by respectively, it is possible
to show that the stochastic variable

'
£= ey ()

follows s distribution with a density

Pt e NI 1— g
HO= piny romg 8 0t by gbypem s (©)

Now if n, =ny=n and b, =&, =08, that in if the
two perceptions huve the same distribution, than (8)
becomes

PO = (i &ML 1)

that iv.a A lictcikotion with okl ana nasasafan

10, B, Heft 3, 1972
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A e

Fig. 8. Scatler dingram of u va. e=(p4 )2~ p=g. The correlation coefficnt in ¢ = 0.3 and the beat regroasion line
wa=07w {8

Now il we fit the experimental distributions of §
with a general # distribution

e+ e -1

- _ Py 8
f343] ripd gl a8y (8)

we expect a good fit with p =g =mn for every distribu.

tion.

Actunlly we have 4 good fit for 80 % of our distribu-
tions (one exnmple is repurted in Fig, 8} and p=g=>n
88 we can see from the seatter dingrams of Figs. 7and 8.
In fact, from Fig. 7 we can deduce that p and ¢ are
strongly correlated (p=0.93) and the regression line
p=10g+07, is compatible with p=cq. From Fig. 8
tp kg

2

momover, we can deduce that xpxq i

approximstely equal to # with » correlation cocfficient
=083,

The variables ¢ and 1 —£ can e interprotated as
the probabilitics of perceiving the cube down and up
respectively, as sampled in a single poriod.

The mean £ and the variance o} of the ff dintribution
{B) are

=7 - P
E= Pty ot E(r+9ny+w+n'

An we have woen p=g=n for all subjects, hence

®

1 1 1
Fx g o= gt (10

From these equations it foliows that the mean
probabitity is the same for all subjects and the per-
cepitnal behaviour of each subject can be described by
the varisnce only.

8. Dircussion

The previous results can be reganded an an attempt
to explore quantitatively a fichl in which the very
high variabilily arema to mmake unavoidable the ata-
tistical apprimch here described.

Without giving to the partienlur represontation
with the gammn diatribution (£) any specisl mesning
for the moment. we holieve that it is worth noting
that we cnn deseribe the behaviour of a subject in
different. pereeptual situations with the same distribu-

tween the two parametora n, b suggesta that the under.
lying neural mechamvm, giving rise to the obrerved
iterval distribution ia in some way “simpler'’ than
enuld be expected.

We nole that the first Ky, (10} £~ 4 showns that
the pereeplual entropy {Borsellino, 1967), sa deter-
mined in these experiments, is M{E, 1 —&) > | bit. We
point out that the stimulus reaching the retinac of the
subjects has some well defined informational (or
entropy) content M9, na & two dimensional optical
stimulus S,. When this stimulus is utilized as & signal
for a 3-dimensinnal object € a conditional information
H(0y| 8. derived from the intetnal storage and pro-
coading, must be added to F(S,). In ordinary percep-
tunl situations this additional information can be very
small, can o practically zero as s consequence of
atrung correlationn: the decoding of the optical signals
in terms of 3-dimensionsl ohjects is therefore un.
ambiguous.

In our case the neural machinery operates at the
largest ambiguity level (I bit) for the two posaible
alternatives 0}, Oy decoding the same optical input ;.
1t is intoresting to further explore if this working mode
is & consequence of an inherent tendency as an ex-
pression of equal aveilability of the two interprota-
tions, once the two stored conditional informations
H0|8,). H(0;]5,) have been retrieved. The above
tendeney can bo locked upon as on ergodic property
of the search mechanism or as an indication that the
inductive process Sy —0, uscs the principle of the
entrapy maximum.

The gamina distribution suggesta diroctly a variety
of possible processes, One is a threshold procons, in
which the threshold can be reached by the convergence
st the decision region of & number of independent
oxcitations.

Iy further investigations on this line, that we are
continuing, we hope to get more insights and therefore
to be in o Letter position to take some of the prsaible
tnodels more sericusly thal we are able to now.

