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Section 1: Clifford algebras

The study of spinors is fundamental to the index theorem as well as to much
of mathematical physica. We quote {with alight modifications to the wordiang)
from E.Bolker [B].

Consider & wreach, which is an object asymmetricsl encugh so that the

result of any proper rotation performed o it is easily recognized. Rotate

the wreach through  full 380 degres turn about an axis, Has it returned

to the original state? Physieal and geometric lntuition both say 'yes', yet

the ealeulus of spinors which models the quantum mechanical behavior

of neutrons predicts the snswer would be ‘00’ If the wrench were & neu-

tron, or sny other Fermion, a pariicls with half integral spin. More

striking stili, the predicted answer is 'yes' for two full turns {720

degrees) about the same axis. Consider 8 wrench (which Dirae would

have called by ita English name, a spanner, hence & spinor spanner

because of the use to which ke put it). Attach jt by three cords 1o the

walls of the room. When we turn the wrench through 380 the cords

become tangled: no tampering can undo that tangle as long as the

wrench is fixed. After two full turns, Lhe snarl seems worse bug is not,

The cords can be untangled. The analogy between the spinor spanner

aad the neutron suggests that the state of the latter depends not only on

its position and momentum but on which of two topologically distinct

ways it is ted to its surroundings. A full turn sboyt an axis leaves ity

position and momentum unchanged but reverses ita topological relation

to the rest of tke universe. )

In mathematical language, what ia being discussed is the fact %,(SO(3)jmZ,;
& rotation of 380 is not homotopic to the Identity while a rotation of 720 is homo-
topic to the identity; the strings keep track of the bomotopy. If SO(n) is the spe-
cial orthogonal group for 023, then Spin{n) is its universal cover; although a rota-
tion of 380 returns to the identity in SO(n), it does not do 80 in Spin{n).

Cliflord slgebras provide s convenient framework for discussing spinors. Let
V be a finite dimensional real vecior space of dimension m equipped with a posi-
tive definite inner product (, ); we proceed in a coordinate free lsnguage to ease
the transition to manifolds later, The exterior algebra A{V) is the universal aige-
bra generated by V subject to the relations v.w4w.veq, More precisely, let

®V=RaVe{VeVia{vevev)e - - -

be the complete tensor slgebra. Let I be the 2-sided ideal of ®V generated by
{vew-l-w@v},'.ev. Then A(V}=@V/L. A(V) inherits a natural inner product from
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the Inner product on V. Let {v} be an orthonormal basls for V. Let
F={1<i;<...<l,<m} be an sequence of integers ordered in increasing order. Let
M}=v and define vjmv, . « - .v,. Then {v;)} 1 |=» is 80 orthonorroal basis for the

space of v—forms A*(V) and we may decompose AV )"Qosvsn Ar(v).
dl{A’(V)}-(g) and dim{A(V)}=2",

The Clifford algebra CIif{V) ls defined similarly. CIif(V) is the unliversal alge
bra  genersted by V subject to the Clifford commutation rules
vow+tworve—2(v,w)-1. Agaln we can be more precise, Let J be the 2-sided ideal of
@V generated by {v@w-tw@v+2(v,w)1}; Clif(V)}=@V/J. There is always a ques-
tion of what sign to adopt in defining Clifford multiplication; as we shall be com-
plexilying for the most part it will not make a difference. CHf(V) inherits a
natural inner product from V, If {vi} are an orthonormal basis for V, let
&=v;,*...°v,; the {e} are an orthonormal basis for ChffV); CliffV) s the algebra
generated by the (v} subject to the Clifflord commutation relations:
Vi*¥jHv*vi=—25; where §, is the Kronecker symbol. Dim Clif(V)m=2™,

The exterior algebra inherited s Z—grading since the defining relstion
¥-W+w.v was homogeneous; AX(V)-AYVICAP+Y), Clif(V) inherits & Z, grading
since the defining relation viwiwrvm—02(v.w)1 in quadratic, Let

CIF™™(V)=epan (e} |1 |evens 204 Clif™4(V)mapan{e;} [t J-ode
Then Clif(V}-Clil""(V]OClif""'(V).

CliF™s(V)eClirm=(V)CCtirm=(v), crm“mtcnﬁ"’mgcur"-m,

CIfT(V)*Chf™d(v)CChdd(y), and CIIP“(V)‘CIH'"{V)QCIH‘“(V).
IF wew,®... 9wy, let the transpose o be defined by uhew, . tw,. If W ECTIrT™(V),
then {w),wp)=Tr{w;*wt) on Clif(V))-dim(CHlif(v))~t,

Let A be a unital slgebrs and let ¢ be & linesr map from V to A such that
c(v)c(w}-!-c(w)c(v)--z(v.w)-l. Then c extends to a representation e:Clif(V)—A.
Equivalently, suppose given matrices 8,€A satisfylng the Clifford commutation
relation: 88;+8,8;=—26;; such matrices are often called Clifford matrices. If {v;} is
an orthonormal basis for V, we can define a representation ¢ of the Clifford alge-

bra by defining o(v)ms,. It W s & veetor space and If A==Hom(W,W] Iy the slge-
bra of linear transformations of W, then ¢ gives W o Clif(V) module structure.

If vEV and weA(V), let ext(v)umv.w. Let int(vko be the dusl, iaterior multi-
plieation. For example, I veav) snd Wiy, . -y, ,+ then

ext(v, vy )m0 if Ty=l, ext(vl)(v,)-v".ih i >1
Inl.(vl)(v,)-vﬁ.,__l iFiy=1, int(v,)v,}=0 it >

-4

Exterior multiplication by v, adds the lndex 1; ioterior multiplication by v,
removes the index 1. Let o(v)=ext(v}-int(v); this is the symbol of the DeRham
complex as we shafl see presently. It Is immediate from this description that
o(v)l=—|v |21 30 c gives A(V) s CliffM) module structure, The map e—scle) 1
defines a linear map from CHI(V) to A(V); c(vi.‘...‘v;,)'l-vh- * 0 evy 8o e—ro(e)l
sends e to vy; this gives a natural isomorphism between Clif{V) and A(V) as vec-
tor spaces; it does not, of course, preserve the algebra structure; the natersl (left)
Clif{V) module structures on Clif(V) and A(V) are isomorphic. Under this isomor-
phism, Clif*" (V) corresponds to AT(V)=@,A(V) while Clif*%(V) corresponds
to AH(V)ug APP*1(V),

If ma=1, let v be & unit vector in V. Then {L.v} i a basis for CIif(V). Since
vim—1, the map a+bvesatbi js an isomorphism from Clif{V} to the complex
numbers C. If mw?2, let {viva} be an orthonormal basis for V. Then
{t.vive,v*v;} is & basis for Clf{V). Since v]lmviw(v,.v,m—1, the map
a-+bv +evyddv *va—en+bidej+dk is an isomorphbism from Clif{V) to the quatern-
lons H. If A is an slgebra, let M,(A) be matrix algebra over A; M (A) is the set of
nxn matrices with values in A, Let Clif(m)=CIif{R™). Then (see Atiyah-Bott-
Shaprio [ABS, page 11 table 1))

Theorem 1.1:

Chl (0)=R, Clif (3}=HDH, Olif (8)=My(R),
Chl (1)=C, Clif (4)=M,(H), Clif {(T}=My(R)YOMy(R),
Chf (2)mH, CHf (5}=M (C), Clif (8}=Mq(R).
These algebras are periodic; Clif (n 48)%M [ CLif (n ))mClif (n)@M(R).

Let KU, KO, and KSp be the unitary, real, and symplectic K-theorles. The
petiodicity of the real Cliffiord algebras with period 8 is at the heart of Bott
periodicity for KO and KSp; see Karoubi [K, pages 127 . It we complexify, the
picture becomes much simpler; Clif{R™)®C has period 2: this is reflected by the
fact that KU-theory is periodle with period 2 while KO gnd KSp are periodic with
period 8.

Theorem 1.2: Clif (2n XRCEM,.(C) and Clif {2n41 M. (C)M,.(C).

The Spin representations

Fix an orientation for V. Let {¥11:+¥s} be n oriented orthonormal basis for
V. Lt

1"vi*...0vg if m=2n I3 even
( )-[i““vl'...’v. if mw2n+1 is odd

be the normalized orientalion class; the normalization is chosen so r2=l. Under
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the correspondence w—e{w)-1 which ideatifies Clif(V) with A(V), r corresponds to
& suitable complex multiple of the volume element LSS

Theorem 1.3: Let E be a Clif {V)®C module. :

() [f mmgn, there exists a Clif (V)@C module A(Y) of dimension 2° s0 that
ESqa-A(V) where a=27* dim (E).

%) If m=2n+1, there ezists two inequivalent Clif (VI@C modules of dimension
2%; E can be decomposed uniguely as o sum of these modules.

Proof: Suppose first ma==2n is even. Let aymive(v Je(vy) , ..., agmi-c{vyy i Jo(Vay);
(rjma*...%a,. The a, are » commuting family of endomorphisms of E aatisfying
al=l. Lot em{e, ... ,¢) for €=t be a cholce of signs. Let Ef¢) be the simul-
taneous eigenspace of the a,: E(¢)m{e€E:a,em¢,¢} for 1<i<n, Let eg={1,...,1). e{v})
aati-commutes with a, and ecommutes with a, for v>1. Consequently
Spin(4)=S%S3 Efe,,...,¢) and E(—u¢2 ... ,¢,). We use multiplication by
o{v1), Vgl o(Van,) to define isomorphisms between E(¢;) and E{¢)} for arbitrary
e Let {4,} be & basia for E(¢;) where 1<ugamdim E{¢,). Let

Sodq={l:I=1<i; <...<i,<2n and i, odd} and E =span{c(v|}-é,:I€S);

dim(E,)=2". Thea E=@,E, 50 a-2*=dim(E). If I€S, then e{v;)}-4,EE(¢(I)). Conse-
quently o, 'E,CE_. Since {1vau_ 1 *v,¥sn )} generates ClifV)®C as an algebrs,
E, is & Clif(V) module. The map o(vy)-d,=se(v))d, extends to Clif(V) module
Isomorphism between E, and E, s0o E=E; E is irreducible if and oanly if
dim(E(eg)}=1; any two irreducible Ciif{V)@C modules must be isomorphic and we
let & be any such module,

Next let m=20+1 be odd. Then r commutes with V 20 7 is ceatral in CliffV).
Decompose E=E QE_ into the 1 cigenspaces of &{r). Let We=epan{v,,...,v5,}.
Decompose E, ws, A(W) into irreducible Clif( W)@C modules. Since {W,r} gea-
erate Clif{V)QC as an algebrs and since ¢(r}wil on E,, this decomposition of E,
8 & Clif{(W)®C module extends to a decomposition of E, s a Clif(V)gC
module, B
Remark: It dim(W) Is even and it E is 8 Clif(W)®C module, then there are two
diflerent ways to make E a CiffWaR)®C module correaponding to whether
((WGR)) is to act as +] or -1; to distinguish between these two modules we
must choose an orientation for V.

