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the earth becomes what it has always been for those engaged
in seismic prospecting: a medium with truly three-
dimensional inhomogeneities.

Methods for horizontally stratified earth models
will, however, continue to have their importance and find
applications in studies of structural properties and sources
of seismic waves. Hence, a good understanding of the
relevant theory will always be a necessity and not only as a
premise for the treatment of )ateral variations. The purpose
of these lecture notes is to contribute to this under-
standing by presenting a self-contained theory of one (;f the
methods for horizontally layered media, the modal summation
method, including all material that is necessary for the
development of corresponding computer programs for
theoretical seismograms.

Before we start with the details, a few words about
the general scene of methods for horizontally stratified
media are in order. This scene is very vast now, and it is
practically impossible to mention all the different methods
that are in use. Much background material can be found in
the text books and monographs by Pilant (1979), Akt and
Richards {1980), Ben-Menahem and Singh {1981) and Kennett
(1983). The most important theories and methods for wave
propagation and seismogram synthesis are the following (the

references given are only examples and far from complete):

teneralized ray theory (Helmberger, 1968; Muller, 1969;
Ben-Menahem and Vered, 1973)}: the medium is approximated by
homogeneous layers, and the wave field is decomposed into
elementary seismograms corresponding to rays.

Full-wave theory (Cormier and Richards, 1977): a ray theory
for inhomogeneous layers which takes account of frequency-
dependent effects connected, e.g., with caustics and shadow
zones.

WKBJ theory (Chapman, 1978): a ray theory for inhomogeneous
layers which is more limited than full-wave theory, as far
as frequency-dependent effects are concerned, but which
allows very rapid computations.

Wavenumber or slowness integration methods (Fuchs, 1968;
Fuchs and Miller, 1971; Kind, 1978; Cormier, 1980; Wang and
Herrmann, 1980; Ingate et al., 1983; Ha, 1984):
representation of the Fourier-transformed wave field of a
layered medium by integrals over horizontal wavenumber or
slowness.

Mavenumber summatfon methods {Alekseev and Mikhailenko,
1980; Bouchon, 1981; Korn and MUller, 1983; Spudich and
Ascher, 1983; Olson et al., 1984; Campillo et al., 1984} ;
both time- and frequency-domain methods which are 1n
principle very similar to wavenumber integratfon methods,
but the continuous distribution of wavenumbers is replaced

by a discrete one.




Modal summation method (Harvey, 1981; Panza, 1985):
representation of the wave field by normal modes of Rayleigh
and Love waves alone, elither with the assumption of a
perfect reflector at depth or without.

The first three of these methods are suitable for
the calculation of body-wave contributions to seismograms,
whereas the last three also allow surface waves to be
included, i.e. these methods are methods for complete
seismograms.

The modal summation methods has its roots in Pekeris
(1948) pioneering work. In fact he has shown the possibility
of treating the problem of wave propagation 1in homogeneous
tayered medja, both in terms of rays (ray-theory) and in
terms of modes (normal mode solution); he also proposed the
use of ray theory for the purpose of determining the
beginning of the record at a distant point or for
determining the steady-state solution up to moderate ranges.
On the other hand, if one is interested in the steady-state
solution at large ranges where many rays need to be
considered, or in the later phases received at large
distances, the normal mode solution is preferable.

A great concentration of effort to understand the
way in which the features of observed seismograms are
related to the properties of the source and structure of the

Earth is based on a variety of mathematical and physical
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tools essentially inspired by the ray-theory and its
developments.

Quite recently, as a natural consequence of the
explicit statement of the details of high-frequency
eigenvalue and eigenfunctions evaluation, large-scale
application of omultimode synthetic seismograms, for
frequencies as high as 10 Hz, has received the duye
consideration (Panza, 1985; Suhadolc and Panza, 1985;
Chiaruttini, Costa and Panza, 1985; Panza, Suhadolc and
Chiaruttini, 1986; Panza and Suhadolc, 1986).

These lecture notes are organized as follows. After
a brief discussion, in Section 2, of the differential
equations for wave propagation in horizontally stratified
medip and of the boundary conditions proper for surface
waves we describe in Section 3 the essential features of the
fast version (Schwab, 1970) of Knopoff's matrix method
{Knopoff, 1964a) for elastic wave problems, while in Section
4 we discuss the main ideas about eigenfunctions
computations {Schwab et al., 1984). In Section 5 we describe
in detail some practical computational aspects: the mode
follower and the structure minimization (Panza and Suhadolc,
1986). In Section 6 we give some details about the
computations of the main effects of anelasticity. In Section
7 we discuss the response to buried sources. In the final

Section we give examples of the computation of synthetic
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signals and their comparison with real data. All the
material above will be described for P-SV type of motion
{Rayleigh waves), however all the main results and ideas are

valid also for SH type of motion {Love waves).

2. Differential equations and boundary conditions

We assume that the medium consists of homogeneous
layers, separated by first-order discontinuities. If a
medium is continuously inhomogeneous (throughout or
piecewise), it s replaced by a sufficiently large number of
homogeneous layers; in smooth gradient zomes it is usually
enough to choose roughly half the dominant wavelength as
layer thickness, whereas in transition zones with larger
velocity gradients the layer thickness should be reduced
further. The advantage of the  homogeneous-layer
approximation is that inside each layer the equation of
motion takes a relatively simple form. Its disadvantage is
that boundary conditions have to be fulfilled at many
interfaces. Analytica! methods for inhomogeneous layers (in
contrast to numerical, e.g. finite-difference, methods) are
not yet developed to & point where they really can compete
with the methods for homogeneous layers.

The equation of ‘motion of a homogeneous, isotropic

elastic medium is

p.l.l = {x+2u)grad div u-y rot rot u, {1}

where u 1s the displacement vector, p the density and » and
u the Lamé parameters. Body forces due to gravity and
seismic sources are not included in Eq, {1): it is assumed
that gravity has no other effect than to determine, via
self-compression, the {constant) values of 5, 2 and ,, , and
sources of seismic waves are included through their known
contributions to u {e.g. Harkrider, 1970) (see Section 7).
In order to simplify the discussion as far as
possible, we shall consider solutions of the elastic
equations of motion in the form of plane waves rather than
attempt to treat the more complex case of waves diverging
from a point-source, This does not {nvolve loss of
generality in the computation of the dispersion function
since the point-source solution may be developed by
integration of plane-wave solutions (e.g. Harkrider, 1964).
Let us consider plane waves of angular frequency p
and horizontal phase velocity ¢ propagated in 2
semi-infinite medium made up of n parallel, homogeneous,
isotropic layers. In these lectures, all layers will be
assumed to be solid; the case of a fluid layer can be easily
found in the referenced literature. The x axis is taken

parallel to the layers with the positive sense in the
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Fig. 1. Direction of axes and numbering of layers and

interfaces.

direction of propagation. The positive z axis is taken as
directed into the medium. The various layers and interfaces
are numbered away from the free surface, as shown in figure
1. We confine our attention to waves of Rayleigh type (P-SY
motion), by which we mean that there is no displacement in
the y direction and that the amplitude diminishes
exponentially in the +z direction in the semi-infinite
layer.

For the m-th layer let

S ——

Pm= density, d'I| = thickness, /\m. /ﬂm = Lamé elastic
constants,
u(m =[('\m+2/'m”fm]! = velocity  of propagation of
dilatational waves
B =[r¢m/f n]* = velocity of propagation of rotational
waves

k = p/c = 2¥/wave length {horizontal)
sfiern 1] s erd,

-1[1-(‘:/.1“)2]* if e ffmen

Jrermp?]t srerp,
Tom °
-i[i-(erm 2]t af c<p,

fug = -1(1-¢%/ a2 1}

ifm=n
am = -1 (1207 )
Yn® 2(8_rc)?

u = displacement components in x and z directions

m’ wrn
o, - normal stress

Tu® tangential stress
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Then, as is well known, periodic solutions of the
elastic equation of motion for the m-th layer may be found

by combining dilatational wave solutions,

nm=(aum/ax)+(aum/az)=
{2)

L] n
=exp[1{pt-kx)][a mexp(-ikramz)ﬂ mexp('ikramz)
with rotational wave solutions,

wm=(1/2){ (aum/az)-hum/ax)]=
(3
=exp(1{pt-kx) j[w Imexp(-1 krsmz)m"mexp(ikrsmzl

y @ and o m are constants, With the sign

1
where & , & n

conventions defined above, the term in & " represents a
plane wave whose direction of propagation makes an angle
cot”! Tap With the +z direction when ro 1s real, and a wave
propagated in the +x direction with amplitude diminishing
exponentially 1n the +z direction when r'ul'| is imaginary.
Similarly, the term in A“m represents a plane wave making
the same angle with the -z direction when Ya, 15 real and a
wave propagated in the +x direction with amplitude

increasing exponentially in the +z direction when Ta is

imaginary, The same remarks apply to the terms in o m and
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)

w o With rg substituted for ro (see Fig. 2a, 2b, 2c, 2d).
The displacements and the pertinent stress
components corresponding to the dilatation and rotation

given by {2) and {3) are,

um=-(um/p)z(3ﬂm/3x)-2(8m/piz(3wm/32) (4)
w_s-(a_/p)2(as_7az)+2(B /p)i(w_fax) (5)
m i) m m m

2

i 2 2,2, 2.2
nm—om[u mﬁm+23 m{(um/pl (s ﬁmlix )+
(6)

s2(8_/p)2 (3% /ox32)1]

rm:meﬂzm[-(um/p)z(azﬁm/axiz)+
(7}

+(Bm/p)2{(azwmlaxz)-(izﬂm/azz)ll

The boundary conditions to be met at an interface between
two layers require that these four quantities should be
continuous. Continuity of the displacements is assured if
the corresponding velocity components u.m and ;m are made
continuous and, since ¢ is the same in all layers, we may
take the dimensionless quantities ;Jmlc and ;cm/c- to be

continuous. Substituting the expressions (2} and (3) in
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equations {4) to {7) and expressing the exponental functions

of ikrz in trigonometric form, we find

Clig=A,cosp_—iB,sinp,
+r, . Cocosq, —ir, D_sing,,
CWo=—ir, A.sinp_+r, B, cosp,
+iC,siny, —D_cosgq,,
On=pPulin=1 A c08p, —ip(v,—1) (8)
"B sinp,+p,var, Chco8q,
— i Py, Daysing,,,
T = P mfa A S0P —p, Ymoe
~Byeosp, —ip {7, ~1)C, sing,,
F =110, o84,

where

Ay=—32(4L+ I0h B, = —al{d, -4}

Ca= ~2f4wp—wlh D, = 2w +wi) o
9

pu=kr_[z-2""") g, =kg [z-2"""],

[ are

f . is the density, AL LD TR depth of the upper
AI AII wl
interface of the m-th layer and n* w’ m m

Haskell (1953) constants appearing in the depth-dependent

part of the dilatational and rotational wave solutions:

- 17 -

Aj_cxpl—a'kr,_z]+d,';c:p(ikr,_:l. {(10)

W expl—ikey z}+ ol explikr, z).