Acknoyirdyements. We thank E. Gaggero and L. Traspe-
ilini for terhuienl help in the constenction of the experimontal
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TZRCEZIONE DI PIGURE RLBINUE IN COFPIE DI GTNELLY IONOZIGOTI
E DIZIGCTI

4.Boreelline (¢), S.Rinesi (*9)

I primi rirulteti ottenuti sullo studioc del fenomeno
di inversione di figure ambigue nanno termo in luce una ripro-
ducibilita del comportamento dei sofettl di fronte a queeti
patterns e una strettc correlazione fr.: i paracetri n-b che
definiscono La curva di dietribuzione det templ di inversione,

bern ra;rrecentats Julla Geruw 2. Falers [l]

P = et O
)
Jueric onr CaTTerito di rotioporre il test dei yatterns am-

bizui a copiie di pemel.i monozifoti B!, cloé identici, e
dizigoti (D2}, ciod diverel, cercando di deterolnure un'even~
tuuzle influenza di un fat:ore renetico. A querto mcopo Rl mono
emaminate 15 coprie 4i cemelli T e 16 coprie di gemelli DI,
di condizioni socineconomiche equivulenti, ottenendo corli cnoe
i'anico paramctro diverso foeap lo zifo4irmo . la diugnori ai
zifpotieno eru bapata quarsi prr tut1i i casil sai fruppi san-
maini, con una probubilita di solo il 57 cne i pemelli dizi-

nott aveamsers ali mtesci v ~ruppi r.nguisni.

7®) Lab.Civ.Biotfin. ZALCTLI

(™) 1I-t. Pisicn GERC V.,

bermede Cogh. ABF Tirt See. fo Ghon .
g:éao&mv sz and Baplssen
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L'etis era comprema tra i 16 e i 20 anni, e nersuno dei
roggetti epaminati conomgeva il fenomeno dei patterna ambigui.
1 dati eono etati registrati dopo alecuni minuti di training.
Per vedere Ae guerto campione aveva lo Riesad comportamento
dei moggetti precedentemente epaminati 1 rono ntate fatte
prove di riproducibilita ed & stata caloolata la correlazione
irs i parametri n-b che definierconc la carva di distribuzione
Gemma di Eulers (1), che ha fornito rieultati poeitivi; ciod
anche i dati relativi a questo gruppo di moggetti sono ripro-
ducibili, e la correlazions n-b na il valore ?h-h = 0.06.

E' atata quindi calcolata la correlazione fra i parametri
n =Ny, bl-bz. tl—tz { tempi medi 4i inverrione ) dove gli in-
dici 1 e 2 i riferiscono agli elementi di ogni coppia, me~-
diante la correlazione intraclasse [2] , definita da

_ K6a-6T
P= wev

dove K = 2 elementi della classs ( 2 gemelli)

62 = varianza delle medie calcolate au ogni coppia

O = varianza complenniva

Si & imphegato querto metodo poiond ei tratta di due ri-

sposte allo rtespo atimolo ed 3 perianto necerrario tenere conto

delle combinazioni che ri poesono formare all'internc degli
elementi che compongono la coppia.
Per la significativitd di queests corelazione ri trasforma il

coefficicnte di correlazione trovats in 2 di Pischer, Rri Ag-

giunge un fattore correttive ottenendo 2z corretto, che ei confron-

. ‘206
I risultati ottenuti fornimoono dei valori di oorrslazione
significativi per i gemelli monozigoti # non eignificativi pof

i dizigoti, come appare dalla seguente tabella

nz 2z '
rmy = Ofb  Phn, = 908
?hd,- h- = 0.76 ?h'b._ g: 035
?-q--t,_ = 07q 0, : .
Wt = Oy14
P< oos non sigwicolvo

‘s come viene ben virualizzato nelle figg. 1L e 2.

