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. Chen Ym
Complexity of Earthquake Precursors ( State Seismological Bureau, China )
——The Dimension Reduction Model of Earthquake Precursors
. Foreword

Like making predictions in other scientific fields, prediction of earthquakes is
now facing difficulties.

The problem of making predictions is confronted with in other scientific disci-
plines. As an sxample at hand, accarding to Newton's mechanics, salar and lunar
eclipses can be predicted on the basis of a numbaer of given initiai values, like pre-
dicting the motions of other celestial badies. Thia is a kind of deterministic predic-

Chen Yong tion based on established physical laws. Inspired by the success in predicting the

motions of the celestial bodies, many people tend to think that ali predictions cen

. be made deterministically in principle, and that, we can predict the future of every-

( State Seismoiogical Bureau, China ) thing just according to their past and present situations. Nevertheless, in order to
reach this goal. we need suHicient observational informations.

Such conventional ideas are challenged by problams arising from the following
tespects:

8 ) The theoretical resesrch is attacked by the development of modaern physics.
Many studies in geo—sciences are based an detarministic physical theories. At the
turn of the century, the physicists mostly continusd their studies in 8 number of
classicsl research topics. Most of them admitted that the basic laws of the universe
{ including the gea—sciences ) were deterministic and reversible. They believed that
errors in predicting the future based on such deterministic and reversible laws were
caused by factors connected with man, i.e. by the complexity arisen from our igno-
rance or from our failure to control the corresponding varisbjes. We are now in the
end of this century, and through our cerebration. more and more peapie believe
that the numerous fundameanial processes which had brought the nature into shape
ara at the very beginning non—revarsible and random, and that tha existing
deterministic and reversible laws describing the basic interactions in the nature can
not tell us the true and panoramic features of the nature. The gap between the
deterministic and ths probabilistic descriptions in physics is now diminishing and
converging. Such deep—going changes require us to reconsider our studies on the
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-pradiction problems.

. b ) Problems also come from cur observational practices. Another sciantific
method in making predictions is to make statistic analogies. Through observing and
studying various phenomena emerged prior to a certain earthquake, we assume that
they are "precursors® of that event. Afterwards, whenever we detect such
precursory phenomens, we might ba able to forecast that another shock is on the
way. During the past 20 years, scisntists both in and outside China had invested
tremendous amount of manpower as well as huge sums of money on such work,
and had gained abundant data together with rich experience and, of course, les-
sons. The most important problem among our gained knowledge is that we have,
up to the present. not found a particular “precursor” which emerges befors every
earthquake. and that no precursor has been found to be surely foliowed by the oc-
currence of an earthquake. The nature is seemingly mocking the arduous and ear-
nest work of the scientists. After ali, what is a seismic precursor? This is a problem
confronting scientists all over the world. The setbacks and challenges encountered
in searching for the ssismic precursors have made some scientists reconsider the
wraditional guidelines in science: Is it because that we have not yet found such ideal
precursors just because we have not time long enough for our observation, or be-
cause we haven't exerted ourselves hard enough? Or is it because we have some
problems in our scisntific guidelines. i.e. we have problams in our prediction meth-
ods? In other words. perhaps our previously—assumed precursors did not exist at all
in the first place, or the seismic precursors are just too sophisticated, and we hava
just set up an over—simplified target to saarch for.

On the eve of any breakthrough in a branch of sciance, such characteristics is
generatly observed: if we try to explain the natural phenomena by the established
theoretical framework of science and using the conventional observational meth-
ods, the problems we find are genaerally more than solved ones. In earthquake pre-
diction, we are just facing such a situstion.

Natural phenomena can be classified into simple and complicated ones, while
" science starts its development from the study of simple phenomena. Any achieve-
ment obtained in the study of simple phenomena will not only enhance people's re-
spect to the Goddess of Science, but aiso add to the treasures of mankind because
of the methodology formed when solving those simple phenomena. On the other
hand, when science develops into a stage to solve more complicated phenomena,
‘would these methodologies be effective tools or restraints to people’s minds? All
thase are acute as we!ll as important problems confronting the scisntists.

The cybernetics, system theories and information theoty founded in the 1960's
are primarily used in the discussion of anginearing and technical systems and re-
markable achievements have been obtained through the discussions. Later, the
dissipative structuring theory. synergetics and catastrophy theory came into shape
one after the other. These are used in the discussion of the huge natural systems
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which are far more complicated than the engineering and technical systems. Today,
"exploring the complexity” has become the common goal far various branches of
sciance.

This paper is aimed at exploring the complexity of seismic precursors. Using
the phenomena discovered in recent years, the author intends to emphatically illus-
trate the complicatad feature of these phenomena. [t is also ths author's intention to
show the contradictions which might be encountered when simple methods are
used ta tackle these sophisticated phenomena. The paper also discusses the meth-
ods which can be used to solve these contradictions and the possible perspectives

“of the study. Hopefully, such discussions would call for more cerebrations and dis-

cussions in our seismological studies.
I . The Complexity of Seismic Precursors

Facts from expefrimants aimed at observing the precursors occurred prior to
rock tailures in the laboratory are cited here to demonstrate the general features of
tha camplexity of seismic precursors. .

