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A model of the dynamic development of a system of lithospheric blocks mani-
fested in an alternatlon of slow deformations and ruptures ("earthguakes") 1s
proposed.

In geodynamics, and particularly in the proﬁiem of earthquakeprediction, mathematical

“models of the dynamics of the lithosphere are necessary, and, moreover, models sufficiently

realistic reflecting its horizontal inhomogeneity and nonlinearity. When constructing such
models 1t 1s useful to use the following fundamental property of the lithosphere: it con-
sists of a hilerarchy of blocks separated by boundary layens; compared with the blocks,
these layers are relatively thin and less ccnsolidated. In the literature these boundary
layers are described under various names, depending on the rank of the structures being
separated by them: transltion zones, faults, slip surfaces, and 50 on right up to the
;r2in boundaries of rock. The boundary layers themselves have an analogous hilerarchlcal
structure and can be regarded as systems of blocks of smaller scale. A block structure
was examined in [1,2] for a broad range of geological bodlies, including the lithosphere,
on the basls of the general concept of their hierarchical organlzation. A particular
determination of blocks of the lighosphere in mountainous territories at several steps of
such a hierarchy is described in [3,4].

On the basls of thls property we represent the lithosphere as a set of absoclutely
s0lld blocks separated in infinitely thin layers. The condition of absolute solidity of
the blocks means that the modull of elasticity in them 1s far greater than in the boundary
layers, so that the bulk of the deformations of the medium is reallzed in the layers and
net inside the blocks. More exactly, the model is applicable if A/} >> L/h, where A and
A are the characteristic values of the modull of elasticity in the blocks and layers re-
spectively; L is 4 characteristic dimension of the block; h is the characteristic thick-
ness of the layer. The condition of thinness of the layer means that strains and stresses
in 1t vary only along its trend.

The indlcated representation of the lithosphere considerably simplifies models of
1ts dynamics and, as we hope, without substantial loss of generality approximates them to
reality. An analogous representation for engineering problems {("method of connected
blocks") 1s proposed in [5].

The system of blocks i1s set in motion by external forces applied to the blocks direct-
ly or occurring .as a result of glven displacements of certain blocks. We will call such
blocks "fixed" unlike the "free" blocks whose displacements are determined by the forces
acting on them. Since the blocks are absolutely solid, all deformations related to their
dlsplacements occur only in the boundary layers. In this case stresses dependent on the
magnitude and posslbly alsc on the rate of strain occur in the boundary layers. This
relation is continuous only so long as the stresses occurring are sufficiently small and
do not exceed the strength thresholds. When these thresholds are reached fracture accom-
panied by stress drop occurs. We interpret such fractures as earthquakes.

An important feature of the model is the presence of three time scales in it. Only
"slow" time corresponding to contemporary neotectonic processes is introduced explicitly.
Changes in the external forces and movement of fixed blocks occur in this time. Slowness
of the processes 1s expressed in the model by the following condition: at each instant of
time the system of blocks 1s in a state of quasi-static equilibrium, l1.e., for each free
block the sum of the forces acting on it and the total moment of these forces are equal to
zerc.. Transltion of the system of blocks from one state of equilibrium to another as a
result of fracture occurs in "average" time, in which case "slow" time does not change.
© 1987 by Allerton Press, Inc.
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Juring such a transition new fractures can occur, The serles of fractures occurring upon
“raznsitlcn o7 the system to & new state of egulilibrium s intercreted as the mzin shoek
with Toreshcocke and aftershocks. Tinally, "Zzst" time 1= the Iracture propzcation <ime,
-n otihiz czze the "slow" and "averszze" time zre fixed, and the blocks do not move.

nezling of fractures, generally speaking, with z drop of strength, 1s alsec introduces
into the model. '

The given work 1s orlented toward modeling of a sequence of earthquakes in the seis-
mically actlve lithosphere, l.e., In a system of blocks whose relative motion 1s at least
partially realized through earthquakes. The main properties of the real sequences of
earthquakes are as follows: 1) linear frequency law; 2) clustering, in which the most
numerous clusters are determined by aftershoeks; 3) migration of the foel along a system
of faults; U) remote interaction of earthquakes; 5) seismic cycle.