E' quindi ben evidente una componente genetica aignlfiéﬁtlva
ohe pi agriunge abli altri dati gid ottenutl allo mcopo di éaresl
un modello cheben rapprementi questo fenomeno; questi risultatl
stimolano anche ud approfondire l'esame del fattore gunetioco
con un confronte fra fratelli gemelli e un loro ribling, clod
un fratelle non gemello.

Si ringrazia il prof. Gedda, Direttore dell'Istituto di
Genetica e Gemellologis G.Mendel, che con la sua collaborazione
na permegms lo Pvolgimento di questo lavoro.

[I] A.Boreellino, A. De Marco, A. Allazettu, S. Rinesi,
B.Bartolini ~ Diestribuzione dei tempi di inversions neila
percezione di figfure ambigue. - .
Congresse di Civernetics = Casciana Terme (FISA) 11-13 o
ottobre 1971.

[2] Dpegrada, Ercolani, Sagzeei - Riv. Peic. 1966,60,135

A . . P
te con l'errore £ "5_5 in cui ¥ 31l numero dei ro getii eraminati.
r | 3
La probabilita che il valore trovato non fia capuale & T<O.05re

2, > A96 £,
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Statistical Properties of Flip-Flop Processes
Associated to the Chaotic Behavior of Systems

with Strange Attractors
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Abstract. The chaotic behavior of systems with strange
attractors can be discussed by examining the flip-flop
process associated to the system dynamics. This was
already shown by Lorenz {1963) in his first seminak
paper. A somewhat surprising resuit was obtained by
Aizawa (1982), who, studying the same Lorenz at-
tractor at the parameter value r=28, reached the
conclusion that the associated Rip-flop was a typical
Markov process, Since the process is generated in a
deterministic way. one may wonder if the Aizawa result
is accidental, depending on the particular parameter
value, or il a similar conclusion can be extended to
other systems, with different attractors. Qur concly-
sions arc that the Aizawa result is mostly accidental,
because for other parameter values and for other
attractors there are sharp deviations from the Mar-
kovian process.

1 Introduction

In our search for neuronal modeling of transitions
between two alernative perceptual states in con-
tinuous observation of ambiguous patterns (Necker
cube, etc.), we found difficult to cxplain the long time
scale of the process and the stochastic character of the
transitions (Borsellino et al. 1972}, A way out could be
to attribute to the neuronal system the possibility to
enter a stochastic regime dominated by a strange
attractor with at least two basins of attraction.

For this reasons we were motivated to study the
statistical properties of the Rip-flop process associated
with a strange attractor. In particular we were inter-
esicd to verify in which cases a markovian character-
istic can be recognized andjor demonstrated.

2 The Flip-Flop Process: Statistical Analysis

For systems with two aliracting basins, as for the
Lorenz or for the Rikitake (Cook and Roberts 1970}

system, the flip-Nop process is identified by the pas-
sage of the trajectory point from one basin to the
other, after 2 more or less lengthy time of permanence
in them. For the Roessier (1976) attractor, with one
basin only. the two states can be defined by the two
opposite faces of the “Mocbius” ribbon on which the
trajectories unroll, alternating from one face to the
other (see Figs. 1-3).

Calling L and R the system states corresponding t¢
the positioning of the trajectory point in the left or the
right basin for the Lorenz or Rikitake systems (we
could call U and D the two up and down stales in the
Roessler case), the system dynamics wilt generate a
sequence of states as RERRL.., the states being
observed after each turn of the trajectory.

Calling p(L), p(R) the probabilitics of finding the
system in the L or R state, the system symmetry
between L and R states, gives p{L)=p{R)=1/2. The
transition probabilities p(LIL), p(RIL), ..., in the case of
a Markov chain of events should come out to be
independent of time.

Calling P the jump probability, for the same system
symmelry we have P =p(L|IR)=p(RIL) while for the
permanence probability p(LIL) =~ pRIR)=1--P.