3. Fast version of Knopoff's method
For a continental model, the vanishing of the two

components of stress at the free surface yields:

—mn —1)A, —p, v, 5, C, =0,
21 7%, By —py, —1) D =0. an

Thus Knopoff's submatrix A(O} can be written in the form

w0 __ —ply -1 0 it TR
A4 —[ o {12)

)
pl }'l 0 —p|(7|-” ’

At the m-th interface, the continuity of displacement and

stress yields

-



A,,oosf,’,,-iB_sin},’_+r,_C_cosQ,,—ir,_D,sin 0.
=""4m+ 1 +rl..»| Cnu [
-ir,_A_,sinz_+r,m8_cosﬂ,+ic.sinQ_—D,cosQ,,
=rl".o| Bn+l "_'Dll+l'
Pt VA cos P, —ipa(yu—11Basin b,
+ PV Cu©05 Q=i P Y r,.D.sinQ,
=Pt (Vma1 — D Aasi + P Yt 1 s s Cma1s
[T lan AmSit =P Vm r, B,cosk,
—ip_h-_-I}C_sinQ_+p,€7,,-—I)D_cosQ_

= = Pt 7u+1rs..-|B-+| + Pt lTmss ~DDusss

(13)

where szkri.,dm' Qm=krt5ndm and dm is the layer thickness.

Thus, Knopoff's 4x8 interface submatrices have the form

cos P, —isinPJr,_ cosQ,,
g T ir, sinF, cos P, isinQ./r,
| putim=1YcOS P, —ip(y. =D sinBufr, PV €050,
1P e SN By — PV €05 Py —ipn(te—1)5InQJr,
—ir,_singQ, -1 0 -1 0
—cosQ,, o -1 ¢ 1
—iPniale SN0y =P Gmy — D 0 “Pums1 Vs 0
Palim=NeosQ, 0 PmitTmet 0 = Pasilim =1

and, noting that in the half-space

AnBy= "zn & n

- 18 -

cn=Dn=-232n wl n? the submatrix representing the (n-1)th
interface has the form
-1 —r,
- [
All— 1) = rﬂu ‘ ] S)
"P.J?.“ ” =P anl.
Puatale, _ﬂuhll_ 1}

where the first four columms are the same as those of A (m)
with m=n-1. It may be worth observing here that, for each
layer, /\(“ (i=1,n) submatrices represent the denominators
of Cramer's system solutions when the boundary conditions
are applied,

In more compact notation we can write

A®

AW

(14) ' (16)

Ah~ﬂ

,A"- [}

-19 -




where the non-zero elements only are pictured.

A condition for surface waves to exist is AR=O,
which defines the dispersion function for Rayleigh waves
Faipe) =4p =0 a7

If we limit our attention to the case of solid Earth
mdels,the Rayleigh wave dispersion function, FR(p.c). has

the form

F(n-2),?(n-1)T¢nls°
(o)?(I )F(Z)F(:i) .
F‘n-Z)F(n-I)'T‘(n)

1id {a)
FR(p.c)=T (18}

solid (b)

{a) if n is even,

{b) 1if n is odd.

which has the symbolic matrix form (1x6)(6x6)...(6x6)(6x1),

The elements of these matrices are

Tlo' = [—h(Tl - ])l 0, (?l - l)ll Tlio o, Vl(rl - l)]- {19)

R — W

- 20 -

FPa P Fide
Fiaa Fuan Fon
o Fiaz Fun "_uu
":z.n: Fay Fae
Fanz Fran Faane
Fiar Faas Fane
Fihe —Flthe P
—Fra  Faaw —Faen
Fom | Faae —Faae Fiaas
Fisa —Frae  Fias
—Finae Fuoae =Fun
Fiaze —Fiae  Fun
0
—ru
Toe={ ™" T2
0

Fi%h
Fya
Fl‘ll
FI’Z’

141}
FJ‘I)

FIl“’I‘
"'F3414
F!ll‘
Fl‘l.
_FISIQ
IFIII‘

L

e
Fiaza
Fiaaa
Fiye
Faeze
Fiaza

-F5hs
Fiais
_Fl)l)
_Fl4l,
Fl’ll
-FIIIJ

N T~ T = T R~ T 1 TN AT T R R A Y e TRl

Fi3he
Fian
Fiase
F:J]‘
F:‘J‘
FJ‘J‘

F‘l:.ll
_Fl‘ll
Fasn

Fian
=Fi3n

Fl]li

- 21 -
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The elements £ (™) are obtained fram Table 1. The
quantity g=(-li"-] leczlynr“nrﬁn fzn dzn is included in
(22) in order that F_ have the same numerical value as the
dispersion functions from the JA.matrix extensions, and the
product form of the original Thomson-Haskell formulation.

The basic interface-matrix multiplication in (18)
bas the symbolic matrix form {1x6)(6x6}, where the sixth
element of the 1x6 matrix is always the negative of the
first element. The symmetry of the 6x6 interface matrices,

as indicated below,

lutn+ll. "/.(ufl" w(h'l'll' R(llflll ‘fs(-"'ﬂ' _U(lﬂ‘lrl

d 0 v v 0 n

ix . . T

=| U, jyi pyim) pom jotm U(-)} g ' ' :g {23)
R
n 0 —-v —» 0O &

is the reason that the 1x6 matrix retains this property
throughout the formation of the interface-matrix product.
The first and last elements of columns 2 and § of the 6x6
matrix vanish, which means that fourth-, not sixth-order
forming the

matrix invalved 1in

multiplication s
corresponding elements of the 1x6 product matrix. The
remaining four elements of the product matrix involve only

fifth-order multiplication due to the properties of the

-2 .

Tasre |

Exrressions ron Te Quantimes £3)

-
e 7 -

R
LR
g W ] 'r

3 5;+'t|+1
o ey ® o
RS-
)

Y IE

-+ -

N e =2NNSe
v o Fr]
2w & wa3.8.3

333

_'II|

-~ s 223

&G.s:i Fruiuisd
L] -
N oy oW oy
- - - 3

- |- -+ +

A ERRINE ol
I9EE ddsd
= | &£

8305
[ I I |
-~ . . -
35,3 Lesas
- -
Se 24 a
an 3

L I
L TN B
55":: Ton w o
2l 32 VOgo

LN
o =
teds
35,5

] 2sana '

- PN el v
R :
exx | o

$2-

- - it'..t

Mo e kA oo

- :..;,,'; LI I I |

[ e ® Foo N oM

~ - el + 2 fo “

o 'nl.".'.-;+:u veww
] -

c t3™
R
(IR |
-3 ~
“/x| 2 2XTAN

{s = rpusin 0, L=l

oy =o,}

Eam gy 8y

=g

ba=lls
Lis -CO‘I

Lo = sin Culroa

c'l- ;:‘:

&y =E38,
81 =2,

Ze ™= &)y
fy = g8y

$om Ly

fig= — &y

fia= &8s+ En

-2 -



first and last elements of the 1x6 matrices. Since the first
and last elements of the product matrix are the same except
for sign, only one of these two elements needs to be
computed. Two  fourth-order and three fifth-order
multiplications per matrix product 1is a significant
improvement over the original six sixth-order
multiplications. If these five product-matrix elements are
written out analytically, it is seen that there is still
considerable simplification possible by means of simple
algebraic factorization. The results of this factorization
allow the elements of the product matrix to be written in
very simple form, Combining the results of this
factorization with the formation of the elements of the new,
{m+1)}th, 6x6 matrix produces the key portion of the "fast”
form of Knopoff's wmethod for Rayleigh wave dispersion

computations: For m+1 even,

Ul-f” = —z.l-0+ Iluilll+ ‘t'ul*lJK(ufll + ‘l',-i-l}Lt-fU.
y[-ﬁ Ilztl‘l;fl)(ctl-‘l.i-llyﬁul + c('-utllwl-) + cl.-'HRl-l - cl.'-t Ilstn))_
Wemth o _';l'-;fllxl-*lj - ‘III5+IJL1-+II + 2‘:ll;| llur-l.
R(-fl) = _2(‘-+IIK!-+I)_ ‘I’-'EI)L(M'I-I) + m—fﬂul-).

s(ll+l} a= ‘ll-;i-ll(_cg,-n'l}yl-) + {(.-t llw(n) + c{ﬁfl)R(-j + cllnif l)s(u))'

(24)

- 24 -
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where

.K""* Vo cg-tuytnl + cg,n't I)w(.l - cil-" IIR(-I) + cll!:* lls(-l'

Lm0 i Y - L D VR 4 5 ngi=,

and for m+1 odd,

et o _dzfl)u(-) + zllnifnxtnnl + ‘g'-ﬂlz(-*l)'
pimth) o ‘II-’f l)(cll-’+ Dyim C';".' Uyt _ cl;n gl _ ((7-0 Ilslnl).
w(--r L1 ‘(’-s‘ ux(-* 1] + ‘l’-ﬂ)zi-fn - 2&'."'””"",
R(-H) = l‘ﬂ”'xl-"”d" “ﬁ* l)z(ll*ll -— zslll;fllu(lll'
gim+1h ,_cl-;fn(__c{’n Npmy _ plms Dyimd __ pime R C‘.:*”S“").

where

x(n+l] = c(llltlbyl.l + c(l-’*nw(ll}_ !'-fljktu)*_ c‘(-+l)sﬂnj’
Zimt b ((.-+ Ny “-f Hpyim 4 ct'-zf Lgle) o ctﬁ? Higim)

(25)

{26)

{27)

The dispersion function is formed by starting with the real

quantities

- 25 -
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U = =nln— 1),
y(o: - 0.

W = (y, - 103,
o r:l’ ' (28)

0a 0

and by repeated applications of Eqs. (24) or (26), until the
dispersion function has been carried down to the (n-1]th

interface

[U‘.-”, ‘V(l-—l). W(l-l|. R(.-“, ‘s(l—l). _U(ll'”]

Fo-1  §f p—1liseven, (29)
TN .., '
TR h-(.-n if a—1isodd.

The complete dispersion function is given by

[ =1 ~ a2y ]
=1 =)' - MBS

i
|- - ey

Fy = [Ye~D yie-1 gle=1) S"“"]{ ifniseven  (30)

C(1 = 3B,
1

~(t = a3t - g,y |°
(1 - a2y

if nis odd

-2 -

Since expressions (24)-(28) and (30) involve only
real quantities, the use and manipulation of compliex numbers
is completely avoided in forming the Rayleigh wave
dispersion function.

Analogous developments can be made for Earth models

containing fluid layers {see, Schwab and Knopoff, 1972).

Once the phase velocity, ¢, is obtained for a given

angular frequency p, the group velocity, u, is obtained from

U= (31)
1-(dc/dp){p/c)
where standard implicit function theory is applied to the

dispersion function,®a,to obtain

d _ . (af.)_ (a.f. | (32)
dp I

). [ &),

From Schwab and Knopoff (1972) &q. (32) can be computed

from:

0Fy orgin , " fTYTUFORE D irfiseven
ﬂp)g‘r AV g ‘ZI [U- DA+ ifiisodd,' (33}
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- llj’."-(llAi" 1} if I is odd,

" Pe-bugal,  ifniseven, (34)
r""”"ﬁ:}u ifnis odd.