We can describe the Spin representation A of Theorem 1.3{s) in terms of
Clifford muitiplication. Let m be even. Let Clif(V)®C act on jtsell by left multi-
plication. Right and left multiplication commute. Decompose Clif(V)®C under
right multiplication by XM=V Y y Opmivay vy, nto simultaneous right
eigenspaces A(e); each A,(e) is invariant under left Clifford multiplication and is
isomorphic to the spin representation. I dim{V)==2, let {u,v} be an orthonormai
basis for V. Clif{v)ecC decompones as the sum of 2 copies of A;

Clif(V)qpl.n{u+iv,l—lu‘v)}@apm{u-—iv,l-I-iu‘v}.

If dim(V)u=, let {u,v,w,x} be an orthonormal basis for V. Clif(V)®C decomposes
a3 the sum of 4 copies of A; these representation spaces can be taken to be the
tensor produet of the representation spaces in dimension 2. CHl{V)@Cm=

lpu{(u+iv}‘(w+ix),(u+iv)‘(l-iv‘x),{l-—iu‘v]w-i-ix),(l—iu‘v}‘(I--i-':}}e
apan {{u~iv)*{w+ix),{ u=iv)*(1—iw*x),(1 Hutv ) (wix),(Lrintv P (1—iwex)}p
lpn{(u-l-iv]‘(v-—i.t).(ll-l-iv)'(l-i-iw‘x}.(l-iuv)‘(w—ix).(l—iu‘v)‘( IH+iwx)la
spn{(u-iv)‘(\v—ix),(u—iv)‘(l-l-it'x).(lﬁu‘v)‘(w-ix),(lﬁn‘v)‘(l+iw‘x)].
Of course, there are many other decompositions possible. We can also discuse the
matrices defining A. If dim(V)=2, let

a8 5)a=(23)am(0}
These matrices satisly the Clifford commutation relations, Let
o{s, v, Hasvy)en e, +ase, define the Spia representation of Clif2)@C ou C2. It
dim(Vined, let fyomive,Re, , fy=dre,@e; , fymive,@e;, fy=e:®1; these matrices aatialy
the Clifiord commutation relation so o{a,v, )= av, defines the Bpin representa-
tion A of Clif(4)@C on C*,

Suppose m=2n Is even. Then the orientation 7 anti-commutes with
Cli*%(V) but commutes with CLF™ (V). It we restrict A to CliI™*(V), it is no
longer irreducible, but decomposes into two representations A* called the half-
spin representations corresponding to the 11 eigenvalues of 7, If m=2 and {u,v} is
e oriented orthonormal basis for V, then:

AtSspan{u+iv} and A~Sgpan{l—juv},

Il m==4 and if {u,v,w,x} I an oriented orthonormal basis for V, then:
A“'-"apan{(u-i-iv)(w-ﬁx).(l—inv)(l—iwx)}
A‘”%pnn{(u«-l—iv)(l—iwx}.(l—iuv)(w-Hx)}.

More generally it V, are even dimensional, then:

YV, @VIS(AH(V,F A%V e {A~(V,}A-(V,))
AT (Vi@VoS{at (v Fa~(V,))e{A*(v,)}a" (va)}
It is convenient to write this as a formal difference:

Theorem 1.4: Let m=2n. The spin representation A decomposes into 2 represente-
tions O of Clif ™ (V)aC; c(r}=tt on A%, Jf V; sre even dimensional,

A (V,@V,)-A-(V,@ V,y)m{at( Vi=aT(V je{ar(v,y)-a( ¥a)).
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The groups Pin{-}, Spin{-), and Spin*({-).

Let m be arbitrary. There are Lie groups which underly the algebras we have
described above. Let O(V) be the orthogonal group of linear tramsformations of V
which preserve the inner product; SO(V) is the subgroup of orientation preserving
transformations. If VeR?, then ’

O(n)={nxn matrices A 50 A-A'=ml} and SO(n){ACO(R®):det({A)s=1)}.
Pin(V)={wECIH(V): wew*...0w; for w,€V and |w;|=1} and
Spin(V)=Pin(V)NCIif™*={V)
={WECHI{V umw *...ow,, for w,EV and tw; l=1}.
I wePIn(V), then W'€Pin(V). Since wutsm{—1), Pin(V) forms s group under
Clifiord multiplication; Spin{V) i a normal subgroup. If wWEPIn(V), then |w|=1 8o
Pin(V) is contained in the unit sphere of CHI(V). I vEV aad WEPIn{V), define

plw)vmutveul. Let vy be a unit vector and embed v, in an orthonormal basis
{*11--s¥a} for V. Then ‘

Py v i=v v S vym—v, and plv))v,mv b, vy by, Sy, for v 1.
P(v)) I reflection in the hyperplane defined by v,; if mew,®_ *w,, then p{w) is »
product of reflections in the hyperplanes defined by the w; 30 plwjeo(v). It
wESpin(V), the number of hyperplane reflections is even so AW)ESO{V). Since
every efement of O(V) is the product of byperplane reflections, p defines a surjec-

tive map from Pin(V) to O(V) asd from Spin(V) to SO(V). If plw)=1 and
weSpin(V), then wlmut 20 wrvevtw for all VEV. This impliea

WECenter(CLIV)NCHM™™(V) 30 w is sealar. As |w|si, wetl. Therefore P
defines s short exact sequesnce:

’
1—Z,—8pin{V)—SO(V)—1.

- It dim(V)23, then the fundsmental group 7,(SO(V)}=Z,. Since Spin(V) is con-

nected, this sequence shows Spin{V) is simply connected so Spin(V) is the univer-
sal cover of SO(V). If dica(V)m2, then SO(V)=Spin(V)=U(1) is the circle and the
reap p:Spin(V)}—SO(V) is the double cover g—+1?,

Theorem 1.5: If dim(V')23, SpinfV} is the sniverse! cover of SO(V}.

Remark: O(V) is not connected 0 the universal cover is not uniquely defined; one
must decide how lo multiply the components. Pin(V) is one universal cover of

O(V}); the other universal cover can be defined by choosing the opposite sign for
the Clifiord algebra,

Let Spin(n)=Spin(R"). We can describe Spin(3) end Spin(4) in terms of other
clessical groups. If we identify R* with the unit quaternions H, then the unit
sphere S? inherits & natural group structure, There are two other equivalent ways
of viewing S as & group which will be useful. If 2€5° and yeH, let Azyy=mys
define a linear transformation of H. Since |zyT|m|y], plz)eSO(H). Embed R3 in
H as the purely imaginary vectors; R=i'R+jR+k-R. Since p{z)1m], o(z)
preserves R? 30 p(z)€50(R%)=S0(3). The map z—p(z) ia a 2-fold cover from S° to
SO{3) so §%=Spin(3) and SO(3)=RP? Is real projective space of dimension 3. Let

i 1
°l'[o-°i '%'[-olo]'%"(?t‘) ;
efme mefm] and eje;mey. Let awagHay and faefy+if, satisly |or|24 |82l

Let
X [ _“'E g =gty e -+5pe, 4 0,6,€5U(2),

The map x — ogHo,+ify+kf, identifies SU(2) with S°.

We csn give another description of the identification of SO(3) with RP?
which is closely related to the spinor spanner. Real projective 3-space RP3 is the
3-aphere S* with antipodal points identified. Let D? be the unit 3-disk; we also
regard D? as the upper hemisphere of S%. RP? is D? with satipodal points on the
boundary of D? identified. Let (r,€) be spherical coordinates on D3CR?; if rejo,1}
and £€52, then the corresponding point of D3 is r£, Let A(r,£)€SO(3) be rotation
in R? through an angle of #-r about the sxis £. A(0.£)=1 and A(1£)=A(l,—£) 5o
the map (r,£}~+A{r,£) extends to s map from RP? to SO(3). Couversely let
A€S0(3). Since det{(\l~A)=)*+...—1, A has & non-trivial positive eigenvalue; as
AESO(3), A1, Let £(A) be a corrasponding unit eigenvector: A is a rotation in
the plane perpendicular to £(A) about some angle 6. By replaciag £(A) by —£(A) it
need be, we can suppose fmmr for 0<r<l, If rme0), then A=sk; Il raml, then the
roles of £(A) sud {(—A) are the same. This shows the correspondence between (r.£)
and A(r,£} is a bijective correspondence between RP? and S0O(3); this correspon-
dence is 8 diffeomorphism. These are the Euler angles.

We can also define Spin(4) in terms of quaternions. Let f{2,w)y=zyW lor
t,wES? and yER'sH. Since If(z,w)y (=ly|, f(z,w)ESO{4); the kernel of f Is
#(1,1)€5%S?. This shows S3%S? is the universal cover of S0{4) %0 Spin(4)m53xS?.
Z,@Z,~{(£1,%1)} in » subgroup of Spin{4) and

Spin(4)/Z,®Z,=S0(4)/{£1}=RP*RP>.

This Is one of the salient features of 4-dimensional geometry which fails in all
other dimensions; Spin(4) Ia not a simple group. Equivalently, the lie algebra of
SO{4) is decomposable,




Q-

We complexily. Let Spin‘(V)-Spin[V)xU(l)/(g,k}-(—g,-)\); formally apeak-
ing we just allow complex coeflicients i our spinors. Spin(V} acts naturally on
the complexification of the Clifford algebra Clif(V)@C. The map (g2 )}—{p(g)\?)
gives a double cover Spin®(V)}-+SO(V)xU(1). We can embed Spin(V)CSpin(V) by
£—{s8,1). Spin(3)}=SU(2) 30 Spin(3)=SU(2xU(1)/Z,. The map (8.2)—*)g is & sur
Jective group homomorphism from SU(2]xU(1) to U(2); the kernel s {(11)(-1,-1)}
80 this map descends to identify Spin‘(3) with U(2).

Theorem  1.6:  SO(3)=RP®,  Spin (3)=SU(2)=S?,  Spin*(I)mU(2), end
Spin (4)me53253, '
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Section 2: Spinors and characteristic classes on manifolds.

Let M be a compact manifold of dimension m without boundary. The charac-
teristic classes play a crueinl role in this subject. We first discuss the Stieflel-
Whitney classes; these are Z, characteristic ciasses associated with real vector bun-
dles. The first and second Stiefel-Whitney classes measure the obstruction to a
bundle being orientable and baving a Spin atructure. Next we discuss the Chern
classes; thease ace elements of the DeRham oohomology of M given in terms of cur-
vature which sre associated with a complex vector bundle. Finally, we discuss the
Poatrjagin and Euler classes; these are elements of DeRham eohomology sssoci-
ated with real vector bundles,

Sticflel- Whilney Classes

Let V be & real vector bundle over M. Usiog » partition of unity, we can put
a smooth inaer product on V. Let {U.} be a cover of M by geodesically convex
balls. Let s, be loeal orthonormal framea for V over U,; on the overlap U Ny,
let o, =g, g0, where 8apUaWy—0; the {g,,)} are the transition functions and
satisly the cocycle condition: Bapbp™%ay 8d g, =1, The g, are the "glucing”
functiona which determine how to construct the bundle. Let Py be the bundle of
orthonormal frames to V; P{ is s princlpal O bundle with transition functions
Eap-

V is orientable f we can choose the local orientations consistently or
equivalently it we can choose the {s.} 50 that 80#ES0. This Is called reducing the
structure group; equivalently this means the priacipal bundle PA' has two com-
ponents. There i3 gn obstruction; not every vector bundle is orientable; the
Mobius strip over the circle and the tangent buadle of RP? are not orientable.