For a chain like RLRRRLRLL ... the correspond-
ing chain YYNNYYYN ..., where Y stays for “jump
occurrence” and N for “no jump occurrence”, if the
chain of cvents is Markovian, allows us to obtain the
probability that the trajectory point, after entering a
basin (the entering jump), will exccute there m turns
before leaving it with another jump (the exit jump) p(m)
=P(1~Py""". In the same manner the probability to
observe J jumps after M turns is given by:

p(J|M)=(J.‘:)P’(1—P)"". 2.1)

These probabilities can be estimated from chains
long enough to be considered as representative statis-
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Fig. 3. The Roessler aitractor
alr=02,5=87;
dxfdt= —y—z;dy/di=xtry,
dzidt=r+2z(x—3)

Fig. 1. The Lorenz attractor at r =50 (b=8/3):
dx/de = —10x + 10y; dyfde = —~ xz+rx—y; dzfdr
=xy—bz

Fig. 2. The Rikitake attractor al p=1, k=2: dx/dt = — ux + yz, dy/dt
= —py+yx—plk =V /kY)x; dzjde=1—xy

tical samples, using:

N
pim)=1/N E‘,‘ [ . (2.2)

where 8, , is the usual Kroneker symbol; i, iy, ..., iy
represent the number of turns ¢xecuted in a basin after
a jump; N is the number of jumps in the sample.
Similarly:

PAM)=1 /T"zr:I 8T T, 3

Jy,J3 . J 1 being the number of jumps occurring
in each of the T sequencics of M turns in which the
total sample is subdivided.

In Figs. 4-6 we show (crosses) the results obtained
for the Lorenz equalions with r=50 and for the
Rikitake and Reessler attraciors, The solid lines give
the expected distributions, computed from (2.1) with

0 sy %
Fig.4a, ». The p(m) and the p{JIM) (M =10) for the Lorenz
attractor al r=350. The corresponding P value is 0.5132

08
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m
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[}
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Fig. 5a, b. The p(m) and the p(J|M) (M =10) for the Rikitake
anractor 8l u=1t, k=2, The corresponding P value is 0.3231

% s )
Fig. 6w, b. The pim) and the plJIM} (M = 10) for the Rod *
atlractor atr=0.2 and 5=8.7, Thecomresponding P valucic -

the P valuc estimated from the total sample. The
not satisfactory, showing, at variance with the Aiz
conclusion, that the flip-Nop process is not a nt
Markovian onc. In the next paragraph we discu
possible way to examine the nawure of the che
process and how far it can approach a Marko
process.

3 The Mooodimensional Msps

When studying strange altractors, in particulat
stability of their periodic orbits, certain monodin ,
sional maps were found uscful (Shaw 1981).

They are obtained numerically (by computer)i:
following way: the maximum value reached |
selected dependent quantity in a turn inside the ba:
placed versus the maximum reached in the follo!
turn. Thus graphics of functions arise (that is not ;
trivial). They have the common characteristicol loo.
conlinuous and monotonicon (wo intervais, so defi
a “one at two" correspondence {Figs. 7, B, anc
Morcover, changing a system parameter, a fami!
functions is generated.

The maps, starting from a generic initial v
generate a succession of values corresponding
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iz, 8. The monodimensional map associated with the Rikitake
uractor at p=1 and k= 2. M, is the maximum of z in the n-th
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ubsequent maximum values of the selected quantity at
very turn. It may occur that at certain parameter
alues the map iterations converge to one point, or to a
et of » periodic points. Clearly these points corre-
pond with subsequent maximum values recurring
wriodically, and hence indicate that the solution is a
-petiodic orbit (the period being the duration of a turn
n a basin).
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4] 5. 10. 15,
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Fig.9. The monodi ional map iajed with the Roesst

atiractor at r=0.2 and 3=87. M, is the maximum of x in Lhe
n-1h turn

It can be shown that the abeve fact occurs to
families of maps of this type for an infinite but
enumerable set of parameter values (Collett-Eckmann
1980); for all the other values the solutions are not
periodic and hence they are of interest in studying
chaotic processes. This is our case,

The succession of values (one for cach turn),
obtained from the iterated map, does not describe the
chaotic process of basin change. In fact the chosen
variable quantity, due to the symmetry between the
two basins, shows an exactly alike behaviour in the
two basins.