1"_!_ - TOXIL o r‘“”l"‘"ﬁ“’” ifiileven.
(529, R

where

F dn) _7lm —(n) =(n)
RS T 1id T sonid/ S T satid T sotia/E >

primes indicate the operation ( Q/ 0,'» }o» dots, the
operation (D/‘) ¢} , and

T i-1=0,
et = {T(O)FI)F(H...F(I—MFI-I) i—1=2,4,6,...,0—1, (35)
V-1 L OPORG) .. FU-DR0-1 i—1=0135..8-1

if n is even,

Aten o [FETORCBRIT - PTG, 14 1=2,46,...,n-2,
14 i+ 1lmn, {36)
i+ pu-o-nptnpp«u)...'F(.-u,-g:“ I+ Eml,3,5 . on—1,

and if n is odd,
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AU, plivLIpGDpUed) , ., Fl-ugm i+1=24.6,
e 1,
FVFUSDFELI.T Fa-Dpe- el i 1=1,3,5 (37)

At el =2,

Tihe i+l=n

The elements of the 1x6 matrices ["“'” and F (-1 are
obtained by repeated application of (24} and (26) to the
initial elements, (28). In order to optimize computation,

A“”) N {i+1) should be evaluated

the elements of and
operating from right to left. Here, the basic interface-
matrix multiplication has the form (6x6){6x1), where the
sixth element of the 6x1 matrix is always the negative of
the first. The symmetry of the 6x6 matrices, as indicated in
(23), is the reason that the 6x! matrix retains this
property throughout the formation of A (i+1} and .A_-‘H”.
This  symmetry allows the original six sixth-order
multiplications to be replaced by one third-order, and four
fifth-order multiplications. After algebraic simplification
and combination of the matrix multiplication with the
formation of the elements of the new, {m-1)Jth, 6x6 matrix,
the algorithm for the computation of A fiel) and K Gi+n)

takes the following form.

In order to determine the matrices

e i ——- -
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"(H'l.)
"ull'l'lj

ey XU whi+h) -
AVHD Raen e § . (38)

i
—it

{n}

bégin with u' ‘=0 and, if n is even,

™ = (1 - Fa P,

W = (1 = e, - By, (391
o 1, _

) = (1~ YA

or, if n is odd,

l"" - —(l - c’”l').nt

W a ],

PO = (1 - M 2L - R, (40)
£ = (1 - P

Repeated application of (41) or (43) will determine the

elements of the desired matrices. If m-1 is even,

P JalL ] __"l:-tl"(-) + .lﬁ-llw(-) + ‘Sﬂ—l),.llll’

Y m {5 - U U - xR,
wim= 1) e T e [0 — {87 - XL
T TN el RN RN
1) m g1 = 0 - Y+ Y,

{(41)
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where

X, - g'llnl- L) l.-:- Dyl _ .g-- iglm)
Xy = ZIS'_ 1)yl '(ﬂ-l)wlni — 'S-- l]’ill'
Xy = 4-,-‘)”(.'I
xg = of37

and if m-1 is odd,

W) —glm= Ay _ gl Dy gl Upta),
v - "J’:clﬂ-" - y;Ci"'” + )’:C‘ﬂ—“ - .l’ac!l.-”.
TN L PN N )

NN Tl B M4 714 paR S N4 T
ST N DS N el FS i

where

Yo m 27 O 4 Dt 4l e,
Y= 2.5'-- Ly (m) + ‘Su-l)w(n) + .ﬁ- ll,.(ll).
Y= ‘(I..!- "l"-’,

Vo = gl Vstm),

(42)

(43}

(44)
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4. Computation of eigenfunctions

The algorithmic details of eigenfunction evaluation
by Knopoff's method are rather involved - although in
principle only a straightforward application of Cramer's
rule is required - whereas the details for the original
formulation (Haskell, 1953) are quite simple. Thus, the
programmer's first hope is once a modified formulation has
been successfully employed, to compute an eigenvalue at a
frequency where this phase velocity was originally
unattainable due to precision loss, and then, to reintroduce
this eigenvalue 1inte the original formulation to
successfully determine the associated eigenfunctions,
Unfortunately this approach does not work. It is therefore
necessary to employ a modified version of the original
formulation for Rayleigh waves also when computing high-
frequency eigenfunctions (Schwab et al., 1984),

The problem is the evaluation of the eigenfunctions
ulz), wi{z), a{z), and 1(z}. In the notation of the previous
section, this problem reduces to the determination of the
constants Am, Bm' Cm. Dm for the 1layers above the
homogeneous half-space, and the constants An and Dn for this
deepest structural unit. Our starting peint is therefore the
linear, homogeneous system of 4n - 2 equations in 4n - 2

unknowns
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I M a1 (o
A A, 0
Fa1 B,
s ¢
Dy
Au) A!
Faz B,
Fp2 C: =
D! ]
: {45}
Aln-ﬂ] An-l
Fan-t Bney
rﬂn—-l Cu—l
AIu-I.] A:_l
: D, 0 J

where the submatrices A‘“‘} are given by equations {12),
(14) and (15). Once the dispersion or eigenvalue problem has
been solved by seeking roots of the determinant of the
coefficient matrix, we are ready to determine the layer
constants, This is done by deleting the last equation of the
system and transposing the terms containing Dn to the
right-hand side of the equations, thus forming a vector of
inhomogeneous terms. If we arbitrarily set Dn to unity, this
will force all ro B and O to be real, and all A, and

'"chm to be imaginary. The system now takes the form
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r -

Ay [- 0 T
rnn-—l n~-1 - 0 (46
Tan—1 Cn—l Fin ' 16}
Dn-l. _l
L JL A" d . planﬂn_‘

to which we apply Cramer's rule to obtain

-i"_%' {47

A,
ﬁ,. . '

where the determinants of the numerator and denominator are

expressed as matrix products

A.A, = TOPUpEPG | {F'""Tﬁ".{" if n—1liseven (48)
Fo-BPecl if n-1is odd

-
v

A, = TOpOpap {F'"'”'T.;""" if n—1liseven (4

' FA-aPin~ti g o 1is odd,
Following the manipulations described by Schwab (1979, Table
1) and Schwab et al. [1984) it is possible to write
[Ulu-zl' iv(n-ﬂ' w[u-!}. Rin-!)’ ‘-S(n-ﬂi' _Utn-!l] =

1 Fia-2
= oy
PN I T L I P TOF {F"‘"' (50)

where U, ¥, W, R, 5 are all real. The remaining 6x1 matrices
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[ T44] T4
T‘l‘:ﬁ ~TAs
T'An.l—" _ T‘I“.‘l Tln-ll = T;‘}:
T "4 Tl
aa -T#
[ T4t T3
[ T3] T3
Ti‘:n -Tgll
T3 T4
(n=1) i n=1) m (51}
Ts = Tg:u ’ TA - Ti\u
i‘u "T'llal
| T3 T

are formed from the lower, right-hand, 3x5 submatrices of
the respective determinants by specifying Tkijl to be the
3x3 determinant made up of the 1i-th, j-th, and fifth

columns, in that order, of the 3x5 submatrices. Thus,

in=1
€
i[“ln-n‘-‘ln-—ll + r:ﬂﬁ(n—u + ‘3“4)‘13-1]
T 1 _ _t‘(n-l)hln-—ll + r:”‘-llu-ll + Ca[n-"n;-“
a QIR 4t HamE (A (am) {52)
e VY — P800 + oI
_(‘zln-ll
__wln-ll
l‘["(z"l_”tg"‘-—” —_ (r;,,}"h""" — ‘l(n-ll v‘l'-l)
T:‘ﬂ:” - '_r;" e.‘..ln-l)‘-_rln--ll —_ (r§n)-'r!‘"-” - “tn—lld;—ll (53,

_(2ln—llﬁg-—ll — (r;")-lnl—lj + uh-l]ﬁ(n—ll +
l'!_‘zm—nn-:-u + {r;")-lng-ll —_ ﬂ(n-l)r.ln-l)]
-1)

where €™ and 2™ are given by Schwab (Table 2, 1970).

To obtain A 1]

n-1° ro‘.._,_ Bh-1e N\ Ca-1r Opore
equation (46) is further reduced by deleting the last
equation of the system and transposing terms including An to

the right-hand side of the equations
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[ 1 4] [0 ]
An-l =
run—iBll—l 0 ! (54}
fpu-:cn—l |""
i J i Dn-l_ _%m-

(n)
1

In the vector of inhomogeneities, v/ is 1imaginary and

? (")2 is real
' = A, + (55)
Vo' = ranAa — 1. (56)

We again apply Cramer's rule to obtain the desired layer

constants from

Apy = ‘%1' FantBoe, = Tan-1Bn-1 8n-1
n—1 Apy *
, A (57)
rﬁn—lcn—l = ﬂn—lAn—l n—1 s Dn_l = D,-,‘:A -1 ,
-1 n-]

where, we decompose determinants into products of matrices

of the form

Auei Aoy = TOPORQOPD F'"::"Efi‘:“ if n—1liseven  (58)
1o {F"' BELTY if n - 1is odd

. Fla-np n-n g -1i
Apey = TOROpORD 3 un i8 even
1 T F F F {Fln—Z‘)E.‘ln—ll if n—1isodd. (59)
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Thus we can again use (50} to obtain these products
up to the last multiplication on right. The latter 6x1
matrices are formed from the lower, right-hand, x4
submatrices of the respective determinants by specifying
k
E ij in \
\
& Eg !
Ef? -EX
Al _ E-};\
o B8 P = SR A
Ef? ~E#
E& Ef}
{60}
3 3
Efa "E?:d
ST E3 - E3 Y
b-\ln [T E;“‘ , E_\ln | - :A: ;
Ei\q -E.I’Il
) 2
to be the 2x2 determinant made up of the i-th and j-th
columns, in that order, of the 2x4 submatrices. Expressions
similar to (60) hold for €M o, EON gD
r. By r.Ba r C‘
gln-1) P LU} gl=1) © ynis [
mCa Da D, :
3
)

e T —— — T — - -
S ————— Y T S L -
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l-{u,ltnu)trlin-ll + ¢,2(n)‘-.tu-u] .
nl)t‘-ﬁm—l) — ¢2lnrﬁln—lr
-1 o =" 5t + ) |, BRY
Ad
L r _w,linl):‘-aln—ll + ‘hw‘—lln-ll ]
= _(wl(nl)t‘ﬁm—ll —_ wglnlg-?(n—l)
i[_(wllnl)-rzln—ll + w‘.‘(n)‘-ﬁln—n]
"‘(\h"")’fu‘""' + wzln]ﬁ(n—n
Etn-li — n:“ (5])
rgCa = l'[__(wllm)t‘-lln-ll - wzlnl‘-‘h-n] ]

fl-('h'"')'f-z'“"’ + ¢2tn)‘-hln—n]