During our experiment using marble specimen for uniaxial compressions. we
use laser holography method to measure the deformation fieid on the whaie surface
of the specimen during the process of the rock failure, so as ta search for the pre-
cursors before the failure occurs at the said specimen. For a convenient illustration,
we choose on the specimean points A, B, C and D and analyse their situation of
deformation ( Fig.1 ) . In the early stage of the deformation at point C. deformation
increases along with the increase of stress. Just before the specimen ruptures,
deformation increases drastically. Therefore, so far as point C is concerned, the
drastic increase of deformation can be regarded as the precursor of rock failure. At
paint B, howaever, the precursor of rock failure is representad by abrupt decrease of
deformation. The fact that completely different precursors are observed respectively
at points C and B fully shows that precursors present very complicated spatial dis-
tributions. We may ask what is actually the precursor of rock failure? Aa revealed by
the experiments, it would never be possible to find the same precursors of rock fail-
ure at all points, namely, we can not expect all the paints to show accelsrated
deformation or vice versa before the rupturs occurs. It can also be observed from
Fig. 1 that synchronized changes can be detscted at points A.8.C and D in the pe-
riod of low stress, which suggests uniform deformation is taking place within the
rock specimen. Approaching the rupture point. remarkable differences appear in the
changes at respective points, some of which show accelerated deformation, some
show attenuated deformation. some even remain unchanged. We can hardly tell
which ane among the 3 phenomena ( accelerated, attenuated or no deformation )
should be taken as the precursor of rock failure. Nevertheless. wa can tell that the

7 increass of differsnces in the spatial distribution of deformation is the short—term
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precursor of rock failure. The phenomana shown in Fig.1 is obtained from experi-
ment of rock deformation, yet such a result brings asbout ovesali significances. In
our earlier expariment looking for precursors of rock failures. we practically made
the, sams assumpticn that the physical properties of the rock media are
homogenaausly distributed during the entire deformation process until the rupture
takes place. Therefore, all the observational results obtainad so far tend to reflect
averaged values of cartain physical properties. In this case, it is understandable that
details like the inhomageneous spatial distribution of rock properties are ignored.
Unfortunately, we find the valuable precursory information of rock failure mostly
lies in these ignored details. With the development of technical equipments since
the 1980's, major achievements obtained in the study of precursors are concen-
trated in the study of such details like the inhomogeneous spatial distribution of
deformations. Both in and outside China, similar results have not only been got in
the measurement of deformation of rocks shown in Fig.1, but also in the
measurement of physical values like the velocity of elastic waves and the
attenuation in the rock specimens. In the theoretical and laboratory study of the
localization of 1ock deformations. similar results are also obtained.

Rupture '
1 ' l Ott—surface i
10 | diaplacement ( um ) Ic

') 000 1y 4000
®)

Fig.1 a } The off—surface displacement occurred during deformation of the
rock samples observed using the laser holography technique. A,B.C and D de-
note 4 points on the surface of the specimen. Their locations corresponding to
tha final rupture plane C'C’ are plotted in this figure. b } The ofi—surtsce dis-
placement respectively st points A,B.C and D ( corresponding 1o the vertical
deformation of the ground surface dependent on time ¢ of the deformation ) .
Note that whan rupturing is approached, the 4 points present remarkably dif-
terent situations. Increase of such differance in deformation at the respective
points might bethe precursors of the rupturing, whereas deformation at each of
the points can hardly be taken as an overall precursor.

A set of holograms by the laser interferometry technique in an rock deformation
experiment using marble samples are shown in Fig.2. The holograms are armanged
in the order of stress increases. In the pictures, the fringes represent the isopleths of
the off—surface displacement, possibly similar to the contours on the topographic
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maps. As can be seen from Fig.2. very few fringes are observed at the initial stage of
deformation. and the entile sample shows uniform deformation. Along with the
stress increases, the process in which deformation concentrates at a certain locality
is initiated. We observe not only increases of the fringes. but also changes in the
pattern of tha fringes. The deformation pattern on the entile surface of the specimen
becomes more and more complicated. In order to figuratively illustrate the changes
in spatial distribution of different physical properties during the deformation pro-
cess of rock samples, we borrow two special terms from the Chinese Beijing opera
danoting the typaes of facial make~ups: “Bailian® { white facial make—up ) to repre-
sont the simple patterns whereas "Hualian” ( colored facial make~up ) to represent
the more complicated patterns.

Fig.2 Laser interfarograms taken during the deformation process of tha marble
sample. ¢, stands for tha strength of the sample, whereas o for the stress under
which the pictures are 1aken. The fringes show the isopleths of the off—surface
displacements of the tested sample. As can be seen from the pictures, the dis-
wribution of deformation becomes more and mare complicated along with the'
increase of stress ¢/ g, , and the pattarmns became more and more complicated
when time progressively draws closer to the rupture.

It is worth noting that the above descriptions only reflect one of the rock—rup-
turing tests. In many other experiments done repeatedly, we find such pre—rup-
turing deformation patterns are just non—repeatable no matter how carafully we
prepare the test samples. For example, we cut one sample after another from the
same piece of competent mother rock, getlhg each sample into exactiy the same
geometrical size so as no differences are detectable aven using the most precise
measures. We use exactly the same environment for the experiments and even use
differant rocks to prepare the samples, the pre—rupturing deformation patterns still
do not rapeat the pictures taken in the above—illustrated test. Nevertheless. one
common feature is observed, i.e. ditferent rock samples all show their deformation
distribution from simple into more and more complicated patterns along with stress
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increases.

To sum up the above discussions, if we take one point on a certain rock sample
a8 a seismic station, and the pre—rupturing deformation changes observed st that
point as the seismic precursors, we can see the following in the light of the
sfore—described experiment: a ) Dissimilar precursors are observed at ditferent
points before the sample ruptures, or in other words, the phenomena observed at
one point are hard to be found at another. b ) The pre—rupturing precursors on one
‘tock sample mostly differ from those observed on another. Nevertheless, it we take
all rock samples into consideration, the pre—rupturing precursors of them sll show
one common feature: the spatial distribution of the deformation develops from sim-
ple into more and more complicated patterns, Such a common feature csn well be
taken as the precursor of rock failure. The implication of such a precursor is based
on the observation of more complicated phenomana, and should therefore be dis-
tinguished from the implications of the traditional seismic precursors,

Fig. 3. 4 and b furnish the data of in situ observation on wellwater leve! and
ground deformation before the occurrence of natural earthquakes. These cases ex-
actly explain for the above—mentioned features.

