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Introduction to fractals

The concept of fractals has been on the air for quite some time. Geoclogist were
dealing with it, without knowing it, when they felt forced to include some sort of
of scale (a ruler,a knife, a person) in the picture of a fracture system in order to
give the reader an idea of the size of the system. This idea has been used by
several researchers to put forward arguments about the self-similarity of a
fracture system. They took a set of photographs ,with the help of a microscope, of
a small section of a fractured rock, and compared it to sets of photographs of
fractures in the soil, and fractures of large regions as they appear when looked
from high altitudes. The similarity was strikingl.

Because of this, | will define in a loose way, a fractal geometry as that which
describes the system in which increasing details are revealed by increasing
magnification. As the newly revealed structures look similar to those one can see
at lower level of magnification,one calls this property SELF-SIMILARITY.

This property is in no way obvious. Quite the opposite, it runs against the notions
we learn in regular calculus courses. Just think about the way a simple derivative
is defined. The curve near the point of interest is amplified enough to be able to
considered it a straight line whose slope equais the value of the derivative at that
point. Could this definition be applicable should the curve be a fractal?.

To obtain a better information about fractals let us, for the sake of the argument,
analyse functions whose value is bounded between -1 and 1 in the whole 1-D space.

One obvious choice, but probable the least common, is the function f(x}=constant.
Usually this is an uninteresting static case,except for cases like the civil engineer
when they better have their buildings designed in such a way that they are static.

Another choice is g(x)=tanh{x}, which does vary, but is single valued.

Let us now turn our attention to a multiple valued function h(x)=sin x. It is a well
known fact that if we choss a point x=a, the value of h(a) will be the same for the
© set a+2nx. For the particular case a=0 there is an extra set of points a+ (2n+1)n
product of the symmetry a=-a. However if we include the extra information. the
sign of the slope at a=0 be the same, the symmetry is broken and we go back to the
initial periodic condition.

All through this analysis we have care for the case when the VALUES of a given
function remain constant. If we are going to deal with self-similarity,we have to
look further, and declare that the "shape” of the function be pericdic, as it will be
shown below.

Another way of stating the property of self-similarity is stating that there are
some physical properties of a given system that will have the same structure

regardless of the length of the scale,i.e. regardless of whether we have contracted
or dilated the system.

Mathematically.if R is a measure of the length of the original state, the property
P{R) will have to be same for R'=aR, be a<i or a>1.

Hence:

P{R) » P(aR) = P{R) Afa) (1

The scale factor A(a) is included because the actual value of the property may
change due to a change of scale. Remember the usual first year Physics course
question: If while you are sleeping every dimension of every object in the world
around you is reduced to a hall, including yourself, will you find out that this has
happen? (We are not interested at this moment on the possibility of using material
strength, and the like to answer the quastion, sorry.)

If relation {1) is to be satisfied for any value of a, the soluticn is
P(R) = RA Ala) = ad (2)

for any value of the real d .

It is not uncemmon to find examples of fractals which put some constraint on the
values a can take, without loosing the property of sell-similarity. A very

interesting case is that of a-aon n=1,234,..

for which
P(R} = P(ag"R) = P(R) Aag") (3)
The standard way to proceed from here consists of looking, based on result (2), for
a relationship of the form
P(R) = 1(R) RA (4)
which when applied on (3) leads to
P(R') - P(R) A(a)
f(R) Rd
Kag" Ryagd RI #R) RY A(ag")
The last equality can be split into
Aag") = ag"d flag" R) = f(R) (5)

Relation (5) could be guessed from (1) and (4) because is an expression of the
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fact that the new function { has to be scale‘invariant.
Defining a new variable y = In (R) one finds

y=hRein(@aR)=ninag +inAR=ninag +y

and hence
gly} = g(n Inag +y) =oly) (6}

In summary. When dealing with systems where discrete scaling applies, we can
expect a power law modulated by a periodic function in In R, with period In ag

WARNING: true self-similarity requires more than one fractal dimension.

Now a few remarks on the role of computers when modeiling using fractal systems.
Usually the computer is used to caiculate functions of several variables with
utmost precision, or else to expand known theories :many body problems, movement
from 1D to 3D, and so forth, When using fractals, however, the computer
simulations play the role of a experiment. Evan in the case a theory is found, one
would have a subset of the nacessary information, but not the whole structure.
This is caused by the fact that the system shows deterministic chaotic behavior.
Thus the solutions will diverged exponentially as the experiment progresses, even
though the initial conditions are almast the same. This statement ceases to be true
if we have attractors. In that case the solutions will look very similar, regardiess
of the initial conditions,i.e. we have a pattern. One may say one has reached
dynamical equilibrium, as in the case of a gas at constant volume and pressure.

MODEL OF EARTHQUAKE DYNAMICS

What follows s a briet description of the model developed by Dr. L Knopoff, Dr. T.
vYamashita and myself at the Institute of Geophysics and Planetary Physics, of
Univ. of California,

Let us start by postulating that earthquakes show a fractal behavior. Taking
advantage of the hierarchy subjacent in this concept, we developed only one of the
levels, making it valid for the other levels based on the self-similarity property.