To them we can add "precursors," which indicate an increase of the probability of 2
strong earthquake. Such precursors include, 6) activiation and quiescence; 7) anomalous
zpace-time clustering; 8)contrast of the distribution in space; 9) variation of seismic
activity in time; 10 devlation from the long-term trend; 1l) correlatlons at large dis-
tances. A definition of these precursors can be found in [6,7,8]. We are attempting to
reproduce at least some of the enumerated properties on a model.

1. Description of model. We will describe here a two-dimensional model. All dew
terminatlons are transferred without 4ifficulty to the three-dimensional case.

Blocks and forces of interaction. A region on a plane with coordinates x-y divided
into blocks = polygons with rectlilinear boundaries-edges - is examined. The blocks can
move as rigild bodles, retaining thelr shape and size. Movement of the i-th block is ziven
by the vector of parallel transport (xi, yi) and angle of rotation ¢i' It 1s assumed that

he movements are small compared wlth the size of the blocks. In thils case the point z =
= (xo, yo) belonging to the 1-th block 1s displaced by the gquantity Re-yewuyitxew). 1T this

polnt belongs to the boundary of the l-th and J-th blocks, then the relative movement of
the blocks at this polnt 1s egqual to
5(2) = er=xp=yo (y—vr), Yi=yi+x4 (e~vp)). (1)
The vector 6(z) can be represented in the form
| 5(5) = Bels) ry + 8n () y, (2)

where Tij and nij are unit tangentizl and normal vectors to the boundary of the i-th and
+=th blocks. The direction of TiJ 1s selected so that on moving along the boundary in

this directien the i-th block remains on the right and the j-th on the left. The normal
n13 1s obtained from Tij by 90° counterclockwise rotation, i.e., nij is the outer normal

for the l-th bTock and inner normal for the J-th.
L ]

We will conslder that for small relatlve displacements the tangentlal and normal
components of the force of Interaction between blocks are proportional respectively to the
tangential and normal relative displacement. Namely, the density UiJ{Z) of the force

acting on the i-th block from the side of the J=th block at point z 1s equal to
0y (2) *= 0+ () 1y + On(2)ny, (3)

where
0,(2) ® Ko 8 (2).  0n(2) = K,y 5, (2).

Here KT > 0 and Kn > 0 are parameters of the medel determining the rigidity of the boundary

between the blocks of tangential and normal strains. They can be different on different
$dges. {Formula (3) will be modified later with consideration of sliding, see formulsa
(97.)

We note that for the selected orientation of the tangentlal and normal vectors a
positive value of oT(z) corresponds to rlght sllip and a2 negative to left slip, a positive

value of on(z) corresponds to tension and a negative to compression.
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It is e&sy to check that the quantity cT(z) 1s constant along the edge, whereas cn(z)

ckhanges linearly. Tor convenlence of the caleculations we will subseguently necglect this
crange end replace 1Y by the sverage value on the e2dge. This 1s eguivalent to rerlzeinz
the Toree dlztrivuted zlong the edge by 2 force srplled at the miidle of <he edze. T2
reduce the influence of Shis replacement, we can 2ivide +the poundary between blccks into
se7erzl parts by additional points and consider each of these parts a separate edge, The
calculations showed that the properties of the model change little upon such replacement.

The total force FiJ acting on the i-th block from the side of the J=th block 1s equal

to the sum of the integrals UiJ over the edges composing the boundary of these blocks,
il.e.,

Fiy=ZI La aif (ca),
a«

where o 1s the number of the edge; La 1s its length; ¢, 1s its middle. The moment of

this force relative to the coordinate origin 1s equal to My= L Lyltaro4lca)], where [c o] m¢,0; =30,
for vectors e=(¢,¢;) and o=(0,,0,) . e

It follows from the definition that FiJ and Mij linearly depend on the quantities
i Yo O X3 Yp W -

External forces and conditions of equilibrium., The blocks are divided into two types:
"fixed" and "free." For the "fixed" block the value of 1ts movement is assigned in the
Form xi=xi+xlny =yl +ylt,0= 9} +9}t, where t 1s time, 1 1is the number of block. For each free
block the external force Fie and the moment of the external force Mie are assigned., The
movement of such block 1s determined by the conditions of equilibrium:

I Fy+ Ff =0 I M+ Mf =0, (4)
f

Thus we obtain a system of 3 N linear equations (N is the number of free blocks) for 3 N
unknowns {movements Xys ¥y ¢1 of these blocks). We note that in the three-dimensional

case the corresponding system consists of 6 N equations for & N unknowns.