= bl .
e A L

apa—

[
L g -
p ]

= Tome §wa

-
4
TE ST s s

TN
LE

L) O
s 3 l'; [EEN )

- 7 3

C ™ 1 ],

L k™ ¥ [
-

= TL N .
.l-..
.u‘_’_u_'y_,| |
e
b w
e IV o
L]

rr— - ke

Fig.3 Water levul varistions of 20 walls pressnting anomalies in sn ares sbout
120 km sround the epicentsr of the June 29, 1980 lzu peninsula, Japan
earthquake of Af 8.7. Nota that when drawing closar to the occurrence of the
shock, all wells show drastic abnormal variations in their water levels, some of
which rose, and soms dropped. Actually, no two welis showed the ssme kind
of varistions. The variation of water laevels forms spatially an extraordinarily
complicated pattemn,
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“Fig.4 Variations of ground water level' observed befors the Jan. 14, 1978
Oshima, Japan earthquake of M 7.0.

2 ) The plans distribution of wells used for tha ground water lavel observations. All
the empty circles denote tha observatiansl wells, while the solid ones danote- -
thoss walls which showsd pre—~shock anomaslous variations. In the map, “X°
stands for the epicenter of the shock. Equidistance circles respectively for 60 km,
100 km, 150 km and 200 km from the epicsnter are aiso plotted in the map.
b } Abnormal oriantation changes of water lavals observed a1 respective wells. The
dark sress dencie the dilterences betwesn the woater level and the vaiues
exirapolated from the previous variation tendencies. The arrows denote the time at
which ths observers report the snomalies to the authorities. The dissimilar modes
of variations observed st different wells &t unequal focal distances are shown in
this figure. Note thet when coming closer 1o the shock, water levels of some waells
rose while thase of athers dropped. showing a most complicated pattern.

The complexity of the spatial distribution af the seismic precursors can also be
expressed by the order in the systems. But what is order? Taking a schocl for exam-
ple, when the students are having free activities on the playground, they scatter év.
arywhere. In the light of macroscopic statistics, the density distribution of students
on the playground is nearly uniform. This corresponds to the disorder mode. But
when these students are required to perform group callisthenics. they no longer
show uniform distribution on the playground no matter how the pattern of the
calligthenics is altered. This corresponds 1o an order mode. The developmant pro-
cess of the seismic precursors is very much similar to such situations. The process
in which the complicated patterns are formed practically corresponds to the one in
which the system switches from the disorder into the order moda. '
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Fig.5 Precursors of ground deformation prior 1o the M 6.6 event occurred in

1‘ 979 at the Imparial Valley alang the border areas batwaen the USA and
exico.

& ) The star stands for the epicenter of tha M 6.6 event. A ground deformation ob-
sarvatory natwork formed by a trisngulation smmay was smplaced to the north of
the epicenter.

b ). 6 observstories in the network had detacted the time—dependant variations of
unit erea stress { 4 ) . In the figure, the dotied lines denote the occurrence time of
the event. As cen be sesn from the figure, ground deformation registared st
respactive stations shows remarkably grest difterences. Some observatories pres-
ont dilstations while others contraction, showing a very complicated pattern.

In the succeeding contexts, we intend 1o make a deeper discussion into these
problems. The key problems being discussed will be concentrated on the following:
How should the complexity of the seismic precursors be described? What are the
factors responsible for these complexity? Let's start the discussion from the first
problem,

II. The Self—similar Phenomenon in the Seismic Activities

Wae begin our discussion with the description of the complexity of seismic pre-
cursors. Many phenomena in nature possess layered structures, in which there ex-
ists a special category, namely, when we properly enlarge or reduce the geometrical
5iz0 of the structure, the structure itself remains unchanged. We define such s struc-

ture as the self—similar one. The geometrical objects having self—similar features are
called the fractals. Using such structuring characteristics, many complicated
phenomena can be described.

By properly altering the sizes, the characteristics of the fractals are most clearly
seen. If we have a geometrical objact with 4 dimensions. we can enlarge it along
each of its independent directions to ' times that of the original. As & resuit, we ob-
tain N objects out of the original one. Tha relation betwsen these 3 numbaers can
be expressed by / *= N. We now take the logarithm of both sides of the equation:

In¥V
d = o 1)

in the equation, d thus defined is referred to as the fractal dimension. In simple
geometric patterns like a cube, we get d=3 from the above formula. This agress
with the concept of the topological dimensions. As to complicatad geometric pat-
terns, the characteristic number d used to describe the self—similar structuras is not
necessarily an integer. For such complicated patterns, we do not enlarge their
geometric sizes to / times that of their originals, but reduce the measurement unit
to ¢ . By continuously reducing ¢ , we can make accuiate maasurements. The factors
N and] informula 1 used to define the fractal dimension should ba changaed inta
N(s) and & . It is also necessary to note whether the limit still exists when ¢ is
continuously reduced. :
d = lim 2NV , @
a0 Ins .
The above formula shows another definition of the fractal dimension d®.
One of the simplest examples of the self—similar structures is the problem of the
iength of the coastal lines. In geometry, a straight line is the simplest pattern. The

@ The lollowing 3 definitions of the fractal dimensions are commaonly seen:
1) The velmuetrie or Hampdoll dimnension:

1 N( &) is the minimum aumbaer of small balls with diameter s encugh to cover a point set, the

volumstric dimengion gf the point set can thus be detined:

d = lim laN(z)
a=l Ine
1) Toe information Smensdow: . v
When defining the volumaetric dimension, only the numbaer of the neaded balls is taken into
consideration, wherass the number of paints covered by sach of the small balls are not classi-
fied. Hance the information dimension #, is proposed.
mEP (-}
——— :
=
the probability N( £ ) of a point coverad by the i=th ball is expresssd.
3) T carvelation dimension o :
d. = lm InC{s)
3

=0 Ins
where C(t) = # LXHG~|r,~2,)
]
¥, i=1,2 .. N isthesolution sequence of the system.