-(ﬂ'l (n:)tﬁcn—n + 'I’z"“fl (-1}

l'l_w,llnl):hln—ll —_ f‘z‘"’ﬁ'n_"]
("l (M)tr‘(n-lb + wﬂlnlﬁln—li

1
iu-‘(u—l) + g-lla-ll]
£ el _htn—l) + nl;—ll
3 = n.'i_” _— hﬂn-l)

i+ )
-1
where the neglected terms in the first four matrices need
not be considered because they correspond to vanishing
elements in the associated left-hand matrix

(U2, (V=D Wi, Rin-D, i§in-D, _gye-, (62)

The above scheme can be continued to obtain the
remaining layer constants, with the only change being in the
definitions of the two elements of the vector of
inhomogeneities: for m < n,

'plhm = Am + rﬂmcm (63)

2" = FunBrn — D. (64)

Along with eigenvalues and eigenfunctions, the integral

- ) 2 . 2
l=f ( {[__" (‘)J w(z) (65)
1= J PP ] e [
is required fn multi-mode synthesis of theoretical

seismograms. For a sequence of homogeneous layers, this

integral can be written as

cfraBi] — [D1)]™ % kmy for a continental structure
mm]

n (66}
¢*{lraBi] = [Dii* Ty for an oceanic structure,
m=0
where
by= I,_,, polle* (2} + [ir(2))*} dz (67)

is given by
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pulraBoll | pocos Pi1 = 1/rku) + Poll + /il (68)
2wer .
where
o {69)

by~ ., pellu*@F + [0} d2, ) Sm S0 -1
is given by

Pm {1 [;."'"{.""'((IA.,.]")”U - r3,) + [ranBaJH1 — 1/ria))
we |2

o P AL+ 1) + raBaYQ + 1R

+ L™ ([ram O]V — 1/rim) + [DaFQ1 = rim))
+ Qﬂ “I_r,imcml‘)z(l + l/r;ziul) + le]z(l + rffm))]

T, m

+ {;lwl'Lm"(lAm]‘lrumBm](l - l/r:zun)) (?0,
- rf."".{ﬂ“murﬁmle'le](l - ljr;;m))
+ 2[';."m.{‘“"'lf..mBm]{Dm] + rlth‘-ﬁlml{AmlilrnmC-]t

+ 678" A D]

h I.Am]‘“)m] - rO'm"-I‘:‘m[’--!lenlllrﬂnlCml‘l}; l

and where

= J - i QOF + loto o0

is given by

nl_ 1 ey .
o { 2 {[Aa]"F(rt + 1/r%)

) (72}
- E [DaJria + 1/rda) — 2lAn]'lDﬂ]}!

with, of course, Drl specified to be unity.

5. Mode follower and structure minimization

Since all the problems connected with the
loss-of -precision at high frequencies have been solved
{Schwab, 1970; Schwab et al., 1984; Panza, 1985}, the
summation of higher modes of surface waves can be used for
the generation of “"complete® synthetic seismograms also at
high frequencies.

The key point in the use of multimode summation is
an efficient computation of phase velocity for the different
modes at sufficiently small frequency intervals, Af, and
with sufficient precision. To be efficient it is not
advisable to determine, at each frequency and for each mode,
the zeros of the dispersion function using the standard
root-bracketing and root-refininf procedure {e.g. Schwab and
Knopoff, 1972). This procedure must be wused only when
strictly necessary, as for instance at the beginning of each
mode. For all other points, i, of each mode the phase
velocity can be estimated by cubic extrapolation, using the
values of the phase slowness s=1/c and df/ds already

determined at frequencies fi-2 and fi-l' However the
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precision which can be reached in this way 1is not
satisfactory, thus the phase velocity value must be refined.
This can be done by an iterative cubic fit in the F-¢ plane.
In our experience, such a procedure has given always highly
accurate determinations of the phase velocity and allows a
considerable time saving compared with the standard
root-bracketing root-refining procedure.

Once the problem of an efficient determination of
phase velocities is solved, two other main problems must be
solved at each frequency:

a) to correctly follow a mode;
b) to determine the minimum number of layers to be used.

The problem of correctly following a mode arises in
the high frequency domain (f > 0.1 Hz) where several higher
modes are very close to each other. The determination of the
minimum number of layers to be used - structure mintmization
- is critical in order to reach a high precision in phase
velocity determination spending the minimum possible
computer time,

In order to ensure a high efficiency in the
computation of synthetic seismograms, it is necessary to
compute the basic ingredients in the frequency domain -
phase velocity, phase attenuation, group velocity, energy
integral and ellipticity - at constant frequency intervals,

To reach a maxtmum frequency of 10 Hz a satisfactory step
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turned out to be 0.05 Hz. To determine the total number of
modes present in the frequency interval considered we fix
c°=0.98 B, where Bn is the S-wave velocity in the
half-space, and we increment f, using the Schwab and Knopoff
{1972) algorithm to find the values of f corresponding to
zeros of the dispersion function F(f, co). Obviously,
starting from f=0, the first zero in F(f, co) corresponds to
the fundamental mode, the second to the first higher mode
and so on, The values of f for which F(f, c }=0 are used as
starting frequencies (the lowest frequencies) for the
computation of the different modes. Once the starting
frequency for each mode 1s defined, it 1is possible to
compute, beginning from the fundamental mode, all dispersion
relations. This is accomplished by keeping f fixed and
varying c, the procedure being applied at all the egually

spaced frequency points of the chosen frequency interval.

5.1 The mode follower

The basic idea is to define an efficient method to
follow a given mode M in the phase velocity-frequency space,
distinguishing it from the neighbouring modes M-1 and M+1, a
problem which is most severe near the osculation points, as,
for instance, those characterizing the transition from
crustal waves to channel waves (Panza et al., 1972). For

frequencies as high as 1 Hz the fundamental mode is 1in
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general well separated from the remaining modes, while for
higher frequencies this is no longer true. Thus for the
construction of synthetic signals containing high-frequency
the mode follower must be applied to all modes, including
the fundamental. On the basis of our experience up to now,
there are no other modes present in the proximity of the
near osculations between the fundamental and the first
higher mode. To follow the fundamental mode it is therefore
sufficient to use the following properties of a/ac:
a) for a given mode M, the sign of aF/ac 1is constant with
frequency;
b} going from a mode to the next 3F/a c changes sign with
regularity.

In other words, once the sign of aF/aic is computed
at the initial frequency of the fundamental mode, in all
subsequent points the simple check of this sign makes it
possible to follow the mode correctly. In fact, with
increasing frequency, as long as the sign of 3F/ c does not
change, the obtained zero of F(f, c¢) belongs to the
fundamental mode. If the sign of aF/ac¢ changes, the zero of
F(f, c) does not belong to the fundamental mode and the
search of the zero restarts from a lower value of c¢. In such
a way it is possible to compute all the dispersion curve for
the fundamental mode quite rapidly,

For the higher modes the above algorithm is not

- 44 -

sufficient because they are generally much closer to
each-other. However the construction of an efficient mode
follower is still possible.

In fact, as can be deduced from the work of Tolstoy
(1956), for a given higher mode, even if computations are
made for structures containing very strong low-velocity
layers, the phase velocity decreases with increasing
frequency. Thus for each higher mode, M, the possible value
of the phase velocity, at a given frequency f, lies in the
range (c], c2). where c] is the phase velocity of the mode
M-1 at the frequency f and <, is the phase velocity of the
mode M at the frequency f- af. If the computations are
carried to a maximum frequency of 1 Hz we suggest a
frequency step Af=0.005 Hz, while if the maximum frequency
is 10 Hz then 8f=0.05. This condition, combined with the
property of the sign of aFA ¢ recognizes an eventual jump
from mode M to modes Mt{2n+1) (n=0,1,...}. If in the domain
(c], cz) and (f2f,f) 2mt} {m=1,2,...} modes are contained,
the procedure just outlined is not sufficient to follow the
mode. On the basis of our experience we can state that this
happens very seldom; thus we have not bothered to derive a
very efficient algorithm to solve this problem. Our mode
follower recognizes this mode jump only when the computation
of modes M+ and M+2 is completed. At this point the

computation can be restarted from the mode M at the
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frequency ¥ using as the initial phase velocity a value just
slightly greater than that of the mode M-1 at the same
fregquency.

Even if up to now we have carried out computations
for a limited sample of continental and oceanic structural
models (Panza, 1985; Chiaruttini, Costa and Panza, 1985), we
can state that this version of the mode follower is totally
satisfactory to compute with high efficiency all the

freguency domain ingredients of synthetic seismograms.

5.2 Structure minimization

The structure minimization is a critical point
regarding the efficiency and the accuracy of the computation
of eigenvalues, eigenfunctions and related quantities. In
order to save computer time, it fs necessary to determine
for each frequency, the minimum amount of structure to be
used in the computation, while retaining very high accuracy.
In general for a structure made by n layers this can be done

by computing the quantity

w 1 U
- (" i
E = oudl] ‘i m=1,...n-1 (73)
0 o
where
o . tp
- m-1"m
Py = 3 if m32

- 4 -

andp . and o are the densities in layers m-1 and m, if

m=1 p,=p

1

Since we have chosen for each mode to start from the
lowest frequencies consistent with a value of ¢=0.98 Bn. the
amount of structure to be used at the beginning of each mode
coincides with the total number, n, of layers in the
structural model. Once the phase velocity is determined, Em
can easily be computed and starting from m=n-1 it {is easy to
locate its deepest m1nimm value,

At this stage all the layers below the interface, J,
corresponding to the deepest minimum value of EIII can be
discarded and the parameters of the j+1 layer are used to
define the half-space. With the minimized structure it is
now possible to compute with the necessary accuracy, more
than 8 figures, the final value of the phase velocity. In
general, repeating this procedure for each frequency and for
each mode glives very satisfactory results.

Particular care must be placed in the structure
minimization when low velocity layers are present in the
structural mode!. Let us consider here the case of only one
low velocity channel, the extension to many velocity
inversions being guite obvious. For the waves propagating
essentfally in the low velocity channel, the necessary
accuracy 1is ensured by simply placing the terminating

half-space just below the zone of velocity inversion. For
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the waves propagating above the low velocity channel, i.e.
for the waves with a phase velocity less than the minimum
S-wave velocity in the channel, only the structure above the
deepest minimum of Em located above the channel needs to be
retained.