A more careful examination of the maximum
values sucoessions and of the corresponding chains of
left and right (or up and down) states, allowed us to find
that the map, given the value M, of the maximum in the
n-th turn, can tell both the lollowing value M, ., and
whether the (n+ 1)-th turn will be in the same basin as
the n-th or not.

In fact, calling M, the abscissa of the absolute
maximum of the map, one has: if M, <M, the
(n+1)-th turn will be in the same basin as the n-th; if
M_>M,, will be in the opposite one.

Then by the map iteration one can generate, with
the succession of infinite different vaiuey, also a two-
value random process. Thus we are lead to analyse a
two-valued random chain generated by iterated func-
tions on (0, 1), similar to the maps oblained from the
temporal evolution of system with strange attractors,
The advantage of this substitution lies in the possibiltty
of replacing about one thousand steps of Runge-Kutta
(fourth order) integration by the simple iteration of the

Tlal= ==
1 - ba?

f

1

¢ . T 1

Flg. 10. A function of family F,(b=2) and its q{4x). The value
of a is such that f(x}=1

o= n(-h'-l)

% 1, 1 1

Fig. 11. A function of family F; (b= 1.8) and its g{ 4x,). The value
of a is such that f(x)=1
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Fig. 122, b. Two functions of family F, {with x,=0.5 and
x, =0.75) and their ¢(4x). The values of a are such that f(0)
=f(1)=0
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map. We take at least five thousand values, one for
every turn, to form the chain we analyze.

The tested maps are shown in Figs. 10-12; the
corresponding [amilies are called F, F;, Fy. These
generate processes qualitatively similar 1o those ob-
tained from strange attractors. The results of the
statistical analysis of the two-value chains generated
from them are shown in Figs. 13-15. The map familics
F, and F; tend, for particular values of parameters, to
a lincar map which, on numerical examination, gen-

a5t

p(m

o ax
0 5 m

Fig. 13. The p(m) for the map of F, with b=1.8

04 |

pm

o

Flg. 14. The p{m) for the map of F; with =195

a3
P

o i
0 5 m
Fig. 15. The p(m) for the map of F, with x, =085
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erates a Markovian process with P=0.5. The same
happens for the map of the F ; family,with the x, value
equal to 0.5 (see Fig. 12a).

4 Markovian Maps

We call Markovian a map able to generate, by the
method of Sect. 2, Markovian chains. If a Markovian
map exists for each P value, the analogics of the
attractor chaos with Markovian chaos would be
assessed by the likeness between its associaled map
and the Markovian one. We will show how we found
two families of Markovian maps.

It is useful to consider that for the functions of F,
and F,, which are symmetric (about the middle point
0.5), the P value decreases while the cusp becomes
narrow, and for the family F,, asymmetrical, P de-
creases while the x, value increases.

Now we recall what the P value mcans for the
generic map in the considered process: il indicates the
probability for the generic itcration of finding a value
grealer than x,, the abscissa of maximum. To estimate
the value of P it is necessary to know the probability
distribution associated with the map f(x) and defined
as follows:

g)=Jim N 3. 8lx—ftxal), (1)

where x, is a generic point of the interval (0, 1) and f* is
the n-th iteration of f on x4 In our case an approxi-
mate ¢(x) reiated to the maps is obtained [rom
computer by the following estimate:

N
qldx)=1/N ;l By jos 4.2)

where g(4x) is the normalized frequency for f*(x,)
ending in the i-th interval 4x, obtained by the
partitioning of (0, 1). In Figs. 10-12 the f(x) arc shown
together with their g(dx). Let us recall that the P
valuc can now be computed for the map by:

L L] Rm=t il flxe)>x,

P=lim N 2, "‘"’{;,(..)=o i fogsx. )
The (4.3} is equivalent to

P={ qlxMx. 44

The p(m) values are computed from the map
iteration as follows:

pim)= lim 1/N .él Am)b(n+1)

xhn+2)...h(n+m—1hin+m), (4.5)
where hin) is the same as in (4.3) and b{n)=1—h(n).