1 (a—|y,~y,|>0)
Bla-ly, -y, D={ (a—{y:-rjlw)‘
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coastal lines are a sinuous line which presents curvatures of considerable sizes. and
still smaller curvatures are contained in each of the curves. Using different rulers 10
measure the length of the coastal lines. we get different lengths. Obviously,
*length” can not be used as a good quantitative characteristics to reflect such a
complicated curve fike the coastal lines. if we use anather ruler with length L to
measure the coastal lines, we find the following relations between p and L.

pac L'’ £))

This shows the coastal lines sre self—simitar®. The fractal dimension is thus 8
mors psrtinent concept to make quantitative descriptions of the complicated coast-
- af lines as compared with the straight line.

A more complicated exemple can be cited from the description of the fractura
surface of a piece of rock or the plane of # naturat fault. Such a fracture surface is
not a simple plane, but a complicated, rough and uneven boundary. In the science
dealing with materiais, when the fracture surface of 8 pisce of metsl material is
ground by a small portion, we get 8 number of isolated plstiorms which are similar
with the islands in the ocean. According to the size of ths matarial being ground
gradually, the total area 4 of the platforms and their total circumference L also fol-
low the self—gimilar relations:

_ InA=ag+dInl
where d denotes the fractal dimension of such a fractal. Experimental
measurements using similar methods show that the fauit and the nodal planes in
the rocks are also fractals. Therefore, fractal dimension is the most pertinent quanti-
tative description of such complicated fracture planes as compared with the simple
planes

A stilt more complicated situation is the earthquake activities. Such earthquake
activities alsc portray a self—similar structure, This characteristics can be demon-
strated through the analysis of the seismic energy and the temporal and spatial dis-
tribution of seismic activities.

1. Energy fractal

The relation between ssrthqueke magnitude and frequency can be found as
the following:

gN=a—-bM 0]
This is the well-known Gutenberg—Richter formula which is the most classical em-
pirical one in seismology. In the formula, M stands for earthquake magnitude, N
for the total number of earthquakes greater than magnitude M. a is 8 constant and
finatly, b is 8 parameter of the b~value used 10 express the proportionai relations
between strong and small events, and is thus an important parameter expressing
the structural features of a group of earthquake activities.

@ Using » as a ruler to measure the cosatal lines, we use the ruler only 1 time. But when we use
L nmmhr.mohngﬂlofﬂnmmhonhmdbvl-;—_ mwmﬂ-f-(%)'.
Hence formula { 3).

The relation between the seismic enargy E and the magnitude M can be ex-

pressed by:
E=1184+15M &)

Wa assume that the seismic energy is proportional to the cubic size of the focal
ragion, i.e. the seismic energy is converted from the strain energy stored in the focal
body. and that 4 is the fractal dimension of the self-similar system relevant with
the length L of the seismic fault. then we have .

aL!=1L, '
From formula 6, 1g L3 = 1.5A4,+ C, then we have
' L, =cC10¥"
Substituting into formula 8: .
llo"‘/! - -JLJ
By taking the logarithms, we hava:
n=1gC ‘L~ m,

Comparing with formula 4, we get. 4
b= 3 M

As can be seen from formula 7. and in the light of energy analysis, seismic activitios
present self—similar features. and there is a very simpla relation betwaen the struc-
tural fractal dimension d and the b—value of the shocks.

2. The temporal fractal of the earthquakes

The distribution of seismic events occurred in 3 given area on the time axis is
actually an assemblage of a large number of points which are discontinuous with
unequal density on different part of the time axis. Wa divida the time period since
the historic records ware started into sub—periods having durations of ¢ and
respectively make statistics on the distribution of events of M > M, events. Then
we use N{ ¢ ) to register the total number of sub—periods in which there are

earthquake occurrences and plot the diagram for lg(-:-)--lg( £), we obtain the fractal

dimension of the time tractal of the earthquakes:
d-] 1‘
18( :)
3. The spatial fractal of earthquakes
Taking the focal body as one point, we can tentatively divide the seismic re-
gion into sub—areas of equal sizes, the non~dimensional area of each sub—area is
denoted by . We make statistic work on each of the sub—areas in order to find out

. 1 .
the number N{ ¢ ) of tha ones having zero values. In the diagram 1g( ;)~lg( 8), we

can locate the linear areas, the siope of which is the fractal dimension. This shows
that the spatial distribution of earthquakes is also fractal.
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It is worth mentioning that no matter temporally or spatially, the linear areas in
the lu(%)--lg( &) diagram exist only in a certain segment. This sagmant defines the

range of a scaleless area in which the self—similar phenomena exist. In our discus-
siofi of the fractals and the fractal dimensions, this range should not be exceeded,
becauss the non—scale law halds only in such a range.