Work by L. Knopoff and Y. Kagan shows that if earthquakes are treated as points,
the distribution of the distance x between any two points will follow within
reasonable limits (the maximum distance for which this applies is of the order of

a plate, some 2000 Km) the relation 1/ x® .
Should one use the area A covered by any three points, the distribution is 1AB In

the case one works with the volume V limited by 4 non-planar points the

applicable refation looks like 1/ V'
But earthquakes are not points, but fractures or cracks. We will choose the crack

size in our model using the distribution based on 1/x® where x is now between an
upper and a lower limit. The actual size is chosen from a random flat distribution
betwean to given limits. .

Thus far the only crack distribution that has been solved exactly in a analytical
manner is that of a line of cracks of equal size (r) equally spaced by a distance 3.
In principle, an expression well known to students, any crack configuration can be
solved using the techniques developed by Mushkelishvili, using complex variable
formalism. .

Chaterjes, Mal and Knopoff succeeded in solving the case of two parallel non-linear
cracks with a good accuracy, by solving a system of two coupled integro-
differential equations, A comparison of the solution one obtains using the
analytical result and that derived by Chaterjee is shown in Figure 1. The role
stress corrosion plays in our model is explained further down.

Because of this difficulty one is bound to simulate the fractured region as a set of
parallel line of cracks, as shown in figure 2.

Every crack is taken to interact with any other in a pair-wise way, that is to say,
the two cracks will be considered to be embedded in a perfect elastic media with
no other crack present.

Even in this simplified model, we are bound to have lots of difficulties. In Figure 3
i present the calculated and experimental stress patterns for a crack under three
different conditions. The complexity of the patterns makes it impossible to write
a program which will calculate the corresponding pattern for each crack, at each
step of the program. Hence the only solution available was 1o consider that all the
stress is concentrated at the tips (no relation with the M8 algorithm) varying as
the inverse of the square of the distance.

Another problem that had to be sclved was the mode of fracture that was to be
used. This was not that difficult, because here again we have not very many
possibilities cpen. Out of the three fundamental modes of fracture it is found that
Mode | fracture cannot happen at the Earth's interior.for it represents a tensile
fracture , as shown in Figure 4. Mode Iil, in the other hand Is the mode to be used
should one want to apply the model to subduction zones. Its tansorial nature,
however ,makes it impossible to use in our model. Hence we are left with Mode Il
Lest | give the impression that this choice is a simple one, | include the solution
obtained for the seismic moment of two collinear parallel cracks, whose tips are
at x=a,x=b and x=c,x=d. The solution includes elliptical integrals, a fact in favor of
using computers for our simulation.

To get the system moving we have to include time. For that we referred to
litorature and settle for the fact that cracks grow under the influence of stress
corrosion. Figure 5 is taken from an article by Atkinson,who has published
extensively on the subject. It can be seen that the velocity of growth is related to
a parameter K known as stress intensity factor, a concept familiar to those
involved in material sciences. It has been found that when this factor reaches a
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given critical value K, the crack grows in a self-sustained manner at a sizable
speed.

In our model the value of K is calculated in a for each crack at every step of the
program. Because its actual value depends on the stress field applied to the crack,
and this in turn is a function of the crack distribution, this is one of the most time
consuming parts of the program. The time that has to be dedicated to this task
grows almost exponentially with the number of cracks and lines involved. This is
one of the factors that make this type of programs not amenable to be solved with
a personal computer. At the rate the personal computers are growing, it is not at
all silly to think that in the near future this situation will be reversed.

The concept of Kg is included in our madel in the following manner. The space
between two contiguous collinear cracks is assigned a particular vaiue of Kg,
chosen from a flat random distribution. This particular choice is prompted by the
lack of experimental data.

Having set the scenario. let the actors play their role.

The script is as follows. A time step is calculated and the cracks are let to grow

with the velocity v= b K20.The exponent 20 was chosen out of a set of values
determined experimentally,whose upper value may be as high as 65).

The choice of this rule is caused by the fact that we will like to modelled the
behavior of a initially fractured zone when snough time has olapsed to take to the
region marked 3 in Figure 5.

After all the cracks are allowed to grow, the stress field is recalculated, and new
values of K are also calculated. This a time consuming part of the program.

Should the recalculated values of K be in any instance larger than the associated
value of K., the contiguous cracks are taken to fuse immediately, given rise to a

small event. The fact that we take the speed of fusion 1o be infinite is a figure of
speech based on the evidence that even in the worst case, avents of magnitude 9,
the time invested in ruptures of several kilometers is at most a couple of
minutes,a very small time indeed with respect to that necessary to prepare that
evant.

Because of the possibility of a run away situation in which a crack may grow and
grown, the program stops time and recalculate again the stress and the K of all the
cracks. It then checks for any other situation in which K can be larger than the
associated K. If that is the case another fusion happens. This process is repeated
as many times as necessary. One can claim then, that the event is being simulated
by a multiple source mechanism.

in the event no further fusion is permitted, time is increased and the overall
process is repeated.