The first Stleflel-Whitney class w, Is the obstruction to orientsbility. Fix a
connection Von V. It s & closed loop In M, let w (V){v]=l If paraliel transiation
srousnd 7 preserves the orieatation of & frame and fet w(V)[7]=—1 if parallel
translation reverses the orientation; w,(V) takes values in the group Z,m{41);
wi(V)I] is independent of the connection ¥ chosen. If v, is & l-parameter family
of such loops, then parallel transiation is contiguous and bence w,(V)ly) is
independent of ¢, |f T™NY: W the composite of two . loops, then
wl(V)['yn,]-w,{V)h,}-wI(V)h,]. Thus the frst Stieflel-Whitney class wiViiaa
representation from the fundamental group w,(M) Lo Zo; wi(VIEHM;Z,). V is
otientable if and only if w;(V}mO—i.c. paraliel translation around any clased loop
preserves the orientation of s frame. Let L be the Mobiua line bundie over the
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circle; La=0,24]xR where we [dentily (0,t}={2%,~t) to put in 2 half twist. Then
going once around the circle: reverses the orientation so w (L) Is the non-trivial
representation of m(S')mZ; to Zy w,(L) s the non-trivial element of
H'(S",Zy}mZ,. If V Is & resl Line bundle, then V is trivial If and ouly V is orient-
able or equivalently if w,(V)=0. The Birst Stieflel-Whitney class classifies real Jine
bundles. The higher Stleflet-Whitney classes are generalizations of Wy Wy is the
obstruction to a Spin structuie as we shal] see shorily. The total Stieffel-Whitney
class of & real vector bundle is characterized by the following axioms; we refer Lo
Husemoller [Hu, page 2341} for further detalls.

Theorem 21 If V it s real vector bundls of dimension v |then
O(V)ml+0,(V)+... 4w, (V) where the v, €H(M;Z,).

{a) If [ :M=sN, then [ *(w(V))=w(f*(V)). (naturality).

() w(VOW)mw(V)w(W). (additivity).

(c) wi(L) penerates HY(SL,Z WeZ,. {normalization).

Remark: Although It Is convenient to write Z, multiplicatively, expressing (b) gets
& bit tricky. Let F, be the fiek] with two elements; the additive group of F, 19 lso-
morphic to the multipliestive group Z,, II we regard wEH'(M;F,), then cup pro-
duct gives a map from H(MiF)@HIM;F,) to H™*I(M;F,). Property (b) becomes
WilVOW)=Z i w(VIUm(W).  Therefore  w,(V t@Va)=w (V Hw (V,);  Iir
wi(Vi)=0 then wy(V, @V, )ew,( ViHw,(Vy).

Unfortunately, the description of w; glven above In terms of parallel transla-
tion does not generalize to diycuss the obstruction to spin strectures. It is con-
venient, therefore, to give a definition of w, in terms of Cech cohomology, 1A
Cech k-cochain is a function fag, . . ., )EZ;,m{+1} defined for j+1 tuples of
indices where U,N:--- MWe%3. We assume  is totally symmetrie-i.e.
Nowop - .« . 1 Og(r))=f{ay, . . . , o4} for any permutation . One of the many advap-
tages of Z; coeflicients 1s that there b no need to worry about signs, Let
Cech®(M;Z,) be the multiplicative group of all such functions, The eoboundary
&Cech*(M;Z,}—Cech** (M Z,).is defined by:

(&)(an, PP ,q,"}-ﬂ. ,r(ap. et By B gy o o s -“k-rl)

it U N.U, %2 otherwise Hag ... o) ts0't  defined. Let
H'(M;Z,)-{ker(&,)}liue(q,lljg these groups, are independent of the particular
cover of M by small geodesic bulls which wis chosen. Let V be a real vector bun-
dle over M and let {s,) be loea} orthonormal frames for V over U,. Let LI WA
and let f{a,Blmdet(g, Jomt1. Since det(g.A)-det(gj;,')-det(g,,). f€Cech’(M;Z,).
We compute

ﬁ‘(a.ﬂn)-det(s.;)det(u,)det(s..,)-clet(s.psm...)-l

20 [(Eker(8). It we change the choice of frames and let §,=e,s,, then the

corresponding transition functions #,, are defined by Rapmtagesti!
Na.B)=t{cr,B) det(c, ) det(¢,). This shows ¢ and ! differ by a co-boundary. Conse-
quently the cohomology class [NEH'(M;Z;,) ia Independent of the particular local
frames chosen. If f{a,A)=1 for all a,8 with U.NUg¥a, then det(gyp)=1 50 V Is
orientable. More generally, if the cohomology class of I ia trivial, then we can find
signs (a)€Zy={1} so that f(a,S)=c(a)e() for UoNUpvie. We reverse the orien
tation of s, If ¢,=1 to create a new system of local frames with consistent local
orientations; this shows V is crientuble if and only if w (V)=0.

Consider the Mobius bundle. Let fve parsmetrize the drcle for o€lo,2x].
Let Uy={0,x), U m{2x/3,5x/3), Uz=(4%/3,7%/3) and let s be sections to the
Mobius bundle over the U, We may Identifly s;ms, over UyNU,=(27/3,x) and
8,783 over U, Wym{4x/3,5%/3). However, to take into sccount the twist, we must
identify sym—s, over U,MU, (recalling thet & Is periodic with period 2x). Conse-
quently figml, fy=l, and fy=—1; since UiMUpnUs=(@}, Cech®(S";Z,)e{0} for
22 and the coboundary map & is trivial on Cech?, If ¢yez=l, ¢ tpm], and ¢;cym—1

then {e€,¢)=1; this shows [ Is not s coboundary so w, is mon-trivial in
Hl(sl;z=)-22u

Spin Structares

We suppose V orientable heneeforth; let Pgb be the bundle of oriented ortho-
normal frames; Pgy; Is & principal SO bundte and is one of the components of Py,
A spin structure on Vis a lifting of the transition functions from SO to Spin, We
suppose given h, s:U,NUs~Spin s0 that Abag)=g,s and haghg,=h,,. This is
equivalent to constructing a principal Spin bundle Pg’,:_ together with & double
cover p:Pd.,~PY. We describe this obstruction in terms of Cech cohomology.
Let b,z be any lifting of g,, to Spin; there are always two possible liftings +h,,
sad there Is nothing (locally) to prefer about one ss opposed to the other. Since
BastpBpa=ls boghg,h, me(a,B,v)ERer(p); this implies (0B, 7)=t1. ¢ is & Cech
cocycle and [¢|€H(M;Z,) is independent of the choices made. Furthermore b,,
defines a spin structure if and only if ¢ Is trivial; an oriented bundle V admits o
Spin structure if and only wy(V}=0. V admits & Spin® strueture if instead of lift-
ing the transition functions from SO to Spin they are lifted from SO to Spin®,
Theorem 2.2: Let V be an onvented real vector bundle.

{a) V admits ¢ Spin structure if ond only if wo(V JuD. Inequivaient Spin siructeres
sre parametrized by H'(M;Z,) or equivalently by real line bundles over M.

(8) V admits & Spin® struciure if and only if w{V} can be lifted from H¥(M iZa) lo
HYM;Z); inequivalent Spin® strectures erc parametrized by H HM;2) or
equivalently by comples line bundles over M.

Remark: 1t V, is Spig, then V@&V, Is Spin if and only if V, is Spin; similarly if v,



«13-

is Spin®, then V@V, is Spin® if and only if V4 Is Spin®. We note aoy Spin bundle
is Spin®; the converse need not be true. ‘ )

There is an important category of examples. If Wis a complex vector bup-
dle, let W, be the underlying real vector bundle.
Theorem 2.9: If Wis o comples vector bundle, et W, be the snderlying real vecior
bundle. W, admits & canonical Spin® atruciure.
Proof: The mod 2 reduction of the first Chern class of W 1s the second Stieflel-
Whitney class of W. As this topological proof is & bit unsatisflying, we also give a
geometric proof. Let FU(k)}=S0(2kxU(1) be Induced from the inclusion
U(k)~S0(2k) and det:U(k)—U(1). We wish to Lift 7 to s map ¥ from U{k) to
Spin(2k); this will give any complex bundle s canonjcal Spin® structure. Let
$€U(k) and choose an orthonormal basis {e,} for Ck s gle, e, o) ia
orthogonal rotation through ag angle 6, on the 2-dimensional real subspace
spanned by e, and f,=ie,. Deflne

W)=, {eon(d, /2)+0in(6, /2)e,8, )} €S pins(2k).
There is always an indeterminacy involved in choosing the angle 8,; replacing 9,
by 6,+2x changes the sign of both {cos(d,/2)48in(0,/2)e,1,} and e*7? 3o the pro-
duct is independent of the choices made. 1t is easential to have the additional com-
Plex factor to correct for this indeterminacy; we can not lift U(k) to Spin{2k),

Wo say that M is Spin it M is oriented and if the tangent bundle T(M)
admits a Spin structure. Similarly we say that M is Spin® if M is oriented and if
T(M) admits & Spin® structure, IfMistors dimensional, then T(M) Is trivial s0
M is always Spin; we omit these cases from the examples below:

Ezample 1: The sphere S"u{xeRM1; |x I=1} is always orientable and Spin.
£zample £ Real projective space RP® iy the et of real Jines through the origin in
R By identifying a point of S* with the line it defines, we may identily
RP"=8"/Z, with the sphere modulo the sntipodal action. RP® is orientable if
ne=2k-1 is odd. It is Spin if k is even; it is Spin‘ but not Spin if k is odd,
Ezample 3: Complex Projective space CP™ is the set of complex lines through the
origin in C**', By identifying a point of $%! with the line it defines, we may
identity CPRmS2a+1 /g1 Cpa iy always Spin®; it is Spin if n is odd,

Ezample §: Any holomorphic manifold iy always Spin®.

Ezampie 5: Embed the cyelic group Z, diagonally in U(k). Let M=§2%-1/2 be o
lens space. If 5 is odd, M is Spin, If o 1 even, M is Spin if and only if k is even. M
is always Spin®,

Ezamplz ¢ Any ori¢atable 2-dimensional manifoid is Spin,

Ezample 7: The product of Spin/Spin® manifolds is Spin/Spin®.

