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Abstract. The system of moveable interacting discs in cramped conditions is
regarded as a model geophysical medium. The evolution of the simulated system is
described by the solution of a system of dynamic equations. Exposed to the stationary
action the system displays a complicated behavior characterized by both chaotic nature
and formation of structures. The character of the time course of energy dissipation is
subject to qualitative changes with changeable deformation vetocity.
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Introduction. Modern knowledge of geophysical medium as a hierarchical discret:
structure (Sapovsky ef af , 1987) lay a natural foundation for the design of a variety o
formally analyzable modeis. The attempts previously made to this end (PISarenko of &/
1985; SHVARTZ and SHMIRMAN.,1986; SuNiRnan,1987) had a weak point: the absence o)
moveability of the structural elements. In this paper the general knowledge of thl
geophysical medium as a hierarchical structure are spectfied by a system of a larg
number of interacting elements. It would be expected that some important features o
this system are determined by the interaction of a large number of elements and -r
independent of their particular geometry. Therefore, the disc as the simplest shape ha
been chosen

The physical properties of the elements have also been chosen to be rather simpi
The discs are assumed to be rigid, i.e. it is presumed that all the deformaticn |1
concentrated in the vicinity of the points of the contact between the eiements and al 1
the forces arising in different contact points act independently. The idea of relativ -
compliance of the zones of contact of rocks as compared to the rigidity of the basi
massif can also be found in Hterature (CuspaLl, 1971; Wike of &/, 1985 Thes
simplifications allow one without additional computer time to use complicated nonlinea
laws of interaction of the elemants in contact points which make up for the simplicit
of the shapes of basic elements. The schedule of the deformation of the array with
constant voluma is determined by a "tangent® movement of the walls at a cer
velocity. Spatial heterogeneity of the stress field in the array and the time cour:»
energy dissipation have been studted.

The evolution of the simulated system s described by the solution of a system ¢
dynamic equations. The technique of computer simulation of such systems have leng Lee
developed in the framework of the approach called the method of interacting particle:
Comprehensive references are given by Hockwey and. Eastwoop (1985). An importan
variant of this general approach is the method of molecular dynamics which allowed t
obtain significant results in the studies on liquids and phase transitions. It is only th
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central forces that are generally considered 'n the framework of the method of
molecular dynamics. The computation experiments with absolutely rigid spheres
behaving 2s a system of billiard balls were first carried out by ALDER and WAINWRIGHT
(1959). The behavior of the present system has been based on computations carried out
using the explicit finite-difference method developed by CUNDALL (1971,1975,1976),

. which allows one to take Into account the friction forces. The fact that the friction

forces are noncentral and have “memory" is what makes the most important difference
from the standard procedure of the method of molecular dynamics.

Computation method

1. n discs made of the same material as the walls are enclosed in a rectangle with
moveable sides. The velocities of the movement of the walls ()= (§) where k=1,2;
J=1+4 are fixed in the simplest case.

2 The state of the i-th disc Is characterized by three constants: {1} - radius,
m(1) - mass, (1) - inertia momentum; and nine variables xy(1), wg{i) - Cartesian
coordinates of the disc center, xs(i)- the rotation angle, vy(1),va(1) - velocity
components, va(1)- angular velocity, 8,(1),a,(1) - acceleration components, ay(1)-
- anguiar acceleration.

3. The computation consists of & number of repeated two-step cycles.

At step 1 of each cycle the new State of alt the n discs IS computed. Time step is
dat.

i) o = Wll) o ¢ ali), ot (1)

k=1,2.3; I=tn;

1) pear= M)y ¢ vll) dt (2)
k=1,2.3; i=len;

The new locatlion of the walls 18 also computed:
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wi () i ™ W) ¢ w()) dt _ )
k=1,2; |=1+4;
At step 2 of each cycle the forces and moments of forces acting upon each disc as
a function of the new state of the system are determined.
All the normal forces Fa(l,]) are only dependent on the value of the overlapping
vector b which arose on step 1(see Figurel).

In the simplest case this relationship is )inear and is described by a elastic
constant €,:

Rli,j)=-Cy h 4)

bertDert)- | 3 G D-m 0
®el, 2 (5)

The shear forces F,(1,]) are described In a somewhat more complicated fashion
for they are dependent on the shear deformation accumulated since the moment of the
contact.