The situation is completely different when dealing
with waves propagating with a phase velocity larger than the
minimum S-wave velocity in the channel, i.e. for waves
mainly propagating above the low velocity channel but
sampling also deeper. For these waves it 1is generally
necessary to keep at least all the channel, assigning the
properties of the layer immediately below it to the
half-space. It must be observed that in many cases the
penetration in the low velocity channel is so small, that
the structure minimization can be performed, without loosing
in precision, by removing the whole channel, with evident
time saving. The identification of the waves for which the
above reduction is possible can be made by evaluating E_,
starting at m=0, If in some of the layers just above the low
velocity layer E‘j £ IO_"f Eo’ then the structure can be
terminated at the j-th interface, wusing as half-space
characteristics those of the J-th layer. From the
description given above it is clear that the initial amount
of structure used for the computation at a given frequency,

f, is determined by the result of the structure minimization
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at the frequency f-af. This is obviously not valid if at the
frequency f-af there was a wave sampling the channel very
weakly (Ej aot E,). In these cases the amount of structure
initially used at the frequency, f, contains always the low

velocity layer,

6. Attenuation due to anelasticity

The anelastic nature of the Earth's interior
manifests itself through the phenomena of attenuation of
elastic waves. Knopoff (1964b) introduced an additional term
into the differential equation of motion to account for
attenuation effects. He introduced the nondimensional
constant Q, which is related to the space (e-°‘) and time

(e‘Yt) attenuation coefficients as follows
=P =P
a 20¢ ¥ 20 (74)

where ¢ is the phase velocity of the plane wave motion under
consideration. Recently, 0‘Connell and Budiansky (1978}

derived the relation

T
=2l " {75)

which is relevant only for small values of p (long-period

waves and free oscillations). Brune (1962} and Knopoff et
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al. (1964) noted that there are some discrepancies for Q
obtained from propagating wave trains, Qx, and that from

free oscillations, Q,. The two values are Joined by the

X
retation th=ch where c and u are phase and group velocity,
respectively.

The following discussion of a way in which
dissipation of wave energy can be taken into account in
seismogram calculations is taflored directly to the needs of
seismology. The literature on anelastic and rheological
properties of earth materials is very vast. As a starting
point for the interested reader, we mention only a book by
Christensen (1982) on viscoelasticity 1in general and a
review article by Minster {1980) which is geophysically
oriented,

Dissipation or absorption of wave energy is often
described by linear laws, 1.e. it is assumed that stress and
strain are linearly related as in purely elastic media. The
difference to this case is that now phase shifts occur
between stress and strain. This implies that the elastic
moduli are no Jlonger real, but complex and possibly
frequency dependent . The simple one-dimensional

stress-strain relation is

o{p) = M{plelp). {76)
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If € is a shear strain, ¢ a shear stress, then M is
identical with twice the complex rigidity w. [If ¢ 1s a
volume strain or cubic dilatation, ¢ a pressure {apart from
the sign}, then M is the complex bulk modulus k. As a third
example, if ¢ is the strain along 2 rod or wire, o the
corresponding uniaxial stress, then M is the complex Young's
modulus. We will call M{p) the viscoelastic modutus without
specifying the mode of deformation. The general three-
dimensional viscoelastic stress-strain relation of an

jsotropic substance is

2
a”(ﬂl = [k(p)- Tl(p)]3(p)6”+2u(P)t”(P). (77}
where ® s the cubic dilatation and otherwise familiar
notation has been used.

The viscoelastic modulus in Eq. (76) is separated
into real and imaginary parts, H=Ml+iH2, or into magnitude
and phase, M=Ae“. A1l these quantities in principle have to
be considered as frequency dependent. The quality factor Q
is defined by
. . (78)
Q = MZ/M] tane .

Increasing dissipation increases the phase shift ¢ between

stress and strain and hence decreases Q. It can be shown
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that, if ¢>> 1, Q-] is proportional to the energy loss per
period in a harmonic loading experiment and therefore has a
simple physical meaning. § can be measured by different
techniques, including amplitude measurements of propagating
waves, width measurements of spectral Jines in spectra of
free oscillations and, of course, phase-shift measurements
between stress and strain in forced oscillations.

An important point to note is that Eq. (76), and
similarly Eq. (77), can be considered as a linear filter
equation. The filter, represented by the viscoelastic
modulus, must be causal, 1{.e. the filter output o (t) 1in
the time domain must not start earlier than the filter input
€(t). This requirement imposes relations between M] and Mz.
or A and ¢, which are called dispersion or Kramers-Kronig
relations. Those relating magnitude A and phase ¢ (and hence
Q, according to Eq. (78)})) are the most important in the

present context:

4= ’
nA(p) = 8- 1 ¢ i:ip'ﬁl dp’ (79)
o .
*{p) = % Pj lgf;'—gg—) dp' . {80)

Here only £q. (73} is needed. For simple types of frequency
dependence of {, the principal-value integral can be

calculated analytically and the constant B can be determined
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either at high or at low frequencies. As a consequence the
viscoelastic modulus 1‘5 known for all frequencies. If this
procedure is followed for the rigidity u{p) and the bulk
modulus k{p}, and if these complex moduli are used instead
of the real moduli in the solution of an elastic
wave-propagation problem, then the frequency-domain solution
of the corresponding viscoelastic problem is obtained. This
is the correspondence principle of the linear theory of
viscoelasticity. The time-domain  solution of the
viscoelastic problem follows as usual by inverse Fourier
transformation,

Working with , {p} and kip) 1s, however, not the
procedure that is normally used. Rather, one works with wave
velocities and hence replaces real velocities by complex
velacities. For P and S waves, we have the complex

velocities
M (p)] } M (p)f 3
o (p) = [—3-;—] , 8.(p) = —P-D——] ' (81}

where p is the (real) density. The viscoelastic modulus for

P waves is

M, (p) = k(p)+ 3 ulp) (82)
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with the quality factor Qn following from

1

ast o1 der, -
Q -5';;0‘. +{1 3a.30k . (83)

For S waves we have, accordingly:

HB(p) ulp} (84)

0 =Q - (8s5)
Qu and Qk are the quality factors of u and k, and ¢ and B in
Eg. {B3) are real wave velocities taken for a typical
frequency. A familiar assumption is Qk>> Q", i.e. that there
is much tess dissipation in volume deformation than in shear
deformation. Then Qo depends only on Qu, and Uo and Qﬂ have
the same frequency dependence. In effect this implies a
real, frequency-independent bulk modulus, at least in the
seismic frequency band. An often used relation is Oﬂ=2.2508.
corresponding to uz=332.

The procedure to find the complex velocities {81) is
to make assumptions about Qu and 08 as functions of
frequency, to use Eqs. (78) and (79) for the determination
of M"l and "B and then to insert these moduli into Eq. (B1).
In the following we will again disregard the distinction of

P and S waves and work with M{p), Q{p)} and the complex

velocity
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vc(p) = [#%E%l ! . {86)

If Q is a frequency-independent constant, or if it follows

from the power law

Qlp) = Q(p',)(%r (87)

with the reference frequency Py and an exponent v between -1
and +1, the steps leading to the complex velocity (86) are
rather straightforward (Miiller, 1983} and will not be
repeated here. These § laws and related absorption-band
models have been investigated many times in the literature
(for a review, see Minster, 1980), although often with
unnecessary complications such as cut-off frequencies
introduced for mathematical-conven1ence alone. Here we give
the results for the case of seismological interest, {Q>> 1.
I[f Q@ 1is constant, this condition appifes for all
frequencies, and in the case of the power law (87) we
consider only frequencies for which >>lf In the constant-Q

case one obtains the well-known result

I S B
v.tp) = v(l+ T n b, t3 Q) ' (88)

and in the case of the power law (87}
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1 1 1
VC(P) o \‘{]1‘ E[-———Q(pn) - Q(_P)]

cot — +

- i } {89)
2 aip]

In these expressions, v is a real velocity. The real part of

the complex velocity,
A](p) = Re vc(p). A‘(po) = v, {90}

js the phase velocity of body-wave propagation. This follows
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which represents a wave with phase velocity A](p). The

imaginary part of the complex velocity is responsible for 1 !

absorption, since it leads to the exponential decay of the 8

wave amplitudes in Eq. (91) with increasing propagation




distance x.

The frequency dependence of A](p) reflects the
dispersion that is connected with absorption. Dispersion 1is
slight, of course, and both positive and negative exponents
v lead to an increase of phase velocity with frequency (Fig.
3).

In a medium with a constant Q, the correction to the
dispersion of body waves can be expressed (Futtermann, 1962

eq. (25))

2
A](p) Al(po)/(l+{;-Al(po)AZ(pU)ln(po/P)]}.

(92}

B8,(p) = 8,(p_}/11+12 B, (p 8, (p_JInp /p} 11,

where A1(p) is the P-wave phase velocity, Az(p) is the
P-wave phase attenuation, Bitp} is the S-wave phase velocity
and BZ(p) is the S-wave phase attenuation.

In the following computations we have choosen p°=2w

A B, are related to the

e B By
complex body-wave velocities and B, describing the

radians. The quantities A

properties of anelastic media, by

Ql—

21 1.1 .
T 18, » WL (93)

(Schwab and Knopoff, 1972). In anelastic media also surface-

wave phase velocity, c, must be expressed as a complex

~ 58 -

quantity

1
_E] -1, . {94)

O | =

The attenuated phase velocity C, and the phase attenuation

1

C2 can be estimated by using the variational technique (e.g.
Takeuchi and Saito, 1972; Aki and Richards, 1980). As an

intermediate step it is necessary to compute the integrais

2
- A 2
I3 = 5{[(-‘4’2“)' zx:zu)]ya

1 A

*x DY Ty Y2 s5)
I4 = Trelae2n)[ ! 2(y§+2k1y2y3)
° {x+2u}
2

2 x 2

+ kT01+ by, ]
{l+2v)2 3 (96)

+&u l? yi+sa{73%§:T(yzy3+kxy§)lld! ,
M

where
_ wlz) - olz)
| wio) Y2 = wlo)
_ufz) _ xl2)
1y = Sie) R ey

In these expressions, a and g are the compressional- and
shear-wave velocities in the perfectly elastic case; 1in

other words
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9(B1+182)2 = ptéy n(o]+1c2)2 = (a42p)+8{at24) ,

with X and v indicating Lamé's constants.
and I

3 4
from the layer constants (Schwab et al., 1986), thus

Integrals [ can be computed analytically

obtaining the anelastic phase velocity

- }
¢, = &/[1- —— Re(l,}] (97)
! 2k213 4

and the phase attenuation

]
2pkI

C. =

2 Im{I

4) ' {98)
where ¢ and k are the phase velocity and wavenumber in the
perfectly elastic case.

The exact mathematical treatment of attenuation due
to anelasticity is described by Schwab and Knopoff {1971,
1972, 1973).

As we have seen, body waves are dispersed in
anelastic media. The frequency dependence of body waves
requires the introduction of a small but essential variation
in the mode follower.

In the perfectly elastic case, for each higher mode,

M, the possible value of the phase velocity, at a given
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frequency, lies in the range lc]. cz). When body wave

dispersion 1is present, the upper limit ¢ has to be

2
redifined. The phase velocity of body waves, in fact,
increases with increasing frequency and this may cause an
increase of the phase velocity of higher modes with
frequency. This effect is evident in those parts of the mode
curves which are almost undispersed in the perfectly elastic
case. One has therefore to estimate the increase in phase
velocity of a given mode at a given frequency f, with
respect to the frequency f-af, due to the dispersion of body
waves.