RESULTS 1

Some of the results that can be presented for this type of approach are shown in
Figure 6. The time T=D corresponds to the main shock,which in this context
corresponds to that event with the maximum seismic moment.Each bar represents
the number of events that occur n units of time before the main shock. A very

important point in this graph is the fact that repardless of the time unit used, the
three curves look the same. This is what is to be expected from self-similarity n
time , a property NOT explicitly included in the modal, but expected from the
analysis Y. Kagan did with some thousands of real events. Any seismologist will
recognize any of this curves as a graphic representation of Omori's law of
toreshocks. How weil this compares with reality can be seen by comparison with
Figure 7.

Scene 2: TECTONICS

Thus far we have played with stress re-distributiontime delays (i.e. stress I\
corrosion),and fractals. A new actor Is required: Plate Tectonics.

The inclusion of such a phenomena was not as easy as may be thought. A first, and
immediate step,was to take the external stress to increase as a function of time.

Wa think anyone will agree with our choice: a linear relationship. After some

testing, however, it became clear that the lowest value of stress should be
approximated to zero. In other words, we should work with the stress drop of the
event, for which we have values available. This was fortunate,for otherwise we
would have to find values for the stress in the “relaxed” state : that is, the stress
present in the region after the big event has happen and the aftershocks had
occurred.By big event we have in mind magnitude 8 and above. An even harder ‘ .
problem was to find the rate the stress build up in time due only to tectonics. Our ',
solution was o scale the time using as unit the time it took to have the the whole | i
process happen when tectonics was tumn off, and the whole process was driven

totally by stress corrosion. Niceties of modelling!

An adjustable parameter was initially inciuded, but soon forgotten when we found
out it was not necessary. In this way we were able to handle the tectonic effect
without any adjustable parameter,without sacrificing self-similarity.

Scene 3: ASPERITIES

The concept of asperities is now current currency among saismologist. 1t explains

in a simple manner different observed phenomena. It can be applied to subduction ’
and transform faults, may be used to explain aftershocks and doughnut \
patterns, - , or the ditferent seismicity of different regions, Figures 8 and 9. *
It inception in our model can be done in several alternate ways. One could claim

that the biggest spaces between the cracks in a given ling could be associated to
asperities, given them no special treatment when assigning the values of Kg. One

can also work backwards: choosing severa! spaces at random, and assigning them a
value of K higher than the maximum used for the rest. A third and last alternative,
is to single out a few of the biggest spaces and assigning them higher values of K.
We adopted the last one. :

The results shown here were cbtained as follows: an initial run is done with
tectonics turn off, in order to find the scaling time, and identify the location of
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he asperities. Extra runs are then carried out with tectonics, using the same

nitial parameters,and keeping the asperities in exactly the same place and state
18 during the initial run. The only change is the crack distribution between the
isperities. The rationale is that the asperities correspond to places where
jeometry , and may be other material properties, act in such a way that any change

vill be of transient nature.’

IESULTS 2

\mong the several results we have obtained thus far with our model, ! can mention:

1} The ratio of the time the main shock occur relative to the time the initial
\appens, varies from 103 to 107, depending on crack distribution. Such a ration is
sonsistently 2 to 3 when tectonics is present.

n order 1o be able 1o compare different runs, a catalog is prepared by normalizing
jme and magnitude with the values relative to the main shock. By main shock we
inderstand that which has the highest seismic moment, not necessarily the last
ane.

b) For the geometry 80 cracks and 1 line, we found that even if the Kg gssociated
with asperities is 3 times the maximum used, several aftershocks occur, without
~wolving any of the asperities. Also, the rupture of an asperity is not necessarily
agsociated with the main shock. This is particularly valid for cases when two
zsperities are present and they are located toward one end of the line.

¢) For a geometry of 20 cracks and 4 lines, foreshocks and aftershocks are
commonly present. Figure 10 and 11 show the rosult of two runs with the same
initial conditions except that the K, is 2, and 3 times the maximum. One notice
that the strong shock before the main one, happens at about the same time, not so
with the other events.

d) The foreshock pattern is quite random, as can be seen by comparing Figures 11
and 12,

e) An initial test for a relationship of the actual time of the main shock with the
respective magnitude is now in progress.
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Fig. 20. Schematic diagram showing the
influence of stress intensicy factor on
subcritical crack growth behavior im a rock
undergoiog stress corrosion. K. and regioms 1,
2, and 3 of stress corrosion behavior are as for
Figure 1. K, is the stress correpion crack
gtowth limit, v, is the crack velocity threshold
duc purely to dissclution st the erack tip, and

is the crack growth limit below which bulk
dtifuslon creep dominates deformation behavior.
Kyc maY be located at stress intensities above or
below X, depending on the temperature. Its
location in this figure is chosen for coavenience
of repressntation. Note normalized stress
intensity factor axis. Temperasture, pressure,
and activity of stress corroniou sgent are all
held constaat.
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