Ezample 8: The connected sum of Spin/Spin® manifolds is Spin/Spia®,
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Chern Claases

The Stieflel-Whitney classes were Z; classes. The Chern clusses are Z classes;
by taking coefficients in C, we can regard the Chern clasacs in terms of curvature
33 elements of the DeRbam cohomology of M. Let AP(M)=AP(T*M) be the bundle
of exterior p-forms and let A(M)=@,AP(M) be the exterior algebra of M. Exterior
differentiation Is s map d from CAP(M)) to C™(AP*Y(M)); d?e0. Let
HMM}-ker(d,)/imue(d,_.) be the DeRham eohomology; HB\(M)=HP{M;C) by
the DeRham theorem. If M Is integrable, w—o&w Is a0 isomarphism from HE M)
to C.

Let V be a complex vecior bundle and let V be & connection on V. There are
many definitions of & connection (see for example [EGH]), we choose the followiag
83 it is perhaps the maost conceptual. We wish to generalise the potion of the total
directional derivative. A connection V on V is & first order partial differentia)
operator V:C“(V)—-C“’(V@T'M) which  satishes  Leibnits's rule
V(f-s)t-V(a}+s@dl. There I » natursl extension of V to the exterior slgebra;

V:C"(V@AP(T‘M))—-C"(VOA'“(T'M))
defined by Vis@uimV(s)@wts@dw. In contrast to  ordinary exterior
differentiation, V? need mot be 0, However Vl{fs)=iV*(s) 50 V2 is & 0% order
differential operator; it is & 2-form valued endomorphism of V. V2 is the curve.
ture {2 of the connection V, If w is the connection 1-form of V, then Demduriinw,

We say V is Riemsanisn if it behaves properly with respect (o the (Hermitian)
lnner product-

(Vay3214H{s, Vag)eed(s, 3,).

We restrict o such connections henceforth. Relative to & local orthonormal
frame, the curvature Iy skew-symmetric; (14{1"~0. We can always emabed V in the
trivial bundle *=MxC”, Let 5 be 8 local frame for V; we can differentiate the
components of s term by term. Let *v be orthogoas! projection on V. Then we
can define o connection W by projecting ordinary differentiation back o v;
V(s)=my(ds). The curvature of this connection is Qerydayday, If Vis the tangent
bundie of M and if the embedding of V in & trivial bundle atises from an embed-
ding of M in R, then V ia the Levi-Civita connectlion.

We deflae the total Chern form as
e(ﬂ}-det(lﬁ-ﬂ/2#)—l+::,(ﬂ)-l-c,(ﬂ)+...
Wwhere the individual Chern forms €(£3) are forms of degree 2i. For example;
ey=(i/27) TR(AY),
ex{1/8x*}{Tr{Q-Q)—-Tr(N0). TV)},
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e,-(l/dSa’)-{—?Tr{ﬂﬂ«ﬂ)ﬂTr(ﬂ-ﬂ}Tr(ﬂ)—Tr(ﬂ)-Tr(ﬂ)-Tr(ﬂ)}.
¢(f1) is & closed differential form; let [«(MIEHSEM:C) be the corresponding ele-
ment of cobomology. {¢(f1)] Is independent of the particular connection chosen; let
o(V)={e{f1)] be the total Chern class of the bundie.

We Hllustrate this with an example on the Riemann sphere. Let CP'm83/51 be
the set of complex lines through the origin in C2. If OwveEC?, let <v>ECP! be
the line determined by v, The map $=<3,1> is an embedding of C In CP!.
CP'—C=({<1,0>} 30 CP! Is the Riemann sphere §%=CU{00}. Let L be the classi-
fying bundle over CPY;

L=f(<x> MECPaChAe<> JoCPRCL.
L is a sub-bundle of the trivia} bundle 2-plane bundle. Let s{z)m{<1,1 > {1,1}) be
the eanonieal section to L over C; s is a meromorphie section with a simple pole
8t 0o. Let m_ be orthogonal projection from 12 to L. Then

Ve {(10)@dz={1+(2 1Y) a0z, M2i(1+x +y2) Mdx.dy,

P(s)em{14 212" %s@d7-ds, ey(fm—r=1(14x+y?)" Vdx.dy.
Thetelore

Lol [ of* —xtr{1 42 tdrdbm1,

The Chern class can be characterized by the following properties; see
Husemoller |Hu, page 234 i}

Theorem 24 If V is a resl veclor bundle of dimension o, then
e(Vmlde (VH...4c, (V) where the & EH' (M;C).

(8} If [ :M—N, then [+ c(V))me(7*(V)). {naturelity)

(5) (V@ W)me( V)-c(W). (edditivity)

{e) 'g’. ¢y(L)=—1. fmormalization).

The Chern class converts direct sum into multiplication, The Chern character
ch converts direct sum into addition and tensor preduct into multiplication; ch
extends Lo a ring isomorphism between KUM)RC (the complex K-theory with
coeflicients in C) and HE™M;C). Modulo torsion, complex K-theory and coho-
mology sre the same, Defige:

ch(f=Tr{e/2 Nk, (1/)i/ 27y Trir);
ch(f1) is & closed differential form and eh(V)={ch(R)|€H**M;C);
<h(V@W}mch(V}+eh(W) and <h{V@W }mch(V)-ch(W).
We ean express the Chern character in terms of the Chern class:
cho(V)mdim (V),
ey (V)me, (V)={i/27)TH{0), and
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chy(Vim—es(VH-e (V)/2~{~1/8m)THIF).

We compute the Chern character for the Instanton {or possibly the anti-
Instanton) bundle over 5%, Let e(x)=L,x,e, be s representation of CERR*)®C on
C' as In Theorem 1.3; we choose the normalization so e(r)=i%,ese50,85=1 or
equivalently Tr(e,ee5e,e:)=dl. If x€SY, then ¢(x)%=—1. Let

My (x)={(x,w)ES%C": e(x)-wenti-w}
be the bundie of i eigenvalues over S%. Let w{x)={1 ~i-¢(x}}/2 be orthogonal pro-
Jection from the trivial bundle S%C* to 11,(x). The curvature 1 of the cagonjcal
connectiott on M, Is mdmdx. Let dvol, be the spherical volume element on 53
Since this construction Is equivariant with respect to the action of SO(S), Tr{f) Is
s constant multiple of dvol,, We evaluate the multiple by computing at the north
pole N==(1,0,0,0,0):

A(N)={1—le,)/2

dn(N)={e;dx;+edxy+e dx +egdx)/2 '

(AN}=n(N)-d (N} d (N} {1 ~le,)/ 2L js (eieidx;-dx;)/4

W(N)'{(l—iel)/ 2}4{1/ 15)‘%4’5"’1:"1‘3‘&’4“"!5

Tr{fPXN)={1/2)-45(1/16)-(~i }Tr{esesese e)dvolym3-dvol,.
The volume of 5?* bs x%:22°*1-51/(20)! 80 voi(S*)m82%/3 and

L, chy(M, Jem3-(1/221)-(1 /2 vol (S )emm].
Theorem 2.5: Let {"'}IS"SS be 4z{ Clifford matrices a0 i-¢ eqeqe egmld,. Let m,
be the bundle of +i eigenvalues of e{z)ml ez, over S Then fs,cll,{l'l.,)-—l.
Remork: If e is a representation of CHf{R®*)®C on C?, then L_eh,(m(e))—:tl;
the particular sign depends on whickh of the two inequivalent irreducilsie represen-
tations were chosen. Modulo a possible sign convention, this the Bott class.

The Chern character is defined by the exponential function: there are other
characteristic classes which appear In the index theorem which are defined using
other generating functions. Let x=(x,...} be & collection of indeterminates. Let
{5,(x)} be the elementary symmetric functions; 11,(14x, J=l+8,(x)+.... Let f{x) be »
symmetric polynomial. We can express K{x)=F(8,(x),...) in terms of the elementary
symmetric functions. If Amdiag(x;,...), then oA )emdet(1+A )=l +s,(x)+...; we omit
the factors of i/2% in the interests of notational convenience. We define
RY=F(c,(11)....) by substitution. For example if H{x)=E,e™, then f[Nmch(f).
Define the Todd class by:

Td{x)=it, x,/{1—"")=14+Td,(x)+...
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Then:
Tdy=c) /2, Tdym{cyt+e )12, Tdymc, e, /24.

Pontrjagin Classes

If Vis & real vector bundle with a Riemannian connection {1, the total Pon-
trjngin class is defined by P(N)=det(14{1 /27)01). This is & closed differential form
aad defines an element [p(f1)] of DeRbam cohomology. Let p(V)=(p(1)| €ty (M);
this is Independent of the particular connection chosen. Since [14+{T'=0, the forms
of odd degree vanish and we cap exprem p(ﬂ)-l-_l-p.{ﬂ)+...+p,(ﬂ) for
b={dim(V)/2] the greatest integer in dim(V)/2 and p{)€AY(M). For example,

A(V)=~1/{82*} Tr{01.0).
If VQC is the complexification of V, then P(Vim{—1)e,,(V@C). Let

P(M)=p(T(M)) be the total Pontrjagia class of M. We can defipe some additional
characteristic classes by means of formal power serjes, Let

L{x)m=n1, x,/l-anh(x.)-l+L.(x)+L,(x)+‘.. and
Alx)=t1, (s, /2)/sinb{(x,/2))1 + A (x} ...
Then:
Li=pi/3,  Ly={Tp,—p)/15,
Ap=—p,/2, A«'(“Pz‘”lhz )/5760.
We define L{M) and A(M) by taking VaeT(M).