The increment AF,(1,]) 13 computed as a function of the Increment Ad of shear
deformation. In the simplest case this relation is described by one constant of elastic
friction C, :

AF,(1,))= -C,-ad (6)

A d=dt [(vi(1)-vi(J) (x2())-x2(1 )~

Vo D-vol ) gD, Y xRN (x2())-x20)7 +

sus(1) K1) dt * vs()) r(J) at (7
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The first term of this sum accounts for the shear deformation related to the
noncentral character of the interaction and the two others - for the rotations of the

discs. Fig.2 shows the choice of the direction of the vectors in {(6) and (7).

Coulomb iaw (without adhesion);
F1,]) € CxFall,)) (8)
introduces another constant Cy and tmposes a 1imitation upon F;
F (i,0) aF (1, ) if (B) is true
G ) W (9
G Coh %:- 11 (8) is mot true
The last force constant C, describes viscous friction for osciilations dumping:
(1) = -C, 1) (10)
Then,
()= I F i, )+ I, Fu(i, J) +1,4(0) k=1,2 (n
3000 X (F5 (1, §) xa(i. ) - Fall, J) %y (1 JD)e 15(0) {12)

where the summation is taken over all the contact points ] of disc 1. The

coordinates of these points are designated as % (1, ).
f,{1), £5(1)- are the components of the total force,
and fx{1) is the total moment of the force acting upon the i-th disc.

Finally,
a()=0,(1)/m(i) k=1,2; i=l+n (13)
az(i)=f3(1)71(1) i=1+n (14)

And this is the end of step 2 of the basic computation cycle.

Experimental design. At first a square with the side equal to 20 cm was chosen.
Then a random rarefied configuration of discs with unit radius and unit mass was
generated. To this end uniformly distributed points - the centers of discs were
congecutively thrown into the square. The attempt was considered successful if the next
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disc did not overlap with any previous ones and the sides of the square. This procedu!
was repeated until one thousand of unsuccessful attempts in succession occurred. Tt
generated configuration consisted of 60 discs in the considered case. Then the array wi
consolidated by bringing the walls closer together. A compact compressed packing
discs in a new square with the side equal to 14 cm was formed

The resulting configuration of discs was initlal for a number of computati
experlment;s. in these experiments the vertical walls were fixed,.the upper wall w .
moved to the left and the lower one - to the right at the same velocity U. The tii 1
constant and the four force constants were chosen as follows:

dt=10-3gac; C,=104n/cm; Cy=104n/cm; Cy=0.5; C,=10nxsec/cm; (s

parameter U responsible for the additional feeding of energy into the system w
varied.

In each of the experiments the behavior of the system was observed over dozens
seconds, 1.6.dozens of thousands of states of the disc system were registered.

In addition to the values that need to be computed for the solution of the init
system of dynamic equations and that allow one to obtain a qualitative description of 1
behavior it is also useful to measure the additional physical characteristics, such
stress tensor and energy dissipation rate.

Stress field. Every ten time steps mean values of stress tensor were compu
for each disc. Let us derive the expression of this value without the assumption that
disc is at equitibrium. The Newton's law I} in differential form is:

4, '

t el RN CS B (16
Here x; and & are linear coordinates and accelerations of any point of the disc.

]
usmultiply equation (16) by x, and integrate it over the disc volume. S
¥
l-‘—xu xxdV = lp-.u‘dv - l”.u‘dv an
v v v
lcl » K-I,Z
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Let us integrate the left side by parts:

Nd; xy) - ?
i[‘ ;l*"‘d' = lc.,-‘%"‘-“ t‘l”llx‘di - ‘]‘”I‘:“ (19)
|s].l-l.2

Transforming the volume integral into surface integral in the left side we obtain:

]-l-:, X dS; = V- o+ ],.hu -y <RV (19)
v

-1
l-l.!-l,z

It should be noted that In formulae (16) to (19) the gummation is taken over
repeated Indices. Repiacing the surface integral by the sum over all the contact points
we obtain for the mean stress tensor

'Y =-%-[§ Fx, * mglu:w - ‘l“'.‘.“] (20)

It shoyld be pointed out that the right side (20) Is {ndependent of the choice of the
beginning of the coordinate system. The last integral is primitively expressed by the
values of coordinates and acceleration of the disc center, angular velocity and angular
acceleration. Resuming the previous notations let us write the expression for spatial
mean stress tensor of §-th disc, assuming that the disc s homogeneous:

e[ FROFRUOIR0L -

"I(])l'l‘(j) ~a(f)a())x(]) +

s8I0 nr. (21)
v (5} when k=|
whers By { =a,())  when kel (22)
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The results of the computation of mean stress tensor are graphically shown in
Fig.3. The evolution of tangent stresses Is apparently rather chaotic. On the other hand,
there are grounds to state that specific structures in the form of load-keeping chains
appear. The structures may consist of a relatively small number of elements. The vertical
chains are oriented towards to Joad, whereas the horizontal ones tend to distort.