Fractures. We will call the edges on which the forces of interaction are determined
oy formula (3) elastic. We will consider that this formula holds as long as the strength
thresholds are not exceeded, 1.e.,

ozl < —A 0p(2)+ B: ' (5)
~D <o,2) < C (6)

Here A, B, C, D are parameters which can be different on different edges. Conditions (%)
corresponds to the dry friction law [9]. As before, we will check these conditlons for
the_ average force on the edge, 1.e., for z = ¢, where ¢ is the middle of the edge. When
these conditions are violated fracture of one of the following types occurs:

right slip, if o= -do,+8, on < 05

left slip, if oy="Adaoy- 8 0,<0;
underthrust, if Oy = =D}
extension, 1f oa=C oOr lo) = Ao, + B, o, > 0.

The last condition means that fracture proper 1s caused by shear stresses, but normal
stresses led to extension.

Underthrusts are introduced to investigate the situations when external effects cause
the blocks to extremely draw together. 1In this case the normal stresses increase. In a
three~-dimensicnal medium then can be unloaded by movements along planes inclined to the
direction of convergence; if it is horizontal, then this will be movements of the under-
thrust or overthrust type. In the two-dimensional model we introduce the corresponding
stress drop, but we do not examine directly the stresses and strains perpendicular to the
plane of the model.
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re <he determination of the forces of Interaction on that edge where the
ch s In the fellowing way.

- tre tzze of sllip the normal compconent is Jetermined, as telore, by Tormula (), zni
zni the tangentiszl component iz zrerortional to the normal with ccefficient a, 2 < 2 ¢ -
o, = (o, + b), (7

where the signs + and - refer respectively to right and left slip.

In the case of overthrust vector o 1s proportional to the vector of elastic stresses
at the time of fracture o-, and 1ts normal component 1s equal to

-

0= d03/05, 0n = —d. (8)
In the case of extension the forces of Interaction disappear.

Three times scales. The change in the formulas for forces of interaction after frac-
ture leads to violation of the conditions of equilibrium (4), as a result of which the
system of blocks passes into a new position of equilibrium. We will consider that this
transitlion occurs rather rapidly, so that the "slow" time T does not change in this case.
During such a transition conditions (5}, (6) can be violated on certain new edges, 1i.e.,
new fractures occur.

For determining the sequence of fracturés we introduce the "average" time. Let X_Dbe
the poslition of the system of blocks, l.e., the set (xi, Yys Qi), immediately before frac-
ture, and X, be the solutlon of system of equations {4) after fracture. We will consider
that the system of blocks passes from position X_ to position X  linearly in "average"

time 8 € [0,1], f.e., Xy=sX_+8(X.- X)) positlon at time 8. This movement continues until
conditions (5), (6) are fulfilled on all elastic edges. If when 6 = 6, conditilons (s),

(6) are violated on any edge, fracture cf this edge occurs and the conditieons of equilib-
rium (4) changes accordingly. Let X' be the solution of system (lU) after the new fracture.
We repeat the entire operation describe above, having replaced X_ by Xe and X by X', and

we will do so until conditions (5), (6} are fulfilled on all elastlc edges for all 8¢
€ [0,1]. In thiscase X,is the sought position of equilibrium of the system of blocks. The

zeries of fractures obtained 1s interpreted as the main shock with foreshocks and alter-
shocks. The size of the unit fracture 1s equal tc the length of one edge and, In partlcu-
lar, depends on the selected partition of the boundary between blocks Into edges. To re-
duce this dependence, we introduce "fast" time In which the fracture upon fulfillment of
the appropriate condltions can propagate to adjacent edges before the start of movement

of the block, 1.e., at a flxed "average™ time. We proceed from the fact that as a result
of fracture stress concentration occurs on 1ts ends, In conformity with thls, we check
conditions (5), (6) on edges adjacent to the fractured edge, having multiplied the stress
vector ¢ by a certaln coefficlent q > 1. We proceed in the following way. Let the frac-
ture occur on an edge with vertices Py and Py Points 1 and R, are declared the end of