There are also other empirical formutas expressing the fractal structures of
earthquakes, for example, Ig M, o 1.5 Ig S, in which M, denotes the seismic
moment. § denoctes the area of the earthquake—generating fault plane. Although
the distribution of seismic precursors is extremetly complicated, we are lucky to find
that the sarthquakes themselves prasent the overall characteristics of self—similarity
and fractal. Such a regularity extensively exists not only in the macroscopic
earthquake occurrences, but also in the microscopic fractures. The occurrence of
earthquakes shows broken and inhocmogeneous fractures not only temporally but
also spatially and thus possess fractal characteristics. The seismic evants fill up only
a small part in the 4—dimensional time and space, leaving many empty cavities and
pores. The existence of the fractal structures is a common featute in the complicat-
ed system of earthquake preparation. Therefore, the fractal dimension can be used
to demonstrate the regularity in this sophisticated phenomenon.

II. The Dimension Reduction Characteristics of Earthquake Precursors

Returning to our study of the seismic precursors, one may ask what should af-
ter ali be taken as the characteristics of seismic precursors? _

When 8 sheet of paper is torn, a failure line ( straignt or curved ) will be
formed. When a rock sample is fractured, a failure surface ( plane or curved } will
appear. The failures tend tc show the following features of dimension reduction:
failure in a 2—dimensional body results in a one—dimensional failure line. whereas

that in 8 3~dimensional body produces a 2—dimensional fractuse surface. in other -

words, failure always occurs within a limited volums in a body. All the above—men-
tioned phenomena denocte the cutcome of the fracture.

We are now confronted with such questions: What is the situation before the
failure takes place? Does the spatial distribution of various failure precursors pres-
ent the tendency of dimension reduction? Are there local variations in the
fespective properties of rocks? What are the regularities of such variations it they
really exist? How can those characteristics of dimension reduction be applied into
our prediction of the failures? Obviously, ali these constitute the most fundamental
and important problems for our understanding of the rupture mechanics as well as
the discussicn of fracture forecasts.

. The experimental result from the measurements of the sock deformation and
wave velocity of the racks samples or the anaiysis on the microscopic samptings
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shows that the number of fractal dimensions is continuously reducing during the
fupture process of the rock samples despite that dissimilar fractal features are ob-
served at respective timas. In othar words, the distribution of precursors, no matter
spatial or temporal, shows with no exceptions features of dimension reduction. This
is most clearly seen in the measurement of the b—values. In the previous saction, we
illustrated the following relation between the number of fractal dimeasions and the

b—values: b = ; No matter in the observed natural sarthquakes or in the laboratory

expariment of acoustic emissions of rock samples, the b—values decreass with no
exceptions before the rupture takes place.

Recently, Kong Fanchen analysed the active linear structures of China. He

found the active structures areé also fractal. the number of fractal dimensions of
which is related with the complexity of the structures. The size of the fractal dimen.
sion numbers controts the displacement and the rate of motion of the active struc-
tures as well as the features of seismicity. Larger fractal dimension numbaer suggests
more complicated texture of the active structures.

The self—similar process of faultings is sure to produce fractal structures. Dus
ing the deformation process, such a process of strain localization occurs within the
rocks: When the exterior load increases, there first occurs homogeneous
deforrnation and the micro—fractures distribute evenly over the whole space. It is
obvious that d= 3 at this stage. In the light of thermodynamics. the system has the
Qreatest entrapy and shows the most orderiess structure. When the deformation
reaches a certain extent, clusters of micro—fractures begin to smarge in the interior
of the rocks. Such a process of micro~fracture concentration, or the formationing
process of the dissipative structures in which a stable inhomogeneous state is
bifurcated out of the non—stable homoganeous state, is a self-similarone core-
sponding to the structural orders of the earthquake—generating areas. This process
has resulted in the fractal distribution of the acoustic emissions or the microseisms
which reflects the system has switched from a non—order state into an order one.
Thig is not hard to understand. as the degree of symmetry of the system in which
d= 3 is surely greatar than that of the system in which 4= 2, and hence its sntropy is
alsq greater, whereas its order is smaller. The phenomenan of the *white face”
changing into the “coloured face” during the deformation process can either be ex-
pressed by the variation of the fractal dimensgions in the parameter distribution. or
by the variation of arders in the system.

Such being the case, what should be the relationship between the order of the
system and its number of structural dimensions? Wa first make the following simple
deduction: :

In the light of the Boltzmann formula S = k lg W in which W denotes the
number of freedoms of the system, the thermodynamic entropy has certain correls-
tion with the information entropy of the system in soms restricied situstions. There-
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fors, we can roughly calculate the thermadynamic entropy from the information
ed by:
entropy of tha system. The entropy § of the system can be express .
’ S = — ki P(rNgP(rdL
where & stands for the Boltzmann constant and P( r} for the distribution density of
svents at point r in the space. For a cylindrical coordinate system relevant only
with r, Fig. 6a has the following retationa:
Sw — 2:&]. P(PIgP(rdr
As we know, in the equal—probabilistic distribution, S will surely take its max-
| "

imum value. When the deformation just begins, P(7)= fu_}f( see Fig. 6b ) . There-

fore, $ = kig W is the maximum value.
When the rock sample enters its inhomogenaous deformation stage, its inner
" parsmaters tend to show fractal distributions, ie P(r)=r ~4 In the formula, d=
DD where Dy denotes the topologic dimensions in the occupied space and .
With s view to eliminate the unreasonable singularity at r=0, it is assumed the
probabifistic distribution takes the tollowing farm { Fig. 6c ) :
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Fig. 6 Diagram usad in calculating the entropy.