Let us denote by Acz the maximum possible increment
of ¢,.

when using €q. {92) it is convenient to express the
difference ac in the phase velocity between the frequencies

f-af and f, due to the effect of the body wave dispersion,

by
f
clf) X an —=—
ac = — . e (99)
—
T+x &n TooF T+x &h T
with

X = 3 c(f) C,lF)

The use of (99} is not straightforward, since the value of

e b g R e
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Due to body wave dispersion, care must also be taken

in computing group velocities using implicit function theory
(Eq. 31-32). When computing (6_;?)' one has to remember that
body wave velocities are functions of frequency. In this
case equation (33) contains terms associated with the
derivative with respect to the angular frequency, p, of the
compressional and shear wave velocities.

The effects of body wave dispersion are not very
relevant in practice, however we want to stress that the

introduction of body waves dispersion in anelastic media is

a physical necessity.

7. Response to buried sources

Ben-Menahem and Harkrider (1964) developed the
formalism necessary for the study of point sources in
muitilayered media, The confusion concerning the equivalent
forces needed to replace a displacement dislocation was
removed by Burridge and Knopoff {1964). To avoid any
additional confuston which may arise concerning this point,
we will be as explicit as possible in our use of equivalent
forces.

We take, as a reasonable model of the earthquake, a
non-propagating jump in displacement across the fault plane,

with continuous normal stresses across this plane,
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Burridge and Knopoff (1964) considered the problem
of the force which would have to be applied in the absence
of the fault to produce the same radiation pattern as a
given dislocation. They found that the equivalent forces
which must be applied depend only upon the source mechanism
and elastic properties of the medium in the immediate
vicinity of the fault, and not upon any reflecting surfaces
or other inhomogeneities which may be present in the medium.
For the earthquake model we have selected, the equivalent
force in a locally homogeneous medium is the double couple
without moment.

In Fig. 4{a), a fault is shown before and after
distocation. The fault plane is the plane of separation
between the two blocks. The disltocation 1is described in
cartesian co-ordinates in Fig. 4(b), where x, and x_, lie in

] 2
the fault plane, and x, 1s perpendicular to it; x, is

3 1
paralle! to the displacement on the fault. The jump in
displacement, w, can be written as in the figure, using the
notation of Burridge and Knopoff (1964). Fig. 4(c) shows the
equivalent point forces for an unfaulted medium. The
quantity e1(x,t) represents the couple whose forces act in
the Xy direction,

In Fig. 5 we show a co-ordinate system associated

with the free surface; the presence'of the fault plane is

included to connect this co-ordinate system with the actual
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ac depends upon ci{f} and Cz(f}. quantities which are
obviously unknown at this stage of the computation.

In order to estimate ac cne can substitute to c(f)
and Cz(f) a weighted average of the S-wave velocities, B],

and the S-wave phase attenuations, B_. As weights we use the

Z
eigenfunctions at the frequency f-af, in particular the sum

of the squared displacements. Therefore

= - f
B, (f-af) X N ——

ac, = _1 3 . — f A: {100)

- s —_

1-x &n FoiF 1+x tn F
with
% =2 B (f-af) B,(f-af)

1 2

It has been found with extensive numerical testing that the
above relations yield a very satisfactory definition of the

upper limit ¢ In the case the wave at the frequency f-af

2°
penetrates to 2 much smaller depth than that at the
frequency f, as for instance in the channel wave - crustal
wave sequence, the weighted averages B] and ls2 are computed
at the last frequency f-Naf, where the wave reaches about
the same penetration depth as that at the frequency f. The
main advantage of the above modification consists in keeping

the general scheme of the perfectly elastic mode-follower

the same.
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Fig. 4. Fault model of an earthquake and equivalent

point-force replacement in an unfaulted medium.

faulting. The quantity h is the depth of the focus, ¢ is the
azimuth of the station with respect to the strike line, & is
the dip angle, A is the slip angle, and s represents the
direction of the displacement dislocation of the hanging

wall relative to the foot wall,
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Fig. 5. Source geometry and co-ordinate system associated

with free surface.

We consider the radiation pattern for the double
couple in order to obtain the surface wave response at the
free surface for the various modes,

For a vertical point-force singlet at depth h, the
vertical and radial components of the Rayleigh wave
displacement at the free surface are given by Harkrider
(1964). For the j-th mode, the dependence upon r is just
H(ZJO(kjr) or H(Z)](kjr). Harkrider (1964) also gives the

response to a horizontal point-force singlet, This case

involves the radial dependence H(Z)‘(kjr)/kjr. as well as
those above. The response to a singlet of arbitrary
orientation 1s obtained by a suitable linmear combination of
the response to a vertical and a horizontal singlet. There
is therefore no change in the form of the radial dependence
of the response.

The Rayleigh wave response to a point-force couple
is obtained from the singlet response by differentiating the
latter in the direction of the moment arm, which is normal
to the fault plane; and the double-couple response, lluc. is
obtained by superposition of two perpendicular couples.
Since some of the terms in the double-couple response will
tnvolve differentiation of the singlet response with respect
to r, it follows that the radial dependence of the

components of ch involves only the factors Hu,o, H(Z)‘,

(2)

Hmofr. um‘/r. and H ]/rz.

if we assume that the receiver is at a sufficiently
large distance from the epicentre, we can neglect terms

}

which fall off more rapidly than r ¢ and consider only the
first term of the asymptotic expansions of the Hankel
functions. This will give us the displacement in the far
field, Fig. 6 shows how large a value of kr is needed to
obtain an accuracy of o significant figures in the moduli

(2) (2)

and arguments (or phases) of H o and H 1 The accuracy o

is given by
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e = log]D(5I=I) {101}

where ¢ is the fractional error involved in the use of only
the first term of the asymptotic expansion. From Fig. 6 we
see that we must have kr 3 10 for 3-figure accuracy in all
the amplitudes and arguments.

For o=3 significant figures, the safe distance-
period relationship is also given in this figure for the
first four Rayleigh wave modes. For example, for the first
higher mode, at a period of 100 s, we must limit ourselves
to distances greater tham 1000 km from the epicentre, This
ensures 3-figure accuracy in the computation of the
radially-dependent factors in llDc when we use only the first
terms of the asymptotic expansions.

In our analysis we use only these first terms to
obtain the Fourier time transform of the Rayleigh wave

displacement at the free surface:

UBC = (IR(m)Iexp(ioo)}iﬁIkiexp(-iavlll)x(e,h):,(; exp{-ikr}/s{2sr}
{102}

0c -1,0¢ D _

v, - (e explin/2)) U/ U, =0

where R{w} 1is the Fourier transform of the equivalent

point-force time function, the guantity n is the unit vector

perpendicular to the fault and has units of length,

4, = org Riw) {103)
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Fig. 6. Accuracy of the first term of the asymptotic

expansion of H“’Z}

1(kr) as a function of kr, and
minimum value of r for which the first term of the
expansion ensures three significant figures in
arg {H“'z’](kr}] . The tlatter is given for the
fundamental and first three higher Rayleigh wave
modes associated with the shield model given by

Panza et al. (1972).
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is the initial phase, k is the wave number,

w*
£ = -—u?- (104)
0 v
The factor G 1s given by
6l -z2cu1
) {105}
where
- 2 F4
1] = {p(z){y](z)+y3(z)}dz (106}

and p (z) ts the density. The azimuthal dependence of the

response is given by

X(e,h) = d0+i(d]s1na+d2cosa)+d351n20+d4c0520 (107)

where 8 1s the angle between the strike of the fault and
the epicenter-station direction; h is the hypocentral depth.

The quantities di (1=0,...,4) are

(=9
"

3sinasin2sB(h)

d3 = cosasinsA{h}

d4 = -isimasin2sA(h)

[-%
n

) -sinxcos2sC{h)
{108}

=3
]

2 -cosicos&C{h)

-1 -

where i 1is the rake angle and & {is the dip angle.

Furthermore,

u*(h})

w
[+]

Alh) = -

2
g BME ) 2 eth)

- 53 (109)
alh) Y, pl{hlalh} HOIC

B(h) = -{

-

1

1 )

ufh) olc

cth)

where ofh) is the P-wave velocity at the source depth,

Bl =(u (n)/ othh)

is the S-wave velocity at the source
depth, u*(h). u*(h) and t(h} are the efgenfunctions at the
source depth, , {s the vertical displacement at the free
surface.

If one adopts the far-field relation given by

Ben-Menahem and Harkrider (1964):

LR {10}

[

then for a wave propagating in the positive r direction with
retrograde elliptical particie motion, Ur leads Uz by /2
radians and <, is positive only if z is chosen to increase
upward. If, however, as in Panza et al. (1972}, Haskell
{1953), and the first part of Harkrider (1964), 2z is chosen

positive downward, Ur leads Uz by 3 »/2 radians. If relation
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{110} 1s used to define <o retrograde particle motion will
be defined by negative values of the ellipticity., In
relation to the formalism given by Ben-Menahem and Harkrider
(1964} the following observation 1is relevant for
programming. Since the depth-dependent quantities u*(h)/wo.
c :(h)/io. and ﬁ(h)/v':o are to be computed from the usual
Haskell (1953) formalism, in which z s positive in the
downward direction, Ur must lead Uz by 3x/2 radians.

The asymptotic expression just described allows the
computation of synthetic seismograms with at Tleast 3
significant figures as long as kr 2. 10 (Panza et al., 1973},
and it is equivalent to the expression in terms of the
seismic moment (e.g. see Eqs. (7.149) and (7.150) of Aki and
Richards, 1980).

When considering anelastic models, the wave number k

is complex
k = (p/C]) - ipC2 (1
thus the term exp(-ikr} in {102} can be written as

exp(-iprlcl)exp{—pczr) {112)

C,r

The terme %, representing the amplitude damping,

is the main term introduced by anelasticity. Smaller
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effects, like the ones arising from complex group velocities
and eigenfunctions, are not included in the present
calculations. We think that they may become important when
the problem of lateral variations treatment will be solved.

The extension of these results to the available
formalism for sources with finite dimensions and durations
is quite straightforward. In case the source is not
instantaneous but has a finite rise time, the derivative of
the time source function changes from a delta function to a
triangular Vike function of duration T, with the effect of
smoothing periods smaller than T.

Finite length sources can be dealt in two ways. In
case the source receiver distance {s much bigger (at least a
factor of 10) than the source dimensions, the Ben-Menahem

{1961) factor

sinX e-ix

X (113}

with

- pL (1 _ cosv
X 2 [v c ]
where p is the angular frequency, L is the source length, v
is the rupture velocity, ¢ 1s the phase velocity and ¥ is

the azimuth of the station measured from the rupture
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direction, may be used, as described 1in detail by B;th
(1974). A second possibility is to compute the seismogram as
4 sum of point sources shifted in space and time. This last
method has been extensively used 1n connectton with
empirical Green's functions {e.g. Hartzell, 1978; Kanamori,
1979). |

The seismogram S(t,r) at the receiver R due to the

extended fault L can be expressed as
S{t,r) = !;s(tﬂ(;'i;;-;')w{;')d;-' (114)

where s is the response at the receiver R due to a point
source at the point r' on the fault I and w is a weighting
or scaling factor with inverse area units. t is a time
expressing the delay at the point r' due to the rupture
propagation and is equal to i{r'|/v for a rupture propagating
with a constant velocity v.