the fracture. For each elastic edge, one of the vertices of which coincides with Py, We

check conditions (5), (6), having multiplied vector o by g. If in this case the conditions
are violated on several such edges, then we select the edge for which the condltlons are
viclated for the smailest value of q. We continue the fracture to this edge, consldering
its vertex not coineclding with Py to be the new end of the fracture. Thus.an elongated

fracture 1s obtained, with which the desciibed procedure 1s repeated. The fracture is
continued in exactly the same way toward its end Py- -Propagation of the fracture ends 1in

one of two cases: a) If conditions (5}, (6) are fulfilled for o, on all edges adjacent

to the end of the fracture; b) if one of the edges adjacent to the end of the fracture is
already fractured (not counting, of course, that edge which defines this end).

*Healing." After the series of fractures in "average" time 1s completed, recovery
of the elastic state occurs on all edges except those where extension occurred. We ten-
tatively call it healing. To determine the forces of Iinteraction in the new elastic state,
it 1s necessary to take into account sliding that occurred as a result of the fractures.
The expresslons for 9, and o in formula (3) changes now in the followlng way:

O = Kf(of" Ar)-o Oy ™ n(an - A,,). (9}
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and An are the tangential and normal compcnents of sliding. The values of o and
uli not change during healing, since the posltion of egquilibrium determined by then
Thiz 2ondition permits determining the amount of sliding., As a2 result
e vzlue of Ar changes. The new value of 4_ 1s selecta2d from the conditicn
L

2f eguallty of stresses g, in formulas (7) and (9)
Kp(0p - &) = 2(-aKp (0 — By) + ). (10)

As a result of underthrust the new values of Ar and An are selected from the condltlon
of equality of stresses in formulas (8) and (9)

K, (op - A) = doyfo,, Kylo, - 4,) = —d {11)
Healing of extenslon cccurs 1f during movement of the blocks the average normal com-
ponent 6n relative to the movement on the edge becomes equal to An {in the case of exten-
sion always én > An). In this case only AT changes; the new value of Ar 1s equal to 61,
so that in formula (9) 0. = 0, Just as before healing; the equality of o, to zero after
healing is provided automatlcally by the condition 6n = An'

- Healing can ocecur also in "average"” time. An extension is healed when Gn = An’ and
sllp and underthrust if on passing from X_to x+ the displacement along the edge should
occur in the direction opposite to the initial. ’

In another varlant of the model all fractures (except extensions) heal instantaneous-
ly, 1.e., before the start of movement of the blocks, but in this case a reduced strength
1z established on the appropriate edges:

gl < =A'op + B, -D' < 0, < C, (123

where e<A'SAV<ECBI<DCD0<C'SC. The initial strength is recovered after completing

the serles of fractures in "average" time, i1.e,, before transition to "slow" time. This

means, 1n particular, that in one serles of fractures repeated fractures can occur on the
same edges (foreshocks and aftershocks within the focus of the main shock).

Energy. The elastic energy on the edge with number a is determined by the formula
ea= Lo (032K, + 032K ,), (13)

where La ls the length of the edge. By this same formula we determine the energy of the

edge 1n a state of fracture: we conslder 1t equal to that energy which this edge would
have upon healing of the fracture. At the time of fracture - in fast time - the energy

of the edge with number o decreases by the amount dea > 0, which we call the energy release
on the edge.

We will determine the work of the external force on the i-th block by the formula

S FLx o Fly o Mo, (14)

“here Ff-uﬁ,ﬂh is the external force; Mie 1z the moment of the external force. It can

be shown that the solution of system of equations (4), if there are no edges in a state
of slip and underthrust, 4is the minimum of the function ¢ = E « A, where E = Xea is the

total work of the ‘external forces (summation 1s carried out over the edges); A = IAi is
the total work of the external forces (summation is carried out over the "free" blocks).
Hence follows, in particular, that the matrix of system (4) 1s nonsingular If there is at
least one "thick” block and the system of blocks is connected,

Let ¢_ be the value of function ¢ immediately before a series of fractures and ¢,
be 1ts value after completion of the series. It can be shown that the quantity 4E = ¢_ -
- ¢+ 1s positive (and even greater than the sum of the energy releases ocnall edges in the
serles of fractures). This quantity is called the energy release in the systenm.
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calculated Tor several simple varilants of the described model. These variants recrs
tre slly Zcne ¢l the fault, consisting of one or three lavers. 3Izch layer 1g 32122383
rectangular blocks, Slir was crested by movement of the "Iixzed” blocks alonr <re
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putions of earthquakes were examined for each variant.