Evler Clage

There is one fina} characteristic clasy which will play an important role in our
analysis, While a real-anti-symmetric matrix A of shape 2nx2n esanot be diago-
nalized, it can be put in block diagonal form with 2x2 blocks of the form:

0x,
=X, 0

The top Pontrjagin eclass Pa(A) is the square of the product of the x,;
Po(A)={x\...x,%. The Euler closs e(A)ex,...x, is the square root of Po- Il V js ap
oriented vector bupdle of dimension 2n, the Eyjer class e(V)GH"(M;C) is a well
defined characteristic class satisfying e(V 2-p,,(V). I Wis a complex vector bua-
dle and if V is the underlying real oriented vector bundie, then ¢(V)=c, (W), For

o(V)=1/(27) 003 if dim(V)m2.
If ¢{abed) in the totally soti-symmetric teasor, then
o(V}=1/(32%) e g, 11, dim{V)ey,

If we reverse the orientation of M, then (V) changes sign. Let ¢(M)=e(T(M)). It
We reverse the local orientation of M, then ¢(M) changes sign. Consequently ¢M)
Is a distribution or measyre rather than an m-form. (M) Is the integrand of the

e(MH—llzt)-R,,u'dvol if m=2;
QMHIIIMI’)-c(nbcdk(um)Rm,Rﬁﬁdvol it ey,
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Section 3: Elliptic complexes

Let M be a compact Riemannian manifold without boundary of dimension m.
Let V and W be be vector bundles over M and let AIC®(V)sC™(W) be » Brst
order partisl differential operator. If we choose a system of local coordinates
Xo{XppeeXg} for M and local frames sy and sy for V and W, then we can expand
A-E,S,S. 2"(x)3/3x, + b where {s"(x),b} are smooth matrix valued functions of
. The leading symbol of A is defined by formally substituting £, for dlox,;
AANXEE, ¢y 8T},

The leading symbol is sometimes defined with factors of | to make formules
involving the Fourier transform apd adjoint more elegant; we delete these factors
io the interests of simplicity here. I we change the locai frame for V and W, then
AA)x,£) transforms like a tensor; the 0'* order part transforms according o g
more complicated rule since we muyst diferentiate the rule for the change of frame,
Consequently it Is natural to regard o(AXx,£) a3 1 section to the bundle
Hom(V,W). If we change the system of Jocal coordinates, o{A)(x,£) transforma like
& co-vector. More precisely, let WET*(M) be a cotangent veetor. Expand
wak, £ dx” sod define

O(AX“’}X-E[SuS. £4"x).
Let y, be » different set of local coordinates, Since dy*sL, Oy /dx, -dx",
weL Gudy* =L, a9y /dx, dx"=E, £, dx?,
Therefore =T, c,dy"/dx,. Dually 8/8:,-2,@"/8::,-8/8;, 80 that
A=L, 2"9/0x =T, , &*3y* /%, 3/ % y=Lu(La"0y*1x,)0/y,.
Therefore the leading symbol ia the coordinate system Y |is given by,
AN W05t 5, 0,392 00, 5,08 m A Yo,

This  shows the leading symbol of A 8 & well defined map
o(A):T‘(M)—d-lom(V,W).

More generaliy, let a={a,, .., &) for a,EN be a multi-index, Let
lajmai+..t+a,, Eai, £, and A= (3" 3x, ).

Let P=Z, I Pa(x)d;":C°(V)-eC**(W) be & k¥ order partial differential operstor

(PDQ). Let S¥M} be the kt Symmetric power of the cotangent space. Then
AP)=E |y ok Pa{x)E":S(T*M)—Hom(V W)

is & symmetric polynomial of order k on T*(M) taking values in Hom(V,W). Fix »
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fiber metric on V and W and let P#:C™(W)—C*(V) be the adjoint. Then modulo
lower order terms Pre{—1)%E ), 1ot Pal)'d2 50 o(P")={~1}o(P)". It we can com-
pose the PDO's P and Q, then o(PQ)=o(P)o(Q). We say P Is elliptic it ofPYw) bs
Invertible for wmi0; the class of elliptic operators Is closed under adjoint and com-
position,

Spectral theory of self-edjoint PDO',

A spectral resolution {4,,),} of s self-adjoint operator P:C*%(V)—C™(V) is a
eomplete orthonormal basis {#a} for L%V} of eigenfunctions #, corresponding to
the eigenvalues X,. We order the cigenfunctions so |\, |< [Mgl,.... We refer to Gil-
key [G, Lemma 1.6.2) for:

Theorem 8.5: Let P be o self-adjoint elliptic PDO.

(a) There exists ¢ spectral resolution {#a\a} of P.

(b) The {9} ere amooth functions of P.

(¢} There exists §>0, €0, and ng>0 a0 that if n2ny, then My 120’
{d) dim ker(P)<oo. LY V)-ker(P)@c'mua(P).

The spectra! resolution of —#/ on S! i {#*.0%)cz. The eigenfunctions
¢ are smooth and the cigenvalues grow quadratically. We generalize the notion
of Fourier series s follows. Let {daa)} be & spectral resolution of a sell-adjoint
elliptic PDO. Expand 1€C*(V) in the form f=Z, 5,(N4, where ao(={ (6 Mdvol.
This series convergey absolutely and can be differentisted term by term arbitrarily
often. The generalized Fourier coeflicients 8,(f) decay faster than any power of n,

Given s symbol 8:T*M—Hom(V,W) and s connection V on V, we can define
8 canonical differential operator A with leading symbol s. Let a=E a*€, and
define A=E, 8"(x)Vs/s,,. V is & Birst order PDO from C=(V) to C™(V)®T*M and
a is linear map from VAT*M to W; A is the composition -V, d Is the canonieal
operator associated with ext and the Levi-Clvita connection. & s the canonical
operator associated with -Int and the Levi-Civita connection,

Poincare Duality and the Hodyge * operator

Let d be exterior differentiation. d(Efidxt)e, 30,/8x, dx”-dx! 30
ANHE '}, ) €, xS mEyun ydelmext{whE e,
This shows the leading symbol of exterior differentiation Is exterior multiplication:
dually the leading symbol of the adjoint § is minus interior multiplication. The
leading symbot of d45 is Clifford multiplication o{w)mext(w)—int(w). Since

o(EP=~1E12, (£) s invertible for £#0 30 d+5 is elliptic. Let A=(d+5)? be the
Laplacian; o(A)(x,E)m—{€|2 30 A is elliptic. We expand LY(AP) in an orthogonal
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direct sum using Theorem 3.1;
L’(A")—ker(A,)@imue(A,)-ker{A,)@imqe(d,_,)Qimudﬁ,_,);
ker(A,)—ker(d,)r*er(EP_,). Let weker(A)) be a barmonic p-form, Since dumd, w
determines an element [u] of the DeRbam cohomology groups HE,{M). Con-
versely, let [f€HE{M). Expand ity +outy.  Since déma, déuy=0 so
Ou{dbuty,un)m(biusy,bu) 80 GuymO and Gmirydw,.  This shows the map
ker(A,)—HE, (M) is surjective. Since the sum Is an orthogonal decompusition,
Eer(A,hmqe(d,_.)—{D}. This proves:
Theorem 3.2: ker (A, JSHB, (M )ymit? (M)

Let ClM)®C be the complexification of the Clifford algebra on the
cotangent space T(M). Suppose M is oriented and let TECL{M)®C be the normal-
ised orientation form. If (Vie-va) B8 a local oriented orthonormal frame for
T*M), then Tee-v) %%y, where ¢ is & suitabie power of i. Clifflord multiplication
c(7) is a map from AP to AP,

Lemma 3.3:

{8) (d+0)e (r){=1)™ i () d +4).

(5) &y ¢(r)me(nA, , .

Proof: if WET*M, then lwle(r)m{~112*le{r)e{w). Since ¢{w} is the leading symbol
of 444, o{{d+8)e{r)—{~1/*1e{r){d-+4)}=0 50 (dH)e{r)m{~11"*1e{r){d+0)+B where
B is & 0' order operstor. Fix a poiat P of M; we wish to show B vanishes at P,
Choose 2 system of local coordinates centered a¢ P a0d fet ds?=, | g\ dxi-dak be

provea (1); (b) loliows from (a) B

Since ofr) intertwines 4, and An—p €(7) is an isomorphism from HP(M) to
H""MM); modulo suitable factors of §, ¢} is Poincare duality,

x(M)-Ep(-l)Pdim H"(M)-E,[—l)" dim H“"’(MH-I)")((M)
30 X{M}=0 if m is odd. It is possible to describe Poincare duality in terms of the

Hodge star operator. Let {V15-4¥a} be 2 local orthonormal frame for T*M). Let
dvoluy,. . - . ¥ be the ungormalized Riemaanian volume element; ¢(r)1me-dvol

exterior algebra A(M), It @,8EANM), define ihe Hodge star duality operator
*:AP(M)~+AB~F(M) by (a.f)-dvolma-*3. If Wii=(t,...,m}, then *{vjJme'vy where ¢

is the sign of the permutation (i.....,il,','j',’,': Jueyg? ¥I-Vyme-dvol, The whole difficulty

with working with the Hodge * operator is keeping track of the sigs. The proof
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of (b,c,d) in an algebraic exercise left Lo the reader:

Lemma 8.4: )

(a) c(r) and * g ssomorphisms  between H"(M)-kcr(A,) and
H™ P (M ke (8., ).

(8) #'m{—-1)p(=-r)

(3) Sm(=1)r+m+1oge

(c) U m ia even, then (rjmi®/343(0-)s

Elliptic Complezes

We sy that (V,A) is an elliplic complez over M if: (s} V'{"’}os»s- e finite
collection of vector bundles over M.

(b) A-{A,}nsp“ where A,:cw(v,)-c'-(v,,,) are 1* order PDQs,

() Ap:A,_ =0,

(d) it wET*(M) and wyi0, then ker oA, w)mimage oA, Yw).

{d) ia the assumption the complex Is exact op the symbol level and is & nop-
degenceracy coedition. If (n,b,c) bold, then the following conditions are equivalent;

(d) if WET*(M) and ww0, then ker oA, w)=image A, Nw).

(d1) A+A%:C=(@,V,}~C*(g,V)} I alliptic

(d2) the associated Laplacian Dma{A+A") 1y elliptic.

Since A’{A*)'=0, Amg, where A,-A,_,A;_@A;A,:C"(V,}—-C“(V,) I & nelf-
adjoint elliptic 2™ order PDO,

The Hodge decomposition theorem is the fundamental tool used to study
elliptic complexes; it follows easily from Theorem 3.1,

Theorem 3.5: {Hodge Decomposition Theorem). Let (V.A) be an elliptic complez.
{s) Thers is an orthogonal direct sym decomponiiion
LY V? Jwimage (4 "~ Dimage(A Y Mpker(AP),
(8} ker (A} is & finite dimensional subset of cx(ve),
{c)Let H? (VA Juker(A, )/ image {Ay1) HP (V.4 Yaker(A, ).

Let index(V A }mE, (—1)"dim HY{(V,A)=L (—1)-dim ker(4,); the index is cop.
Stant under perturbations as we shall see in Theorem 4.2. The Atiyah-Singer
index theorem provides formula for index(V,A) in terms of topological informs-
tion sbout the bundles V apd the leading symbol of A. The index vanishes if m is
odd and is multiplicative under finite coverings. We can always “roil up” the com.
plex to define & 2-term elliptic complex with the same Index, Let V.m-Op Vap
88d Vo4ymd, Vapyy. Then A+A':C"°(V,,,,)—-C°°(Vd¢) is & 2-term eliiptic com-
plex and index(V,A)-indu({Vm,.Vdd}A+A‘).
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Let (V,A) be an elliptic complex over M and let (W,B) be an elliptlc complex
over N. We form (V@W,A@B) over MxN by defining (VoW),=a, 4. V,.8V,
snd (A@B),-Gﬁb.,(A.el;ﬂ—l)'l,@Bb); the (~1)* sign is inserted so that
(A®BP'=0. This Is an elliptie complex over MxN  and
index((V@W,A@B))windex(V,A) ndex(W,B).

The DeRham Complex

The DeRbam complex (A0 A" 41 5} In defined by taking

VNpA”m)- qupAm.(M)t and A=(d+j).