where r, is physically defined as the nucleus—forming radius of & certain phvsic{l
- value, 8.g. the displacement. In the light of the continuous and normalizing condi-

tions, we have:
"y
a=fr, )
PLEC ML

N
ar, +—37 Ix

Then entropy § is: . .
= — 20k algadr — 22k, Br~“(1a8 — digr )dr
1~d -4
Igd _ A .
] 2:&54(1 —

I-4 :
- - 2xkr, alga - 2xkBleA— + 2ukBa

Whan ﬁ:— < <1, the above formula can be simplified as:

Lol

L

&
an' r

1-d ,i-1
p= x 4
Substituting into the previous formula, we have;
. Smk(l- )it +t(l-d)ls2”' + (1 — dkigA + kgl =4 _p 4 ,c
r 1-4d 2x 1-d

L]
where C is a constant used for corrections. Considering when D=3, 5 = kig A.
We have: .
3-D

2, A 2x
S = 2k(D —-2) Ilz' 4-*]"‘(.0 -2 —k(J—D“‘m —k—D"—_—i

whera the characteristic measura of 7, is 107*m and 4 is approximately 10%. This
testifies the dimension reduction process occurred in the deformation of the rock

samples is represented by the decrease of entropy and the increase of order of the
system.

h

IV. Exploring the Complexity of Seismic Precursors

Different phenomena showing the complexity of the seismic precursors have
already been introduced in the above chapters. In this chapter, we intend to make 3
preliminary discussion on the reasons responsible for such a complexity.

Let's start from the maeteorological situations, because this is a case which in-
volves the existence of the complexity and is thus dealt with in numerous studies.
in 1983, Lorenz, &8 metecrologist from the MIT, USA, had found that complicated
situations simitar with those in seismic precursors also exist in the weather
forecastings. In order to illustrate the difficulties in making long—term weather fore-
casts, he had, using the dynamics equaticns, proved the constant solution of the
atmospheric motions is a non—periodic one which is later called the chaos solution.
The equation governing the atmospheric circulations is a partial differantial one, Us- T
ing the Fourier transfarmation approach, Lorenz took the first 3 orders and pro-
posad that the non—dimensional coefficients x, y and s of those first 3 orders have
decided the mode of the stmospheric motions. Thess cosfficients follow the
differential equations:

dx

4 = — 105410y
9Y -y

pr 8Bx—-y—-xz
dz 8

@ --32+xy

At 3 certain time ¢, x, y and z satisfying the above squations constitute one status
point in the phase space (x.y.z) . When time { changes, the status points in the
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phase space will join one another into a status locus. We now take a closer look at
the shape of the status locus in the phase space of the Lorenz squation.

Considering the status locus in the phase space xyz defined by the above
equation group. an ellipsoid can be found. e.g.:

14x*+ 57+ 5 (2—56 ) 2= 18000

with the advancemant of time, all the status loci can only fall into an area enclosed
by such an ellipsoid disregarding their initial modes. The Lorenz equation has 3
fixed pointa, namely, the solutions when :—‘: - % - %f -0:(0,0),(% 62,
+ 6¥2,27). Among them, point { 0.0 ) stands for the stationary mode, whereas the
latter 2 points stand for regular circulations. Neverthaless, stability analysis made on
those 3 points shows that they are all non—stable. and are thus modaes that can only
be approached but never reached. Through testification made sa far, people also
find that no periodic solution can be obtained for the Larenz equation, which
shows that the status loci can never form closed loops. Therefore, the loci of the
constant solution in the space xy: are formed by a number of infinitely—long and
infinitely-numerous winding curves, just like a ball of thread. All those loci distrib-
ute in the confined areas of the phase space and they never intersect each other at
any point{ Fig. 7).

From the physical point of view. the characteristics of the solutions of such a8
non—-linear dynamic equation can be analysed as the following:

1. The status loci of the atmospheric motions tend finally to reach their limit as-
samblage whose numbaer of dimensions is smaller than that of the initial phase
space. Such an assemblage is referred to as an attractor. Therefore, in most of the
aress in the phase space, the system is not returnable.

The evolution in which the high dimension phase space coniracts into the low
dimension attractor is actualiy a process to converge the number of freedoms. In
this_ process, great number of patterns with quicker motions and smaller sizes
would be consumed and the number of the long-term effective freedoms which de-
termine the system will be decreased. Many fresdoms become irrelevant variables in
the evolution process and finally only the few freedoms supporting the attractors
would be left. )

The attractors in the Lorenz aquation can be classified into the strange ones. As

we know. if the system at time ¢ tends to be in a constant mode irrelevant with
time. i.e. the fixed point in the phase space. it is a zero—dimension attractor. if only
one periodic' motion is Ieft in the system at time r » oo, it is & one—dimension
attractor cornesponding to tha limit loop formed by a continuous curve in the phase
space.The zero— and one—dimensional attractors all belong to indifferent attractors.
The attractor in the Lorenz equation is somehow diffarent compared with the
above—mentioned ones. It belongs to the strange attractor. The “strangeness® of
those strange attractors can be illustrated as follows: a ) Being the subsets in the
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phasespace, the strange attractors often have fractal structures and non—integral
dimensions; b ) The motions on the strange attractors are very sensitive to the initial
conditions. Even very small changes on the part of the areas entering the strange
attractors would result in compietely different locus of the motions. Furthermore, it

is very difficult to predict the location of a status point st the next time just from its

position at any given time 1.