Since we sum discrete point sources, the integral in

(114) will be replaced by a sum

sit,r) = isjttﬂj;rj)“.j

(115)
where j runs over the point sources on the fault plane I and

u'j is now non-dimensional. This equation is equivalent to

Eq. (1) in HMartzell (1978)
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s{t,r} =xls (t)*QJ(t)}H(tﬂ ) {118}

3 ]

where the (*) indicates convolution, Q.(t) is a generalized

J
scaling factor (a delta function with a given amplitude in

the simplest case), and H indicates the Heaviside step
function.

When the successive excitation of reqularly spaced
point sources is used to approximate a rupture propagation,
the apparent time separation between point sources, as seen
at the receiver, must be smaller than the Nyquist period of
the synthetic signals. In case just a few point sources,
approximating irregularly spaced asperities, are considered,
the above condition obviously does not have to be satisfied.

It is also quite important to note that the
expressions for sources of finite dimensions are valid in
the far-field approximation, which can be roughly expressed
by the condition that the source-receiver distance must be
an order of magnitude greater than the source dimensions, If
this condition 1s not satisfied while the condition kr 2 10
sti11 holds, the synthetic signal can be constructed as
proper sum of seismograms given by point sources separated
in time and space. With the modal approach this is easily
done, since, for a given Earth model, different seismograms

corresponding to different sources, can be computed with
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very little computer time, essentially the time required for
a fast Fourier transform, since all the time consuming
computations  (eigenvalues and  eigenfunctions) are

independent from source specifications.

8. Comparison with real data

To show how suitable our method for the summation of
Rayleigh wave modes is in modeling observational data, we

present in this chapter some examples.

8.1 Borrego Mountain, California, 1968 event

First we try to synthetize the recordings of the
Carder displacement meter of the station E1 Centro (ELC} for
the Borrego Mountain, California, M = 6.4 earthquake of
April 9, 1968 as given by Heaton and Helmberger (1977).

An atempt to model this earthguake in terms of
addition of -surface wave modes has been done by Swanger and
Boore (1978). These two authors were able to reproduce the
transversal component of motion quite well, but failed to
obtain a good fit for the radial and vertical component.

The initial structure, BORN, used in the
computations (Suhadolc and Panza, 1985) is taken, for what
regards the crustal layers (Table II)J, from the structure
used by Swanger and Boore (1978). The mantle part is taken

from the models proposed by Biswas and Knopoff (1974) for
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TABLE Il
Thickness Density P-wave velocity S-wave velocity
(k) (g/ea’) T (kess) (ka/s)
0.25 2.0 1.7 1.0
0.30 2.2 2.1 1.2
1.35 2.2 2.4 1.4
0.95 2.4 3.3 1.9
1.65 2.5 4.3 _ 2.5

Structure BORN used in the Borrego Mountain earthquake
modeling. Only the uppermost layers are shown. For the
remaining structure see Suhadolc and Panza (1985). It
has been assumed that QCI = 2.5 %
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the Western United States.

In the initial step of fitting the radial component
we held the structure fixed and varied only some of the
source parameters. At the beginning we used a single point
source model, while later on a two-point model is shown to

give a better fit,

8.1.1 Single-point source

The radial and vertical components of the observed
displacements are shown in Figs. 7a and 7b respectively. For
the source parameters we adopted the ones given by Burdick
and Meliman (1976). These authors modeled the teleseismic P
pulse by adding the contribution of three point sources
occurring in the time span of about 15 s. We used the
parameters of the first of these three events, which are
also in good accord with the values proposed by Allen and
Nordquist (1972). A Heaviside step function was used for the
source time function.

The synthetic seismogram obtained with these
parameters and the sum of 218 wodes is shown in Fig. Ba; its
peak half-ampiitude is 6.1 x 1072 cm, thus to obtain the
observed maximum displacement of about 3 cm we need a
seismic moment of about 12 x 1025 dyne-cm.

It is evident that the amplitude of the observed

coda is much larger than the one of the synthetic. This
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Fig. 1.
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0 40 80
Observed ground wmotion due to the Borifego Mountain,
California, 1968 earthquake, recorded at E1 Centro. a)
Radfiat colponef;t. maximum zero-to-peak amplitude about 7.3
cm. b) Vertical component, maximum rero-to-peak amplitude
about 3.1 cm (after Swanger and Boore, 1978).




problem may be removed by a variation in the depth of the
source, which greatly affects the relative amplitudes
between the early and late parts of the recording. The
synthetics obtained with a source depth of 4.5 km and
leaving the other parameters the same, is shown in Fig. 8b.
The improvement is quite evident. The bigger excitation of
Rayleigh waves in the sedimentary surficial layers, which is
probably responsible for the high amplitude late arrivals,
is accomplished by a shallower source. The high frequencies
present in the early arrivals of the synthetic seismogram of
Fig. 8b can be filtered out by using a finite rise time
source function. We adopted a symmetric triangular function
for the derivative of the source time function. The
resulting synthetic for a duration of 2 s is shown in Fig.
8c.

The principal difference seen between the synthetic
and the observed recording is still in the amplitudes. The
amplitudes of the later arrivals dominate in the observed
recording, while in the synthetic the early arrivals are the
bigger ones.

To reduce further the ratio between the early and
later arrivals we tried to increase the ( factor in the
sediments and to diminish it in the crust, obtaining a very
small improvement.

For a better fit some structural parameters have to
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Fig. 8. Single point-source radial component synthetic seismograms
referring to the Boru;egn Mountain 1968 earthquake: parts a,
b, ¢ refer to the structure B80RN (see Table Il and text),
while part d refers to the structure BORY (see Table I[I),

The parameters of the sources are described in the text.
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be changed. In particular we note that the frequency of the
fundamental mode, which produces the large amplitude later
arrivals, is lower in the observed seismogram than in the
synthetic one. This can be taken care of by increasing the
thicknesses of the uppermost layers. After some trials in
adjusting the corresponding velocities in order to mantain
the correct arrival times, the crustal structure, BORY,
shown in Table I1I was found to give satisfactory results.
We note incidentally that the variations in the structural
parameters are not very large, however they are required by
the data; this may give an idea of the resolving power
connected with the use of complete signals. The synthetic
displacement corresponding to the structure of Table III,
for a source duration of 3 s, is given in Fig. B84, The fit
on the later arrivals is now quite good, The corresponding
seismic moment is about 9 x 1025 dyne-cm, in good accord
with the values given by Swanger and Boore (1976) and Heaton
and Helmberger {1977).

The discrepancies which persist between observed and
synthetic data are in the still too large early arrivals,
the initial double peak and the latest arrival, which have
not been synthetized up to now. The problem can be resolved

considering more than one point source.

-8 -
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TABLE 11

Thickness Density P-wave velocity S-wave velocity
(km) (ofem’) (km/s} (kn/s)
0.50 2.0 1.70 1.00
0.25 2.2 2.30 1.35
0.25 2.2 2.45 1.45
1.60 2.2 2.70 . 1.60
0.55 T2.4 3.30 1.90
1.3% 2.5 4.30 2.50

Structyre BORY used in the Borrego Mountain earthquake
modeling. Only the upperwost layers are shown. For the
remeining structure see Suhadolc and Panza (1985). It
has been assumed that Q. = 2.5 q’.

%

150 -
150
150
150




8.1.2 Two-point source
An easy way to reduce the amplitudes of the first

arrivals is to consider more than one point source. Also
Heaton and Helmberger (1977), Ebel and Helmberger (1982) and
Burdick and Mellman (1976) admit that the event cannot be
modeled with a single point source. In order to preserve the
good-fitting later arrivals and change only the early part
of the synthetic shown in Fig. 8d, a second deeper point
source is considered. Since the early arrivals show more
high frequency content, a scurce 8 km deep with a time
duration of 1 s was chosen, The seismogram is shown in Fig.
9a. The effect of the sum of the two point sources, the
deeper one being 6 s late with respect to the shallower one
{Fig. 9b), is shown in Fig. 9c. The weights of the two point
sources were chosen to be identical, thus the seismic moment
of each source can be estimated around 1.1 x 1l:l26 dyne-cm,

The other features could be modeled assuming more
point sources located at different hypocentres, but the
problem has not been dealt with in this paper, since it is
not our aim to do a particular study of the Borrego Mountain
event.

The corresponding synthetic vertical component - the
observed one is shown in Fig. 7b - is shown in Fig. 10. The
overall fit is not bad at all, but the latest arrivals of

the observed recording show sharp phase changes and very big
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Fig. 10.
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Same as Fig.
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9 for the vertical component.
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perfods and amplitudes, features missing in the synthetics
of Fig. 10. These are very probably due to interference of
more point sources and to the effect of lateral variations.
Any further attempt to model this component seems to us
useless since the size of the first part of the signal, onty
about one third of the radial, is just above the noise level
and thus any later phase arising from lateral variations can

become a dominant feature in the record.

8.7 Brawley, California, 1976 event

Strong motion displacements due to the November 4,
1976 Brawley, California earthquake, magnitude 4.9, recorded
at the stations E1 Centro (ELC) and Imperial Valley College
{I1vC), as given by Heaton and Helmberger (1978) are modeled
next. The initial part of the tangential components of these
recordings were modeled by MHeaton and Helmberger (1978)
using the Cagniard-de Hoop technique. Here we will
concentrate on the radial components (Fig. 11).

The recorded horizontal ground motion is much larger
than the vertical one and the radial displacement at ELC is
about a factor of two bigger than at IVC, which lies near a
P-SV node. The radial components at the two stations show a
high degree of overall coherence, only the relative
amplitudes of the single peaks are quite different. This is

to be expected, since, assuming the USGS determined
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due to the

a) E1 Centro ({ELC)

recording, maximum zero-to-peak amplitude about 1.4 mm. b}

Observed ground motions, radial component,

Fig.-ji.

1968 earthquake,

Brawley, California,

maximum

College (IV{) recording,

Valley

imperial

zero-to-peak amplitude about 0.7 mm.

40 60 80 100

20
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epicenter, the stations have very similar azimuths {160° and
174° for IVC and ELC respectively) and distances (33 km and
36 km) from the source. The hypocentral depth, according to
USGS, s 4.5 km. The mechanism determined from 1local
stations first arrivals is a right-lateral strike-slip on a
plane dipping almost vertically.

The uppermost five low-velocity layers used in our
structural model BRAW (Table IV} are those given by Biehler,
Kovach and Allen (1964), while other crust and upper mantle
specifications are practically the same as those used in the
Borrego Mountain earthquake modeling.

A single point source with a right lateral
strike-slip mechanism on a vertical fault plane 7 km deep
and with a source duration of 1 s was found to have a much
too big initial peak and a too short duration as compared to
the observed ELC seismogram. Shallower sources have been
therefore tried and a relatively good match obtained with a
source 3.5 km deep (Fig. 12a).