Conditlons (a,b,c) are immediate; since Clifford multiplication ow) Iy non-singular
for umiQ, the complex 1is elliptie. This complex is also often regarded as
{d:C”(A")—-C“"(AP'”)}; we have rolled up this complex o form & 2-term com-
piex. The associated cohomology can be regarded as & formal difference
. HT*™M)—H>YM). The Laplacian is the Bochner Laplacian Bp=(d*d+dd*),; we
can identify the topological echomology groups HPM;C) with the DeRham coho-
mology groups Hfe{M}. These groups can be identified with ker{A,) by the Hodge
decomposition theorem, Therefore:

index(A™™— A, 4+ fjmdim H™(M}—dim H*(M)=E(~1Pdim HYM)=x(M).
This Is & bomotopy invariant of M. The DeRham complex is multiplicative with
respect to products

[A"'(MxN)-‘\'“fWN)rd'!-‘l-(A'WMl-A“M-d%M“‘(N)‘*A'“(NMM-
The Euler characteristje is & combinatorial invariagt, For example, If M is & 2-
dimensiona! polyhedra, then x(M)-#vertices-—#edge-l-#fncu.

Let S™ be the sphere of dimension m, et RP®aS™/Z, be resl projective
space, and let CP® b complex projective space. If M and N are manifoidsy of
dimension m, the connected sum M#N Is defined by punching out a disk from M
and from N and glueing them together along the common boundary; we perform
this glueing in such o fashions that if M and N are oriented, M#N inherits an
orientation which agrees with that on M and on N away from the disks which
have been punched out,

Ezample 0 X(M)=0 if mml mod 2.

Erample §1: X(S™)m2,

Erample #: x(RP™)mi,

Ezample 3: X{CP")mn 41,

Ezemple 4: x(MxN)-x(M)x{N).

Ezample 5: x(MAN)mx(M)+x(N)~x(s™)

Ezample 6: If F~M—Nis o fuite cover, X(M)emy{N}-|F |.

“9q.
The Signature Comples:

Let M be oriented and even dimemsions). The signature complex
{A*—A‘,d-l—é'} Is defined by decomposing the exterior tlgebra into the 41 eigen-
opaces of or). Sinee m Is even, cfr} antl-commutes with d+$ =0
(d-l-&):C”(A"(M))-—-C"’[A‘(M)). Let sign(M}-lndex{A*-A",dH’}. Let A* be the
Laplacians on C™(A%(M)) and fet H(M)=ker{A%(M)). This gives & decomposi-
tion of the cobomology H'M)}=H*M)OH~(M) similsr to the decomposition
H'(M)-H""(M)QH"‘"’(M) given by the DeRham complex. If we reverse the orien-
tation of M, the signature changes sign. If m=e2, Fuiv *v, 50

A*’(M)-upsn{l+lv,-v,. vy+iv,} and A‘(M)wpsn{l-lvl-v,. v ~iv,}
I mm=d, Liamam 50 5 A AP
A+(M)'GP“{(1""1":"’3"4)}
Sspan{y,—vy.v,.v,, AR Yot -vyevy)
@span{v,-vytvy.v,, Y1V VaVy Vv dvyvg),
A-(M)"Plﬂ{(l'ﬁr":"r‘c)}
Bspan{v,+vy-vy-v,, v,—vl-v',-v.., YtV Vv, Vv vpevy)
@span(v,-vy—vy.v,, ML A R R A

Since oV 1BVy)=r(V,}r(V,), the signature complex Is multiplicative with respect to
products;

{AMN)—AWN)-J-M-M'(M)-A'MMM{A'INI-AW-GM-

A3 with the DeRham tomplex, it is possible to give » topological interprets-
tion of sign(M). If mm? mod 4, then o7} is purely imaginary; complex conjuga-
tion defines an tsomorphism from A*{M) to A~(M} and from H*(M) 10 H-(M) %o
sign(M)=0. Let mm0 mod 4. It p<2k, then a-tﬂic(f)OEA*W) Is an Isomorphism
from HP(M) to H*(MHH"(M)@H"'P(M)). Consequently, the dimension of these
harmonic forms plays no role in the computation of the index since thess terms
cancel in pairs. We focus our attention on the middje dimension, Decom
ABm AT A%~ g H‘*"(M)-l-l"""(M)eH"‘-"(M). Sinee c(rjmixHINR-1)e,
or).and %, agree In the middle dimension. There is s natural symmetric bilinear
form on H™(M). The index form (@,a) i defined by £, @2 this is & non-
singuiar symmetric bilinear form. I(-;-) is the evaluation of Lhe cup product of two
cohomology elasses on the top dimensional cycle. 30 i{--} can be defined topologi-
cally and is & homotopy invarisnt of M. Let 0%a€H™(M) be a harmonje 2k form.
If *owacy, then {a)>0; it *aw—a, then i(o,0)<0. This shows I |s positlve
defiaite on H*{M) and Degative definite on H-(M}); siga(M) is the index of this
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quadratic form.

Ezample 0: sign(M)==0 if mm? mod 4.

Ezample 1: sign(S**jmg.

Ezample - 8ign{CP )u=],

Ezample 8: al;n(MxN)-si;(M)sign(N].

Ezample 4: alln(M#N)-sianHsixn(N)—-isn(s'hisn(M)Hsn(N)-
Ezample 61 U F—sM—N Iy s Bnite cover, sign(M)=aigu(N) |F |.

Elliptic complexes given by Clifford modules.

Let m be even and let M be oriented. We can generalize the signature com-
Plex to the category of Clifford modules. Let E be » Clif(M)@C module. We
assume given s livear map ¢ from T*M) to End(E) so that o{wfm—|w) for
WET*(M). Let V be a connection on E. We can covariantly differentiste ihe
Clifford module structure. Let ¥V be the Levi-Civita connection on CliffM)@C and
define the covariant derivative of the Clifford module structure by

(Vc)(w)'e-V{c(u)'e}—e(Vw)'e-e(w)'Ve.
We choose & connection so Vemt); we will show In section 4 such connections
always exist. We Ppostpone until that time & study of the local geomeiry and the
curvature of such a connection. For example, if EmA(M)SC is the complexified
exterior algebra with the canonical Clif(M)}®C module structure, then this struc-
ture is covariant constant with respect to the Levi-Civita connection,

Decompose E=E*GE™ into the +1 cigenvalues of ¢{r). Since Vir)=0, V res-
tricts to connections V* op Ef, Clifiord multipiication anti-commutes with efr)
and defines symbois c":T‘{M)—-Hom(E*.E') and c‘:T'(M)—vHom(E',E"). Let
A*’:C"’(E*)-—-C"‘(E‘) 8nd AT:C®(E~}—C™(E*) be the cperators eanonically
amocinted with c* by the connections V0 {x;} in » local system of coordinates
on M, then Aml, c(dx")'Vf/.,_ re operators of Dirac type; A~ is the adjoint of
A* and the associated Laplacians A% yre elliptic with leading symbol — £ [214%,
Let (E*—E-,A) be the elliptic complex A":C“’(E*)—-C"'{E‘); the index ia
Independent of the particular connection chosen. If E(M) and F(N} are Clif(M)
and Clif(N) moduies over M and N, we can give E(M)@F(N) a Clif{MxN} module

structure by taking into scoount the signs involved; this construction is multipli-
cative

({E(Ml@ﬂN)}"-{E(M)@F‘(N)}‘.A)-lE‘IMl-E“MA)@lE‘IN)-E'(N}A)-

IFEisa CliffM)®C module over M and if W is a coefficient bundle, we give EQW
the tensor product Clif(M)®C module structure,

Signature complex: A(M) inherits & natural Clif{(M) module structure by
defining c(w)-ext(ukint(w); the elliptic complex of Dirac type associated with
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this module structure ls the signature complex, More geaerally, Jet W be »
coefficient bundle over M. Let {wi@1 define a Clif(M) wodule structure on
AM)@W. This is the signature complex with coefficients in W and we denote the
index by sign(M,W). In contrast to the case Waml, there exist exampies where
sign(M,W) is non-trivial if mm2 mod 4.

DeRham Compler: o(r) preserves the decomposition of A(M) iuto forms of
even/odd degrees. This yields & 4-fold decomposition

A(M)-A"‘*(M)@A“'*(M)OQM'W)OA“*'(M)-

For example if M2,
AT (M)wepan(l Hvy-va), A4 (M)wapan {vitivy),
AT (M)mspan{t—iv,-vy}, AM-(M}"P“‘{":"“’:};

if mamd,
AT (M)mpan{l TYUVEYE Y VY hagvg vyvy—vgey,, Yyvgbrymy),
4'“"(“)"?“{'1"':-"3"1- YT VY Y vg,),
AT (M)mupan{l4v,vavyv,, VIV Ve Ve Vivateg vy, viv—veyy),
A“"-(M)"P“{'H":"r"i- YTV Vb, veyprgry).

Let E,-{A"--f(M)@AM-(M),dm and E,-{A"“-*(M)QA"“-‘(M),H-&} be
elliptic complexes defined by the Clifford module structure,

Theorem 2.6:

{s} E,+E,-{A*-A"‘.d+&} 80 index(E ,)+u'ud¢::(E,)-n‘m(M )

(8) E\—E yum{Ato» =A* 445} s0 index(E ¢ }~indez(E,,c J=x(M).

Proof: This is immediate from the definition. We shall see in section 4 that this
decomposition of the DeRham and signature complexes into finer pieces plays a
crucial role in the computation of the dimension of the Yang-Mills moduli space.
Remark: As an immediate consequence we see siga(M)mx(M) mod 2.

The Dolbeasit Complex

The Dolbeauit complex is & complex snalogue of the DeRham complex. Let M
be a holomorphic manifotd of complex dimension m and corresponding real
dimension 2m, Let 3={2|)i2y} be & system of iocal bolomorphic coordinates on
M. If 2,=x,+iy,, define: '

de*mdx*+idy”, 8/ 32, {0/ Ox,~id)/3y,)/2,
42’ =dx*—idy”, 8/ 82,3/ 3x,+i8/dy,)/2,
A'%(M)mspan{dz'}cT ‘M)ecC, T'(M)=span{d/3:,}CT M)ec,
A% (M}mspan{d?}CT ‘M)ec, ﬂ"(Mhpm{alafu}C'f(M)@C-
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The decomposition TMRC=T MG TYM) and TM)@C=A'YM)g AI(M)
Is independent of the particular coordinate system chosen. We choose .a Rieman-
nian metric oz M 30 that this splitting s orthogonal, Let

AP M)mopan{ds!.di'} 10 111

%0 A’(M)@C-Q,,,.,_,-A'”“)(M), Decompase exterior differentiation dad!0440.t
where d!:Co(APAM)}C=(APHAM)) snd dP1:C{ APAM))—C=( AP+10))
are defined by: :

d"(% o) e T | B0/82, dr*-do).d5? and
dONE oy 1t )Ty | OO/ de 0,

I is bolomorphic if and oaly if d°feg, {d'°)={d®1}2mp and d°! ig the complex
conjugate of d°!. These operators are also often denoted by Smd!? and Fud®!_ It
wET*(M), we can decompose Wy +y for wy€A'P and @€A%, More specifically,
i weE, £, dx"4,dy", then:

wy=L{€,~is,)/2{dx"+idy”} and Gy= L€, 45, )/2-(dx"~Idy).