Fig.7 a ) Diagram showing the time—depandent variation mode of the Lorenz
aquation in the phase space xyz. The loci of all ultimate mode form a subset in
‘the phase space, and is referred to as the Losenz strange attractor. This
sttractor does not change with the evolution of the systam. The shape of such
an atiractor can be imagined as the following: We bend a long pieca of wira in-
to the shape of curve C in the figure and then cover the whole frame with a
thin film of at:{njcuds. Then wa pierce the film to get 2 holes at the fixed points
( 2, » 1 65 2,27 ) Wae further imagine that the scapsud film is consisted of
infinitely—-numerous layers of lobes just like the one illustrated, and all the
lobes are joined 1o one anothar only at the wire frame. Such a strange attractor
are filled with infinitely numaerous status loci.

b ) The s—1 curves corresponding to each status locus in which a = &e. Qpe
of the status parametars is shown in this figure in which the variation of x is
very much the same with the smooth random process. Such a random process
is produced by the deterministic Lorenz equation. With the advancemaent of
time, the systam show a kind of spontaneous, constant, prolonged and
irreguisr movement, ar in other words, chaotic mations.

2. The dynamic system of the atmospheric motions is composed of two parts,
namely, its status and dynamic characteristics. The status characteristics refers to
the basic situations of the system, or a point at the center of the phase space,
whereas the dynamic characteristics is the taw illustrating the time—dependent vari-
ations of the status. Such a variation process can be described by the locus in the
phase space. The Lorenz equation is a deterministic one which is composed of only
several simple cosfficients, and not any random terms are inciuded into it. If we take
a look at its solutions, the locus in the attractor circles on infinitely, showing a kind
of random behaviour. Such 8 random nature is a fundamental characteristics which
would not disappear no matter how much information we can collect. The random
nature thus formed is more and more extensively termed as “chacs”. The word
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*chaos” is one amang the oldest ever existed in Chinese vocabulary. Citing Chinese
methodology far example, the creator of the universe Pan Gu is said in China’s leg-
endary tales to be bom in the chaotic atate between the heaven and the earth,
*Chaos” denotes 3 genuine and original natural state. The word is also used to des-
cribe a state most extensively existing in nature.

" Analysis of the Lorenz equation shows such 8 chaotic behaviour originates
from the sansitivity of the deterministic system depending on the initial conditions.
in the light of the quantum-mechanics, the initial measurement is forever
non—deterministic. With the fapse of time, such 8 non—deterministic feature wilt in-
crease in the order of the geomatric or arithmatic progressions. Such 8 chaotic phe-
nomenon will make the non—deterministic feature grow o rapidly thst any
detarministic prediction bacomes totally impossible. In phynics, chaotic phenomena
can be regarded as synonymous to complexity.

3. After the smergence of the chaotic phenomena, daterministic predictions of
the system becoms axtremety ditficult. Nevertheless, chaos siso show its own regu-
larity which paves the way for the establishment of the conceptional basis for solv-
ing the prediction prablems. Firstly, the status of the systam does not distribute in
the whole phase space with the advancement of time. In stead, it contracts into a
subset in the phase space. This is fully demonstrated in that the avolution of system
is neither deterministic nor random. The mean value of a physical quantity on the
strange attractor is stable and non—sensitive to the initial values. Secondly, the dis-
tribution of the status of the system in a subset like the strange attractor has its
deterministic~probabilistic values. The discovery of such new boha\tio_ura tends
graduaily to filt up the gap between the deterministic and the probabilistic descrip-
tions in physics, '

in the light of the above—mentioned Lorenz squations, we can see that the
complexity is associated with the non—linear mechanic equation.

The time—dependent variation proce'ss of the dynamic system may occur either
in the continuous time, of in the scattering time. Tha former is tarmed as "flow®
whersas the latter “projection®. Another example for the scattering time can be cit-
ed as the following:

Up to the present, it is hard to get an equation group in the dynamics to illus-
trate the seismic process. Yet it is possible to use sn spproach similar to the
Rizhchinko mathad to demonstrate the featurss of aartr;quaka predictions using the
enargy equation of earthquakes as an example. A focal region @1 ( x,) ( i=1,2.3, def-
inition remairis unchanged in the succeeding contexts ) can be taken for instance.
For the media outside that region. w,{ x,) denotes the average input snergy exerted
into the space by the sxterior media over a long time, m¢{ x,) denotes the anergy re-
leased by the media during the earthquake, ¢ ( x, ¢) stands for the density of the
strain energy of the media, and finally, &, refers to the maximum energy density
that can be built up in the madia, or the energy strength. On the basis of energy
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balance, ws have

2c

3 "% %
it is possible to consider that when_ the strain energy ¢ in the media is larger and the
built-up energy is closer to the madia’s strength ¢, @ x,) would also be greater.
Hence we have;

2
o =Ke{ 2 )mK -
.-

where X stands for the proportional constant. Combining the above two formulas
and rewrite them into the iterative equation. we have;

E,.,=1-uE, ®)
3 4Ke+ 2¢
ry E-4Km. +3s,
in the media before the n—th event, and refers to the variations of the strain energy
taking place in the media both before and after the a—th event. Equation 7 is identi-
cal in form with the insect population equation in ecology and is thus a non~linear
dynamic equation. If we confina the parameter in formula 7 within the range (0.2).
then the formula can be considersd to be a non—linear image starting from line
segment I= { —1,1 } to itself. So long as is chosen from I, will also fall within /.
Through calculation, we find the iterative equation 7 shows many abrupt changes
when parameter u goas from 0 to greater values { see Fig. 8 ) .

3 ) When 0 < u < 0.75, if an initial vatue is chosen randomly within line seg-
ment I, the iterative equation tends to reach rapidly a fixed point E*. It suggests
physically that the strain energy in the media would remain unchanged within such
8 parameter range: E,= E = E°.

b ) When 0.75< & <1.25, after a short iteration, vatue E, would alternstely
appear in the two modes E; and E;

E; =1-pE;”

B} =1-45]?