Units of measurement. We will define the units of measurement for all parameters
and varlables occurring in the model. Our two-dimensiocnal model simulates a certain
three-dimensional medium. We denote by K the extent of this medium in a direction per-
pendicular to the plane of the model. Then in the precelding account all quantities of
force, moment, and energy should be referred to a unit length z. Their total values are
obtalned by multiplication by H.

The coefficients KT and Kn-for calculating the elastlc force are determined by a

cheolcgical model of a thin layer. In the particular case of a thin i1deally and linearl:

slastlc layer of thickness h with Lame constants A and u: Kemulh Ky=(A+2u)h . The remzinin:
varameters and varilables have the usual dimension: t is time; X, y, &, A& are the length;

7, B, b; C, D, d are stresses; ¢, A, a, q are dimensionless.

We note that although the dimenslons of the blocks, Just as displacements, have the
dimension of length, thelr characteristic scales are independent and different, so that
the dimensions of the blocks are always far greater than displacements. .

Values of the parameters. The following values of the parameters were used in the
calculations: A = 0.6, B= 0.5, C=1, g=0, b =0, KT = 0,6, Kn = 1, which are common

for all edges. The parameters B, D, g were not assigned, since underthrusts and "fast"
time were not Introduced in the investigated variants. For the "fixed" blocks movement
w2s assigned with a constant rate v - 1 in the directions indicated in the figures by
irrows, aswell as constant displacement toward the center of the model compressing the
other blocks. The upper and lower blocks were displaced in the one-layer mcdel by 0.5

and in the three~layer by 5. The side blocks are displaced in the one=layer model by 1
and in the three-layer by 5. Furthermore, in the three-layer model the side blocks rotate
according to the displacement of the upper and lower blocks.

Results of calculations. The geometry of the one-layer model is shown in Fig. 1,a.
The "fixed" blocks are hatched. The geometry and properties of this model are analogous
to the Burridge-Knopoff model of masses and springs {10). Figure 1, b represents the
earthquake catalog: T is the time In arbltrary units, E is energy. All fractures occur-
ring in "average" time are united intc .one event. Thus each event in Fig. 1,b 1s the
unification of a "foreshocks-main shock-aftershocks" series. The energy E of such an
event i1s the sum of energy releases dea on all fractured edges. Figure 1l,c shows the

space-time distributlon of earthquakes. Here X corresponds to the distance along the
fault. Each line in Fig. l,c indicates a series of edges that experienced fractures
during the same event. The places where the first fracture occurred in the given serles
("epicenters") are marked by dots. The freguency graph is shown in Fig. 1,d.

Figure 2 gilves analogous calculations for the three-layer model of slip; Fig. 3 for
the one-layer model with bending. .

The calculations in Figs. 1-3 pertain to the case when dynamic frictlon is small (a =
= (), i.e., as & result of fracture, shear stresses on its margins vanish.

Figure 4 shows analogous results for the maximum possible dynamic friction (a = A).
Otherwise the model is the same as in Fig. 2.

We will discuss the results. As 1s seen from Pigs. 1-4, the model gives an appoxi-
mately linear frequency law. We note that it is not incorporated in the model: 1t postu-
lates only the conditions of fracture on elementary edges but not their unification. It
{s not even predetermined a priorli that with an increase of energy the number of earth-
luakes decreases monotonieally. The maxima energy 1s determined by the dimensions of the.
entire system, the minimum energy 1s related mainly to the dimensions of the smallest
sdge. The frequency graph 1s monotone and smooth only after a sufficiently strong earth-
luake. Thls 1s seen, for example, in Fig. 2, where with a decrease of the step with re-
spect to E local extremes occur on the frequency graph. Such deviations from monotoneity
Wwere predicted in real catalogs and then found in [1] on the basis of concepts about the
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Flg. 1. One-layer model of slip: a) system of blocks; b)
sequence of earthquakes; c¢) space-time distribution of frac=-
tures; d) frequency graph.

discrete hierarchical structure of the lithosphere. In certaincases (Fig. U4) a decrease
of the E step causes a bhend of the frequency graph in the region of small energies. An
analogous bend 1s found in the real earthguake catalog. It 1s usually explained by in-
sufficlent information about weak earthquakes. The graph under consideration shows, how-
ever, that 1t can be partially explained also by physlcal causes.