We search again for the locus of points of {0,1)
mapped into the subset (x,, 1) after m (and not less)
map iterations. These subsets may be characterized as
follows:

Io=f "xa1 )\[ £, {:g; 14 n}] , (4.6)

where f%a, b) is by definition the same {a, b). E resuits
that I,=f°(x..1}=(x,1). The Fig. 16 shows the I,
(m=1,...,4) for a generic map. Now we have:

pm) = l_ glxdx @.7n
and

p(l)=,f q(x)dx=j glx}dx =P

corresponding to (2.3).

The conditions that must be satisfied for the
process to be Markovian are expressed by the infinite
set of equations:

I atodx=Pa Py (m=1,..., ), (48)
where
P =j Qx)dx .

We can cali Markovian the function satislying
these conditions. From the shape of the g(x) relative to

the maps of F, F,, and F,, onc can observe that these
conditions will not be generally satisfied. To find them

T

Fig. 16. The intcrvals [, (sce text) are dashed

in the case of a Markovian chain, we consider the map
Mg

y=2x for x«<0.5,
y=2(1—x) for x>05.

Its probability distril;ulion ¢(x) is constant. From
the normalization on (0, 1), we obtain g(x)=1. In this
simple case the {4.7) is reduced Lo

plm)=L{Ia.,}, 4.9)

where L(l} is the measure of the interval I.

The generic interval [, is mapped by M, on an
interval [, ,, of double length. 1t follows, being L{1,)
=Ly W2

p)=L{1,)=0.5
p2)=L{1,)=0.5/2 @.10)

plm)=L(f,_,)=0.52""".

The (410) may be interpreted as p{m)
=P(P—1)""1, being P=(1—-P)=0.5 and the (4.8)
is satisfied.

We now wish to find maps able to generate
Markovian flip-flop processes withoul symmetry be-
tween the two transition events. The symmetry in the
case of M, follows from the symmetry of f(x) and its
distribution g(x) about x=0.5. To obtain a P vaiuc
different from 0.5, it is enough to give up only one of
these symmetry conditions. Indeed we obtain a family
of Markovian maps asymmetrical but with g(x) sym-
metrical (called M ), and another family (called M) of
symmetrical functions with g(x) asymmetrical. Al
P=05 both M, and M, maps arc identical to M,

They are:

M, (scc Fig. 1)
y=ax for x<x,
y=a{l—x} for x>x

where a=1/x,, & varying from 1 to infinity. Their g(x}
are still equal to 1 in (0,1); being L{f,)=L{I,- }/a, it

0
Fig. 17. The map of family M| with a=1.5 and its g{4x)

e 1e 1

3
follows:
P=p()=L{l)=t~x,=(a—1)ja

A2 =L )=(1/a)(a—1)/a 4.1
plm)=Lt,_)=(1/ay*" "(@a—1)/a.
The (4.11) coincide cxactly with (4.8), bei
P=(a-1)jeand 1 -P=1/a. '
M ; (sco Fig. 19a and b}
y=ax for 0<x<ifla
yeaxfla—1)+1-af2(a—1) for {2a<x<if?
y=—axfla=1)+1—af2(a—-1) for 1/2<x<l-1}
y=a{l—x} for 1-1/2a<x<
Their probability distributions are constant on '

two intervals (0,1/2) and (1/2, 1) (sec Fig. 18a and
By the normalization in (0, 1) g{x) results:

alx)=2/a for x<1/2, .
Hx)=Ha~1)a for x>1/2. (“
Thus
P= i qixMx = i Ha—1)}/a dx=(a—1)a.
1/2 12
1 ,
: -
i 3
]
|
|
0 |
o LN [N ]
1
i
1]
] 4
0 1, 1

182, b. The maps of family M; and their g{4x)} wi
a=13bhu=}



Since the (4.7) may be written in this case -
my=L{I - )alln_1),

hete g(t,) is the value of g{x) in the I, interval, and
wing Lilg) = 1/2, L} ) =(a— 1)/2a, LAY = L1, | )/a
22), and gllg)=2 (a—1)/a, g}y =2/a (k21), we
ili obtain, in agreement with (4.8):

m)=(1/a*~ (a-1)a=P(1 —P)""'.