Ko,
wherg g —— 4
‘-

,» in which E,. denotes the strain energy

This is 8 2—point period.

c ) After x > 1.26, the above—listed 2=point period loses its stability. With the
increase of the u—~value, there appears stable 4~point, 8—point or even 2°~point pe-
riods. The corresponding stable range becomes narmower and narrower. This is cal-
led the multi—period bifurcation. When u =1.40116..., the infinite period is
reached. At this time, if E, is given, the E,,, thus iterstad within a specified range

- takes random values. The above—mentioned characteristics emphatically suggests

that the random behaviour has appeared in the simple and deterministic system
which is restricted by the energy equation.

As a matter of fact, such situation is often found when the system becomes just
a littie more complicated. Nussbaum has simulsted the seismic process using 8
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model composed of 2 sliding biocks. The equation illustrating the system is
determinigtic yet the motions of the two blocks present random features under spe-
cific parameter conditions { Fig. 9 ) . Like the equation of the seismic energy dis-
cussed in the afore—gaing paragraphs, the simple and deterministic system would
also present random behaviours. The solution of the above—maentioned energy
equation can be cited as an exampie of the chaotic problems. a number of whose
characteristics can also be found in our practical earthquake problems. For
instance, the seif—similar structures in the energy equation near the bifurcation
point can also be observed in the self—similar structures between the strong the
small events of natural sarthquakes.

] 0.7% 123 0 »

Fig.8 Thae ralation between the solution of the iterative aquation 7 of seismic
avents and the paremeter u.
"Whan 0 < a < (.75, the iteration process rapidly tends to reach the fixed point
E*, suggesting no varistions are taking place on the part of the sirain energy in the
media. ’

When 0.76 < u < 1.26, the E* value alternstely presents two modes E; and E;,
ssch of the projections corresponds to the deterministic varistions in the strain en-
eI1gy. At p = (.76, the equation presents a two—period bifurcation.

After u > 1.26, there may occur 4—point, 8-point ... 2°=pqint periods. When E, is
given, the E,,; thus iterated may take random valuss and the system presents
chaaotic lestures.

Wa now tome back to the former example of energy equation. When paramet-
or takes the specified values, the solution of the system is deterministic. When
parameter takes other values, howavar, the solutions of the aquation present ran-
dom { non—deterministic ) features. Nevertheless. the range of the randomness as
wall as the random probabilistic distribution of the solutions are all confined by the
deterministic equation.
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Fig.9 A simple seismic model consisted of 2 didino/bloclu. Nﬁh the choosing
of the values for the static friction coefficient snd for the dynsmic friction
cosfficient. The system foliows the non—linear dynamic squation. Under given
parameter conditions, the motion of the 2 sliding biocks may also show ran-
dom behaviours. ' ‘

From this, we can see that the laws in physics are not all deterministic, yet the
random phenomana are alsc basad on the phvsica'i principles. The simple empirical
extrapolation is not built on physical basis, and thus presents a number of limita-
tions. Therafare, the mutual supplementation between the detarministic and the
non—deterministic characteristics might provide a better approach for tackiing the
earthquake prediction problems. It will exert a significant influence on the
guidelines. capability evaluation and method of the entile prediction work. Our
work in this respect is just at the beginning, and therefore a iot more has to be done
in the future. :

Finally, we want to quote one paragraph from Prigogin’s treatise Exploring
Complexity as the summary of this paper: *...No matter we devote ourselves in what
branch of science, we can not escape from such a feeling: We are now living in an
age of great changes. At this critical moment, science itself is also undergoing a
process of theoretical revaluticn... If a physicist was asked several years before
about what did he know and what he didn't understand, he was sure t0 answer.
The real problems gxist only in the frontiers of the universe, occurring in the orders
of the basic particles and the cosmology. On the other hand, he would claim that he
had already fully understood the basic laws concerning the macroscopic orders. It
seemed 1o him that the classical sciences were already fully satisfactory and that he
had aiready gained a penetrating parspective into the fields covered by the
deterministic and the rgversible laws. Today. an ever—growing minority of scientists
are beginning to be skeptical on such an optimistic point of view. It is right in the
macroscopic orders that a lot of fundamental questions are far from being
answered... If we look ahead of us today. we will find evoiutions. varieties and
unstabilities. We have long been aware of the fact that we sre now living in a com-
plicated world, in which we can find not only deterministic and reversible features,
but also random and non—reversible features. If we take & look at the detetministic
phenomena such a3 the motion of the frictionless simple pendulum or the orbit of
the moon circling around our earth, we get to know shat the motion of the
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frictionless simple pendulum is reversible. This is because identical functions are
presant in the equation describing its motions not only in the past. but also in the
future. Nevertheleas, we find other non~reversible processes, such as the diffusion
and chemical reactions. In the latter examples. specitied temporal orientation is
existent, and with the elapse of time. the system will become homogeneous and
uniform. We have to thank for the existence of the random processes, bacause they
hava hsiped us to keep away from the absurd peint of view, i.e. the conviction that
the rich and cotourful natural phenomena are staged according to a fixed repertcire.
just like the ticking of the Big Ben... Ours is an era marked with the mutual colli-
sions by and convergences cof divarsified concepts and mathods, among which,
and most important of all, the key factors of non—linearity and unstability have en-
dowed matters with very high sensitivity and long—ranged orders and have thus
evolved the multi-typed self—organizing modes. Tha amergance of the self-organ-
izing phenomena as a new scientific discipline enables us to imagine how the
complexity has come into being in nature, and to understand to what extent can it
be studied”.
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