Nevertheless the signal duration is still too short.
Since a certain degree of coherence has been observed
between the initial and the final part of the seismogram,
another similar shallow source has been applied 17 s after
the first source (Fig. 12¢). In order to match the central
part another point source, this time 7 km deep and 14.3 s

after the first source, has been added (Fig. 12b). The three
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Fig. 12, Synthetic seismograms referring to the Brawley 1976 event

and to E1 Centro {ELC) station. a) 3.5 km deep point source,
epicentral distance of 38 km. b) 7 km deep point source,
epicentral distance of 36 km. d) Superposition of seismograms
a), b) and c}. See text for details.

Thickness
{km)

0.45
0.50
1.15
1.30
2.50

Density
(9/cu3l

2.0
2.2
2.3
2.4
2.6
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TABLE v

_P-wave velocity S-wave velocity QB
(km/s} {km/s)

1.7 0.75 20

2.1 0.92 20

2.6 1.50 30

3.7 .13 100

C 4.7 2.n 200

Structure BRAN used in the Brawley earthquake modeling.
Only the uppermost layers are shown. the remaining
structure being practically identical as in BORY, It
has been assumed that Qu =25 Q’.




sources and their sum - all have been given equal weight -
are shown in Fig. 12 for ELC and Fig. 13 for IVC. In order
to preserve the relative amplitudes of the initial and final
part of the seismogram at both stations, the fault dip of
the second shallow source has been set to 80°. The second
and the third event are placed at the USGS epicenter, while
the first one is placed about 3 kam to the northwest, along
the fault line, This was seen to give a better fit on the
initial part of the record compared with the records (see
Figs. 14 and 15) obtained by summing, in the same way as in
the former example, three point sources - 3.5 km, 7 km and
3.5 km deep - with the same epicenter (coinciding with the
UsGS one) and focal mechanism.

It is dinteresting to note that the epicenter
location is pretty well determined to lie along the fault
passing

through the epicenter given by USES {33° 05'N,

115° 36°W) by the ratio of the amplitudes at the two
stations. This ratioc was found to maximize for a vertical
fault and for shallow sources.

In the first part of the seismogram the fit of the
IVC record is a little bit worse than the ELC one, but the
overall features are stil1l reproduced pretty well. Also in
this case the small

amplitude of the signal can make

retevant the effect of lateral variations which may be

responsible of the main observed discrepancies. The seismic
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Fig. 14. Same as Fig. 12, the epicentral distance of all the three ’

Fig. 15. Same as Fig. [4 for station Imperial Valley College (IVC).
single point sources being now 36 km.




moment of each point source is found to be about 7 x 1023

dyne.cm, Heaton and Helmberger (1978) found a value 3 x 1023

dyne,cm.

8.3 Irpinia, Italy, 1980 event

The earthquake source behavior 1s relatively well
understood by waveform matching synthetic and observed
ground motions for frequencies up to 1. Hz, some examples
having been shown in the previous sections. If we move to
higher frequencies, smaller scale details of the earthquake
source process on one hand and of the structure surrounding
the source volume on the other, become essential for a
deterministic prediction of the strong ground motion. Since
these details are not known at present, a statistical
approach has been taken up to now to predict ground motion
above 1 Hz {e.g. Boore and Joyner, 1978; Boatwright, 1982;
Koyama, 1985).

In the following we present a first attempt to model
deterministically some of the ENEA-ENEL strong ground motion
recordings {(Berardi, Berenzi and Capozza, 1981) of the 1980
Irpinia, Italy, earthquake, MS = 6.9 {see Deschamps and King
(1983) and Del Pezzo, [annaccone, Martini and Scarpa (1983)
for a review of the source parameters of this event).

By Jjust comparing the durations of the observed

ground motions (Fig. 16} with those of the synthetic

- G -

Observed accelerations, after gaussian-filtering at 10 Hz,

6.

Fig.

Station

1980 earthquake. @)

Sturno, maximum peak ground acceleration about 132 cm/s

[taly,

due to the Irpinia,

Z

Station Brienza, maximum peak ground acceleration about 83

cmlsz. c} Station Auletta, maximum peak ground acceleration

P
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fig. IT. vertica) component of acceleration for an istantaneous point
source (h « 6 km, © x 68*, 3 . 150 )
moment '"o' = )

= 75°) with seismic
dyne ¢m as a function of epicentral
distance, r; from top to bottom r = 10, 30, 50, 100 km. The

maximum zero-to-peak amplitudes are narmalized to one, |

‘ n
this and a1

subsequent figures the number above each
seismogram gives the peak acceleration (here in units of
102 cmts?) and on the horizontal axis the time
seconds,

is given in

examples, computed at comparable distances (Fig. 17), one
can immediately see that a single point source s by no
means a realistic representation of the source process, On
the basis of our experience most of the observed signal can
be reproduced by superposition of point sources, modeling
asperities. When the location and rupture time of these
asperities is determined by rough waveform fitting, then it
is possible to model a more detailed finite dimension fault
rupture along the Jines outlined in section 7. The
lithospheric model IRPI used in the following computations
is given in Table V.

In order to obtain a gross agreement of both the
waveforms and relative amplitudes at different stations, it
was found that a 17.5 km deep source located at A (see Fig,
18) with a rake of 230° on a fault dipping 70° toward the NE
had to be assumed. A source duration of 0.6 § reproduces
quite well the frequency content of most of the signal,
provided the shock is repeated after 0.3 s. To model the
Tonger duration of the observed recordings, more point
sources have to be added some seconds later. A clear example
of the need of another point source is represented by the
large acceleration peak in the Sturno recordings arriving at
about 11 s (Fig. 16}. This peak can be modeled by assuming a
point source with the same focal mechanism but located at B

{see Fig. 18) with origin time shifted by 9.4 s.

- 99 -



100 - - - 101 -

TABLE ¥
© STURND
+

Thickness Density pP-wave velocity S-wave velocity Qﬂ

(km} (g/cmd) (km/s) (kn/s)

0.05 2.3 1.55 0.90 20

0.20 2.3 1.90 1.10 20 B

' [ ]
0.25 2.3 2.25 1.30 30 \KE
0.25 2.3 2.60 1.50 0 . VA
L )

0.25 2.3 2.77 1.60 50

1.00 2.3 3.00 R B 1 100

8.00 2.8 5.60 3.20 400

5.00 2.8 5.70 ' 3.30 400 .

5.00 2.8 4.80 3.10 400 AVLETTA

+ .

17.00 2.9 6.80 3.90 400

47.50 3.4 8.10 4.65 400 - BRIENZA

+
0 10 20 km
Structure IRPI used in the Irpinia earthquake modeling.

It has been assumed that @ = 2.5 l]’-
Fig. 1§ Map showing the positions of the epicenter, € (40°46°'N
15°18'E), the point sources, A and B, wused in the
construction of the synthetic signals shown in Fig. 19 ang

of the considered strong motion stations. Stations
coordinates are:

Auletta (40°33'37“N 15°33'30°E)
Brienza (40°28'27"N 15°38'06“F)
Sturno  {41°01'21"N  15°07'02"F).
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a) Sturno, b) Brienza, ¢) Auletta

Synthetic accelerations:

.19

Fi

stations. The peak acceleration is in units of 10'25 cmlsz.

B L

The synthetic accelerograms obtained in such a way
are presented in Fig. 19 for the three stations Sturno,
Brienza and Auletta. The amplitudes and the overall
appearance of these signals matches quite well the observed
ones and allow to estimate the setsmic moment of the first
two sources to be about 3 x 1025 dyne-cm, while the moment
of the third one turns out to be about 5 x 1025 dyne-cm, Of
course, a close waveform matching 1s still out of our reach,
until a better understanding of the high frequency behavior
of earthquake rupturing will be achieved and until our

theoretical modeling will be extended to two- and three-

dimensional laterally heterogeneous structures.
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gar Lhquatke and voovesponthing to the obeer ved onec
of Fig. 1. The rero-to-aeal acceleration for a 1
dyne-cm seismic moment 15 shown in units of cm/s®
o the jeft side of eack tvaie. See the text "or

details.

Amplitude spectra of the cobserved (tepl) and

- A = =T

aynthetic (bottom) accelercgrame velative Lo the
Sturno station. The maximum amplitudes are
normalized to one.

Rupturing process of the Irpinia 1980 earthquake
used to model the synthetics of Fig. 4. See the

text fur details.

==

Epicenter (indicated by a star) location of the

Friuli, September 11, 1974 M=5.6 aftershock.

Accelerogram relative to the Friﬁli. September 11,
1976 M=S.6 aftershock recorded at the station Buil
{top). The peak ground acceleration (normalized to
one in the Figure) is 91 cm/s®. The same
accelerogram gaussian filtered at 10 Hz (middle}.

The amplitude spectra corresponding to the middle

-

trace (bottom).

a) Distribution versus depth of elastic and
anelastic properties fur the Friuli structural
medel used in the synthetic accelerogram
computation,

b} Distribution versus depth of elastic and

C A =



Fig.

Fig.

10

11

anelastic properties Tov the upper two kilometers

of the Friuli structural model.

The synthetic accelerogram {(one point source)
covresponding to the vbserved trace of Fig. 8 15
shown aboave, the zarn-ta;peak amplitude (for a |
dyne:cm seismic moment) being 5.5 x 1641 cm/st. Its

amplitude spectra is shown below.

The synthetic accelerogram (sum of three pain£
sources) corresponding to the cbserved trace of
Fig. E_kg shown above, the zero-to-peak amplitude
{(for & 1 dyne.cm seismic moment) being 5.8 x 10 %

cm/st, Its amplitude spectra is shown below.

t 912

-O

SLEL

S19p

JR )i

ozzawwoLR

{

\
-
-wb

SLEL




o
e
-
-

p - WAVE S s - WAY E S -
DENSITY YELOCITY LOS ATTENUATION VELOCITY LOG ATTENVAT1ON as109 .
te/cn® (KH/S) (s/10 sy (/140 r.
0 + 0 s 0 7T o s 0 s 0 4 .
$
20 - L
.v
L 40 - 3
» L i ! L *
i

DEPTH (xW)
STRUCTURE® CRIULTA ’ NUMBER OF LAYERS= 44

B

-
-4
e

o+
~NT
@x
w

i 5
TIME (S)

O
-=+
([\S ]
it

10

) L
A L}
L)

-

FREQU ° 8 10
- QUENCY (HZ)
| Flg. 8.,



L 1

13 14 15 16

4
FREQUENCY

1 L

6

(HZ)

¥Flg . 40
P - WAVES S - WAVES
DENSITY YELOCITY LOG ATTENUATTON YELOCITY LOG ATTENUATION Q/100
6/ent) KH/S) 5/ KN/ S} s/
*] X e T 0 4 0 2 0 4
J
-1 L - - k- 3
-2 - L S =
DEPTH wpm)
STRUCTURE:  FRIUL7A NUMBER OF LAYERS= 6

Flg. b



ﬁvduu

(ZH) AON3INOD3Y4
9 R 4

q.ﬂll"l‘uu /\/\.Y\/\I\. s

\\S