Besides the familics M, and M, we analized on the
mmputer the chaotic chains generated from other
nctions continuous and lincar on subsets of (0, 1). We
wver obtain Markov chains. The dissimilarity be-
reen the Markovian maps and the maps related to the
range attractors makes us able to tell how the
wmotic process of a strange attractor diverges from a
iarkov chaos. Even in generalizing the simple Mar-
w processes to the Markov processes with finite
emory one can show, with similar but tedious
guments, that the maps related to the strange
tractors are generally unable (o generate processes of

is type.

Eatropy for the Strange Attractors

he apparent Markovian character of the Lorenz
1a0s lead Aizawa to evaluate the Kolmogorov-Sinai
wropy Hys and the HausdorfT dimension Dy, via the
p-flop process:

ts=_{P++lnP+++P4-lnP+—)' (5.1
Ya=Hgs/In2. (5.2)

From P, _=P_,=P=044 and P,,=P__
«(1—P)=0.56, for the chaos of the Lorenz
Aractor at r=28, onc obtains Hy=0686 and
n=0989.

This simplified estimate is in good agreement with
ther estimates {Collett-Eckmann). We observe that
e simplified procedure cannot be used when the
atistical process is non-Markovian.

To obtain an estimate for non-Markovian pro-
85e8, We notice that

u=—{(1—P)lg,(1— P)+Plg, P}

'presents the Lyapunov number N, computed for
oth the Markovian maps of M, and M, {with the
raracteristic value P). In fact for M, onc obtains:

=] dto) s (drixyd)ax
1

r
1g;{a)dx+ , ! ’!gz {af(a—1)}dx

f

[

1=~P)lg, {1/t — P)} + Pl {1/(1 —P)} =Dy
(5.3

(

while for M,

11-Piz
N.= {, (1 -P)ig, (141 - P)}d=x

+ l‘: (1—P) 1g,{1/P} dx
n-r

1-41- M2

+ | Pl {iP)dx
142

+ ,l[ uPIgz{I/(!—P)} dx

1=l ~P

=(1=P)Ig, {1/(1 - P)} + Plg, {1/P} =Dy.

This relation between Hausdordf dimension and
Lyapunov number may be extended to non-
Markovian maps. For a strange attractor the entropy
can be obtained from the Hausdorif dimension, that is
from the Lyapunov number, of its monodimensional
map.

The idea of attributing an entropy to the disorder
generated from map iterations has been already dis-
cussed (Shimada 1979). When the entropy is
proportional to the Lyapunov number, it could
assume also negative values. This fact is imterpretable
as the property of the map of generating order instead
of chaos. The negative value of the Lyapunov number
is indeed characteristic of functions whose iterations
converge to stable periodic cycles (Ot 1981).

A final observation can be made when comparing
the Hausdotff dimension to the Lyip.. v numbes: the
function f{x)=4x(1—x) that resulis |experimentally)
Markovian with P=0.5(see Sect. 2), has the Lyapunov
number N, = 1. (For this function we know the analyt-
ic expression of the probability distribution g{x}
= ll{nl/f;ﬂ —x)}}.) it is exactly the Lyapunov num-
ber of the map M, (see Sect. 3) gencrating Markov
chains with P = 1/2. This fact suggesis another conjec-
ture: two maps, that generate the same Markov chaos,
must have the same Lyapunov number. That should be
a necessary condition only. It scems satisfied for all the
Markovian maps which we have analyzed.
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