Extend ext and int to be complex linear. Let §'9 and £ e the sdjoints of 410
and d%! 50 Smf1 041, Theq

A" N w)mext(T Jm, (€, +is, )/ Zext{dx"—idy”)
o(P-')(w)-4nt{w.)-—2.(f.—ir.)/2-int(dx'—ldy')
AL 8 Pl 2/,
Let Do W)=V (ext(T)—int(w)). Since opoi(wfm=[w(?, this defines a
ClifM)®C module structure on 1\"-'(?-#!)-@,I A®YM). Let dxy-dyp- -+ v dxy-dy,

define the canonical orientation of M, Let A%%(M) be the decomposition of A%'(M)
Into the 41 eigenvalues of ofr) and let

AOM)=BpA°(M) and AOH(M )y 492 1(p)

We wish to show A*H(M)mAOPvo/od(N ). uy his is a purely local question we
may study this question for CPm=R?m, Suppose m=1. Let {vi,v;} be an oriented
orthonormal basis for R? so thet v1+ivy spans A'%(C) and v,~iv, spans A%,

Then v,-(v,-l—iv,)/2+(v|—iv,)/2 and vom{vy=iv,)/2Hv,+iv,}/2 is the decomposi-
tion of v; into Al0gAL!,

%d("l}'vf'{“‘('l-":)‘h‘("l‘H"z)}/ 2

%(Vz)‘ﬁ'{“'-("z“"lHm("z"h’l)}/ 2

Dol T (v, ) epey(vs)
-{exl.(v|-hr,)—int(v,-l-lv,)}-{ext(v,-l-iv,)—int(v._.-iv,)}/2,
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a(r){1 }'i'("“'("l—h’z]"‘n‘("l“"z)){("z'ﬂ"l)}/ =1, and
%d(f){vl‘i"e}'i(ﬂ'-("l-"’a)—i'-(":"‘i"z)]{i}'—("l-l"a)'

This shows that A®%(C)=A%+(C) and A% C)=A®~(C). We pow proceed by
induction. Let C™=CHC™ ). Then
Ao""'(C'“)- A°"""(C)@ Ao,nu(c--l n Ao'“‘(Cb AO,NH(G- I)
Ao-"(C")- A‘“’(C)@ Ao.-b-(c-l)@ Ao.—(cb Ao.-(cn-l )
A Cm)mAOmm(C)p A0 G- 1) 004 C)g A cm-1)
A"-'(C")—A"-"(C)@A“-'(C""')QA"-‘(C)@A"-“(C'").
This identifies the bundles of the Dolbesult complex with A%™(M) gnq
A%4(M). There are many poasible natural connections on A%*(M); all these con-
nections will coincide if M is Kaehler but this is oot true in general; not all of
these connections are compatible with the Cliflord module structure. Fortunately,

the index Is not sensitive to lower order perturbations so we can take the operator
of the Dolbeault complex to be
d°-'+ﬂ':C“(A"-""(M))—-C”{A°'°“m));

this ia the rolled up verslon; equivalently {d"-':C“(A“-’)—-C“(A"-"”)} defines the
Dolbeault complex. The normalizing constant of VZ plays no role nor do lower
order perturbations. The index is the srithmetic genws ag(M). We remark that it is
not necessary to assume a holomorphic structure; this invariant can be defined in
the estegory of almont complex manifolds, If W is o coefficient bundle, let
(A% A%\ W be & short hand potation for the Dolbeault complex;

Index {( AQsven__ 40,0dd oW }-lg('M ,W).

We refer 1o Gilkey |G, Corollary 3.5.7] for the following result which relates
the arithmetic genus, the Euler characteristic, and the signature in complex
dimensions 1,2 (and corresponding real dimensions 2,4). ‘
Theorem 2.7: '

(e} if ma=y, then of (M )=x(M)/2,

(5) if m=g, then ag(M )m{x{M}+-sign(M)}/1.

Remark: We noted previously that x(M)msign{M) mod 2; (b) provides an addi-
tional Integrality result. For example, it we try to compute ag(S*), we would
deduce ag(S*)={240}/4. Since this isn't an integer, S does not admit an almost
complex structure. Similarly 85(CP*¥CP?)m{343-242})/4 Is not an integer 30
CP*#CP? does not admit an aimost complex structure. The index theorem can be
used to prove other non-existence resuits.

Ezample 1: mwm], let gmdim H'(M). x(M)=2-7 and sg(M)=1-g.

Ezample 2: ag(CP Y],

Ezample 3. ag(MxN)wag(M)-ag(N),
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Esample {: It F—M—N is » finite cover, ag(Mjuag(N)-|F ).

The Spin® complex

The Spin® complex includes the DeRbam, the sigoature, and thy Dolbeault
complexes within s common framework. Let M be an even dimensional Bpin® man-
ifold; the lift of w, from H(M;Z,) to HY(M;Z) ean be thought of snalggous to an
orientation. Let A (M) be the bum;:lle associated to the fundamental representation
of Spin° described in Theorem 1.3. A4{M) inherita a natural Clit{(M)$C module
structure. The Spin® complex {A'f*—A"..A} is the amociated slliptic romplex of
Dirac type A,"':C“‘(A,*(M))ﬂC“‘(’A;‘(M)). Il Wis & coefficient bundie, we can
twist this complex by taking coefficienta in W,

If M is bolomorphic, we may give M the Spin® structure of Theorem 1.3. Wa
refer to Gilkey |G, Lemma 3.5.4] for:
Theorem 3.8: index (YA A, YminderfAO.even _ 50,084 %1421
Remark: We must always choose » conpection which is compatible with the
Clifflord module structure, If M ia;not Kaehler, there are many different conpec.
tions so the operators do not in genersl agree even when adjusted by . suitable

bormalizing constant. The Spipt complex is & generalization of the Dolbasuit com-
plex to non-complex manifoids,

It M is Spin, let A(M) be tbe Spin bundle; and Jet {A*~A~,A} be the Spin
complex A*:C“(A*(M))——C“(A‘(h;d)). We can describe the other clasalenl elliptic
complexes in terms of the Spin complex,

Theorem 3.9:

{a) If M is holomorphic, then M is Spin if end only if there cziats & square root L,
of A%™(M). indez {A°----A°--“,J:ﬂ-'wl}-.'uu{{&-a—}@:,.,A }

(8) If M sa Spin, indez {Aroem _podd of +8}m{~1)" indez {(A*--A- )e(A*~4"),4 )
(<} If M is Spin, indes {A*—A~.d +8)mindes {(A*—A“)@(A"’+A"),A }

Remark: These isoreorphisms preserve the ClifM)}®C module structure. In (b,e),
the isomorphisms preserve the operalors involved; In (a), the isomorphism
preserve the operator moduio a aui‘tlble normalization and moduio lower order
terms. The apin bundie A is the Square root of the exterior ‘nigebrs;
A(M)@A(M)EA(M}. It we take the tensor product of A(M) with ilsell, we permit
spinors 10 act on both the left and the right; this gives the representating p- As
with any square rool, there is always & choijce of sigas. In this instance, Lhe choice
of signs manifests itseif jn the fact that inequlvalent spin structures on M are

parametrized by rea] [ine bundles; tl‘lis indeterminacy does not change the index.
Changing & Spin® structure can chan!‘:e the index.

It is worth exploring these isomorphisms g bit more. Let {u,v} be an wriented
orthonormal basis for R2, As [efy CliffR*)}@C modules, we can take
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A =span{l Hu*v} and A =span{u—iv}

43 representalives for A* embedded in Clf{R*)@C. We must take the transpose
lo turn CUf(R*)@C under right Clifford multiplication into a Jeft Cli{R*)@C
module; thus c{r} corresponds to right multiplication by I'v*y so

A =apan{u+iv} and Ag =epan{l Husv).

Then
{A)* {05 Jmspan{(14iusv)urtiv)}ompan{u+iv)
{Aa.+}'{Aﬁ'}-m{(lﬂu‘vxlﬂu‘v)}-pm{lﬂu"}
{AC ) (A Jepan{(u~iv)(u+iv)mepan{t—iutv)
{ATY AT ymapao{(u=—iv)*(1-+iusv)}mepaniu—iv).

Clifford multiplication defines a vector space isomorphism between:
AT@AT=AMH M), AYQATmAY (M)
AL BT mA™™~(M), AT@ AT =A%),

Furthermore, since the action of SO corresponds to the product of left action by
Clif(M)®C and right sction by the transpose, this isomorphism is true in terms of
fepresentations spaces. We use product formulas to conclude this decomposition
bolds (with suitable sign changes) in for general m. The relationship with the Dol-
beault compiex is derived similarly, V'A%® enters from the definition of the kift-
ing of the transition functions from U(m) to Spin‘{(2m).
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Section 4: The index theorem

In thiy section, we wil} give a brlel" discussion of the heat equation proof of
the Atiyah-Singer index theorem and we will discyse the formulse for the index of
the classical elliptic complexes. We will discuss the Yang-Mills complex, We con-
clude with & statement of the Atiyab-Singer index theorem in general,

We begin by reviewing some results concerning the heat equation and refer to

fold of dimension m without, boundary and dvol(x) be the Riemannisa ¢lement, of
volume on M. Let P:C"(V)q-c”(v) be ﬂ; self-adjoint elliptic 224 order PDO such
that o(P)Xw) Is negative deflpite for O¥wET*(M). For example, if P is the Lapla-
cian, then Pe-L, . e"#/x dx" 4 |o rer order terms 80 O(P)w)me— lwi®lyia
negative deflnite. Let {#aXs}ibe a speeujb resolution of L%(P). Since the symbol of
P Is negative definite, only s, fnjte oumber of eigenvalues of P are negative, The
fundamental solution of the Leat equation o isan tofinitely smoothing operator
of trace elamy for t>0,Trsfe”F)m, e'u‘f. If nis large, then M2en’ 30 this series
converges absolutely to an analytie function, The ssympiotic behavior as t—eQ* iy
given as follows:

Theorem J.1: Let P be as above. There ezist locel inbariants a,(z,P) in the et of
the total symbol of P s0 that ‘

rr(e-"y-.fu:oc(h-'f/’ [, 8 (2.P)dvol(z).

Let A:C"(Vg)—'C“‘[V.) be 8 2-term elliptic complex; we can always roll up a
longer elliptic complex. Let {\ymA*A and let AmAA* be the associated Lapln.
clans. Let ay(x,A e, (x,80)—a,(x,4,) and na(A)=f ay(x A}dvol(x).

Theorem 4.2

(a) Tr(e "“')-rr(e"")-.'nm‘u >

{8) index(A )0 if m iy odd; index(A J=ay 1o{A ) if m is even.