The components of the mean stress tensor provide for each disc a non-invariant
description of the stress field. Although the choice of the coordinate system Is not
random but is related to the orientation of the system boundaries, yet it seems
interesting to describe the stress fleld in terms of directions and values of w.ipal
compressions for each disc. In f1g.4 this 1 done for the initial configuration of the nhase
of stationary loading.

Energy dissipation. As we know the values of forces and relative slip In each
contact point at every moment it is easy to compute the energy that dissipated over a
time step:

$F,(.p-ad« $F,01.0)-a4d (23)
L 1] |

In the formula (23) the symbol 2 stands for a summation over all such pairs of elements

1 and J in whose contact point the condition (B8) is not true. The symbol i stands for a
summation over all such pairs of element } and border k in whose contact point the
condition (8) 1s not true,

Characteristic plots of energy dissipation rate for three values of U equal to S/0\
0/S and 0/05, respectively, sre presented in Figs5-7. It is noteworthy that at high
loading velocity the energy dissipation rate becomes quasi-stationary almost
immediately after the onset of the process. Long-term observations of the system at
medium loading velocity has demonstrated that in spite of significant variations of the
energy dissipation rate, the latter still has long quasi-stationary areas (of about 1 sec.).
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The behavior of the system at low loading velocity is of greatest interest. In this
case long-lasting periods ( about | sec long ) during which there is hardly any energy
dissipation at all alternate with relatively short periods of fast dissipation. A detailed
analysis of spatial localization of the dissipation process during the fast periods has
shown that although the main portion of the energy Is lost in one or several closely
located contact points, secondary zones of energy loss are simultaneously formed In
remote parts of the system. This seems to suggest that the correlation radius In the
system increases during these fast perieds.

Macromovements. iet us now return to the numerical experiments with U equal to 5.0
which Is most suitable for the qualitative description of the structure of macroscopic
movements in the system. Fig.8 shows the initial stage of the evolution of the system at
U equal to 5 cm/sec. It should be noted that at first rather a simple movement structure
appeared. It was a nonuniform circulation of subsurface layers. This circulation was
characterized by the aiternation of short fast phases with longer and slower ones. After
.5 sec, however, the structure of the movement began to become dramatically more
complicated. Because of the inhibltory action of the friction against the fixed vertical
walls and relatively stable interna) layers of the discs, the circulation velocity was
lower by an average of an order of magnitude than the velocity of the forcing movement
of horizontal walls. It should ba reminded that the inhibition Is significant because the
system Is in the state of strong overall compression whereas the constant of ary
friction was chosen to be rather big. This led to gradual accumulation of discs In the
vicinity of the bottom righthand corner and in the top lefthand corner and to the
appearance of relative rarefaction in the areas of the two other corners. The structure of
the velocity fleld became complicated firstly, because in the rarefaction zones fast
Coordinated linear and rotating movements occaslonally appeared that ware relatively
independent of the remaining set of the discs. Secondly, although the shifts of horizontal
layers of discs were stil! localized in the vicinity of the upper and iower boundartes, the
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analogous vertical shifts, unlike the initial period, were shorter in average and appeared
much further from the vertical boundaries. Thirdly, the 'elements of the central area
were gradually involved in the movement.

Conclusl.nns. The system of a relatively few fdentical elements with a simple
interaction law under the conditions of the stationary action under analysis displays a

complicated behavior in which the chaotic character is combined with formation of |

structures. If this action is weak enough one may reproduce the properties of the seismic
process, such as time and space heterogeneity. In the future it seems promising to
investigate more complicated multiscale variants of this computation design. For self-
similarity reasons it may be expscted that the results of such a simulation (probably
with choice of various sets of parameters) can be Interpreted both in terms of the
seismic process and as applies to destruction experiments.
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Figure |.
Flgure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Diagram of normal forces.

Diagram of shear forces.

Components of mean stress tensor.

Directiona of main compression.

Energy dissipation rate when U=5.0.

Energy dissipation rate when U=05.

Energy dissipation rate when U=0.05.

The initial stage of evolution of the system when U=5.0.
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