The space-time distributlion of earthquakes, Just as in reallty, 1ls nonuniform. Thus,
already in the simplest model (see Fig. 1) relatively numerous weak earthquakes dominate
in the right side of the fault and more infrequent strong cones in the left side. This {is
explalined by the fact that the immovable obstacle on the right lles on the path of move-
ment, and local stress concentration is greater here. Therefore, strong earthquakes do
not have time to be formed, and slipping 1s realized "by parts." It i1s interesting to
note alsc the migration of weak earthquakes toward the future strong ones. Weak earth-
quakes in the right slde of the fault asz though prepare strong earthquakes in the left
part. If we make the model symmetrle, considering that the upper and lower blocks move
at an equal rate in the opposite direction, then the indicated nonuniformity dlsappears.
Both situations, apparently, are not precluded in nature. This result reminds us that
shen analyzing the dynamics of a fault one cannot always examine only the relative moment
of its margins., After introducing bending the dominance of weak earthquakes in the right
side was retained, althoughl it decreased somewhat. There are no weak earthquakes at all
in the zone of bending 1itself. On the whole the zcne of bending plays approximately the
same role as a barrier in Aki's model [l1] or the zone of increased strength in Kanamori's
1odel [12]. Precisely here occur relatively strong earthquakes. Their foci extend beyond
the bend. We note that the introduction of bending without simultaneous introduction of
underthrust makes our model transient. As the "fixed" blocks move the normal stiesses on
the bend will increase, which i1s why the earthquakes here will become increasingly more
infrequent and stronger. 1In reallty, this tendency will be disrupted by the formation of
an underthrust. Thus the model (see Fig. 3) is applicable, perhaps, in the time interval
between two overthrusts,

A characterlstic space-time inhomogenelty 1s obtained in the three=layer model. Earth-

quaks occur as clusters now Iin one layer, now in another layer. At first the upper and
lower parts of the zone are active, then activity shifts to the middle part, etc. Yet the
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Fig. 2.

4 »
T T ] -
1 o o o 5
L v
1o/ %7
AT T T T I
e R
’ F & £ A rR N
L] n
Py
Fy
24
£2
7
. [
77
" L '"..1.:':;' Py 1“ v | ! AR ‘;[ l" aay B o i ! K
RO A KR N 0 B SR 1-'1 |y il
’ l:'l"'l‘l 3] "::, .-| § Yt \'Il .' 'll 1 ;'k [ H
PR R RS RIS R
b 7 7 '_'z'( 3 P & P/ # nr
yel , R
,‘ - L] ,’ [ ]
L ]
i LA . r7 N
[ ]
7 E— ‘;: r7 T By

Three-layer model of slip: a) system of blocks; b) seguence of earth-

quakes; c) space-time distribution of fractures; d) frequency graph.
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Fig. 4. Three-layer model (a = A): a) sequence of earthquakes; b) space-time
distribution of fractures; c¢) frequency graph.
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Fig. 5. Examples of the spatial structure of an
individual event.

overall sequence looks rather regular. It is Iinteresting also that strong earthquakes
are preceded by periods of quiescence (the vacancies on the {(x, t) graph). These vacan=
ties most often begin to be filled from the margins.

4 relative regularity of strong earthquakes 1s seen in Flg. 2. Weaker earthquakes
are distinetly clustered; in thils work we do not investigate clustering gquantitatively.

In all investigated models strong .earthquakes are .often preceded by an increase of
the number of weak earthquakes in individual parts of the zone of gulescence, especlally
along 1ts margins. It would be premature to identify thils phenomenon with known precur-
sors.

We will stop on the spatial structure of an individual event. We note first of all
that individual fractures in the event do not necessarily form a solid line. Several
examples are given in Fig. 5. Partitioning of the events into feoreshocks, main shocks,
and aftershocks were not examined here. The next work wlll be devoted to this.
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