(e} If A(1) is « smooth 1-paramyter family, indez(A,} is independent of ¢

(4] I/ F—M\—M is & finite emoot covering and if A :C(V,)~C(V,) i the
corresponding operator aver M. 1, then indez (A Jum | F [-éndex(A ),

(<) tign (M, # M )omsign (M Losign (M) and XM M) (M M) xS ™),
Proofiet E(A.P)-{dﬂ.‘(V):P&-M}; E(\P} is a finite dimensionsl subspace of
C™(V). Then Tr{e™'P)mE, ¢~Dim E(\P). Since Alg=A AmAA*A, A defines 2
linear map A, from E(\Ag) W E(0A,). Similarly A® defines a lipear map A,
from E(\A)} to E(N\4y). Since A;A,-A-lm_,,,) and A;A;-A-Im,,,_). dim
E\Qo)=dim E()\,A,) for A0, Therefore |

'rr(e"“")—'rr(e"‘-)-z,l e~ {dim E(\, Ag)~dim E(\4 )=
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dim E(0,Ay)—dim E(0,4,)=index(A)
which proves (8)- We use the ssymplotlc series of Theorem 4.1 to compute:
Index(A)=Tr(e™*%)~Tr{e 445 ti7-n)/2y (A),

Since index{A) Is independent of the parameter t, only the constant term in the
asymptotic series is noo-zero; this praves (b). If A, is & smooth 1-parameter family
of elliptic PDOs, then a,(A,,)-L 2,(x,AMdvol(x) s & smooth function of 1 since
8,(x,A,) is given by s Jocal formuls, This shows index(A,) is smooth in ¢, Since
Index(A,) Is integer valued, It is constant. This proves (c). Since integration is
multiplicative under fnite coverings, (d) follows. We form M,#M, by Punching

the boundary, then this is also & metric decomposition. We compute the Eyler
characteristic op signature a3y the index of an elliptic complex; this is given by

Integrating a local formula. Integration s additive with respect to such decompo-
sitions. This shows

XM M) +x(S™)mx{M, )+ (M) and ﬁtﬂ(Mn#W+'icn(5'}-sin(M|)+ﬁan:
() follows since sign(5%)=0, W

The local geometry of Clifford modules

Let m be even. Let {¥1,-:¥in} be u local orthonormal frame for M. Let 8V be
she Levi-Civita connection extended 4o act on tensors of all types, We adopt the

frames. Let 'V(v,-)-‘l"u-kvk@vi. The spin bundle A alwayy exisis locally. The
smbiguity In defining A globally is a Z; smbiguity; the global obstraetion plays
80 role in the local theory. A inherits a natural connection AV calfed the Spin

connection. The connection 1-form of 4V js (1/4yelv )elv 1T, @ v,

Let (E,e5) be a CHf{M)@C module, A fber metric .}z on E is said to be com-
patible if cg(w) Is unitary for WET*(M) and jw)e=l. A connection EV on E is said
‘o be compatlble If EV js Riemannisn with respect Lo a compatibie Bber metric
(Ve 8ad if EV(cp)mp.

Theorem {.8: Let (Ecg) be & Clif (MYQC modsle,

{c) There exist compatible fiber metrics (g

(€) There exist compatile connections £V

(c) Let (,)p and £V e compatible. We can decompose E =ARQE, locally s0
&= a®L ()5 =()a®(.)g,, and £ VaaVg) 1105

Proof: Since the convex combinatjon of compatible metrics or connections is
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compatible connection. This proves (b). Let EV be compatible. The Spin connec-
tion V@1 on AQE, i compatible, Let 6=EV..AVRL: O is an endomorphism of
A@E, which commutes with the Cif(M)@C module structure. Consequently
O=1@¢ where OEEnd(Ejl Let ™V have comnection 1-form 9, then
EveivRl+ig™Y. &

Elliptic complexes given by Clifford modulcs

Let (E,c) be a ClifM)®C module. Let (E*—E",A) be the elliptic complex of
Dirac type discusoed in section 3. If we reverse the orlentation, we interchange the
rolea of E* and E~ so the local invariants x(x,A) of Theorsm 4.2 change sign.
Consequently 8,(X,A)EC™(A™(M)) are m-form valued rather than scalar vaiued;
this is & crucia! point. The invariants 8,(x,A) are local invariants of the deriva
tives of the total symbol of A, By Theorem 4.3, E Is locally Isomorphic to & ten-
sor product AQE,. Consequently a,(x,A) ean be expressed In terms of the jets of
the metric and the derivatives of the connection I-form on Ey. It then follows
from the analysis described In Gilkey [G] that a,(x,A)=0 for 2a<m while
So/2(%,A) is & characteristic form. The norm‘ulizin; constants can be determined
using the method of universal examples. Let A be the A-roof genus described pre-
viously. Then a,o(t,A}mE;, ey chy(Eg)-A,. The Chern character ch{A) bs a
well defined characteristic form even If M is not Spin; ¢h,{AJm0 for 1—odd. As the
constant term I3 non-sero, ¢h(A)~! is also & well defined characteristic form. For
example:

eh(A)m2 ch(A)~1w(1/2) (m=2),
cb{B)=4:(14p,/8) eh(A) 'm(1/4){1-p,/8} {mw-),
Since ch(E)mch(A)-ch(Eg), ny(x,A)m{ch(A(M)}1-A-ch(E)}, where we taks the
form of top degree. This is globally defined and independent of the choless made
lo the decomposition of Theorem 4.3. This proves;
Theorem {.5: Let E be & Clif (T*M ) moduis and let A ICP(EY)=C=(E").
(a) 8, (z,4 )=0 for tn<m,
(4) 8 pof3,4 JmA -cA(A)V.ch(E )
(c) index {(E*—E~ A }ﬁL A -ch(A)V-ck(E).
Remark: This shows the index Is Independent of the particular CliM)@C module
structure chosen for E,

Classical Elliptic Complexes

We could useTheorem 4.5 to compute the jndex of the 4 classical elliptic com-
plexes. However it la just as easy to aote that there must exist universal formulq
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Involving the appropriste characteristic classes and then use the method of univer-
#al examples to evaluate these formulas. We refer to Gilkey [G] for the derivation
of the following formulas:

DeRham Complez: x(M)= Le(M) where &(M) is the Euler form;

o(M)=—R,3,4/2dvol If me2

+ e(M)me(abed)e{uvwx)R oy Rogur /1285 dvol If memd,

If Wis a coeflicient bundle and if X(M,W) s the index of the DeRham complex
with coeflicients in W, then X(M, W)emx{M)-index(W) soc W plsys an inessential
role in this example. If =4,

XM, Wy (M) dim(W),

Signature Complez: Sign(Mje= L Ly(M) for ma=4k where Ly is the Hirzebruch poly-
tomial. Ly(M)wmp,/3 if memd. If W is a coeflicient bundle and if sign(M, W) is the
Index of the signature comnplex with coeMiclents in W, then

'iln(le}-EhMb'-- L Phchy(W)-Ly(M).
If maey,
sisn(M‘.W)-dim(Whian(MH.L{%:’-*faNW)-

Dolbeaxlt Complex: q{M)-& Tdy(M) for m==2k where Td Is the Todd polyno-
mial. It (M) is the Chern ciass of the complex tangent bundfe T'%M), then
Tdymecy/2 and Tdye{e,4<2)/12. ' W is o coefficient bundle sad if ag(M,W) is the
lndex of the Dolbesult complex with cosfliclents in W, then

‘E(Mvw)-r'h-ﬂb-n .L. cll.(W)~ Tde)*

Spin Complex: index(A"‘—A‘.A)-Lﬁk(M] for mmmdlk, ;\,--p,/ﬂ. Il we take
cvefficients in a bundle w,

(87 A )OW)mTaay e f, ¢hy(W)-Apg
In dimension 4, this takes the form:
lndu((A‘—A')@W}-—algn(M‘)-dim{W)/B+L {c,'"(W)—zc,(W)}/Q.
In pacticular, i M Is Spin, then sign(M*)m0 mod 8,
Yang-Mills Complez

If meed, thers is o natural elliptic complex which tppesrs in Yang-Mills
theory. Let A M) A24(M) be Projection on the 41 eigenvalue of the Hodge +
operator. Let {{A°QA’-"-A'},YM) be the complex:

O—C”(W}:-Cﬂ(A'(M)@W)iv‘C”(A’-"(M)@W)—O.
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This plays a crucial role In the description of the modull apace In the neighbor-
hood of 1 self-dual connectlon. We have already studied this elliptic complex in
another guise. We supress the role of W for the moment. Let {v)} be & local
oriented orthonorinal frame for T*{M) and let iy, tvaovsty, be the normslized
orientation; the 41 eigen spaces of or) on A? are the bundles A%, Lot
&, (6)={b4c(1)0) be projection from A(MMRC to A*(M). This defines isomor-
phisms:

6*:A°(M)@C—~{{A°(M)0A‘(M))@c}* sad & AM)@C—s A%+ (M),
Consequently A"(M)QA’-‘N)BA"“"(M) sad A MBEAMAM). We wish to
show the YM operator corresponds 4o d4-§ under these bsomorphisms. To do this,
it suffices to compute on the symbol level since the 0 order terms are eontrolled
by nsturality. Let wET*(M). The YM operator from Al(M) to AM)PAT-(M) is
&B(1~c(7)/2)-d s0 the symbol s -lnt(w)@(!—e(r))/?ut(w). The corresponding
operstor from C*™(AY(M)) to C™(A™™~(M)) is defined by composing with
P ACAT - pTe~ g has symbol

(1=c(r))/2A~int{w)Dext{w)}{1—efr))/ 2e{wlme(w)14e(w))/2.

The operator from C(A%d+(M)) to C=(A"*:~(M)) is deBued by composing with
L
U84} 2ecl{L-+e(r))/2-Bmcfi},
This proves:
Lemma 4.6: indes {{ANMIDA M)AV, YM Jmindes (A=A )= A0}, 4 48,
Let W be a coeflicient bundle. Let

En-((l\"""lm-‘\'“'"m))@w.&l- and EF((”“"'TW—”""(W)@WA}-
Then:
XM, W)sindex(E,)~index(E,) and dn(M.W)-indu(E.hindu(&]

We solve thihis system of equations to see index(E,)-{x(M.W}-slgn(M.W)}/?}.
Theorem 4.7: indes ((A%PAT-—A')@ w,m}-c-'--(W)-{x(m--'n(M)}/‘-'U,(!er-el’ NWw).

Suppose that M is simply connected so H'(M)=0; this shows HiM)=0 by
Poincare duality. Suppose the index form on M is positive definite 50

X(M)-sign(M)=dim HYM}+dim H'MH-dim H{M)~dim Hi(M)m2,
Then Index(YM,W)-dim(WH?q(W).

Aliyah Singer Indez Theorem
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The Atiyab-Singer index theorem contsins these as special cases, Let
A:C%(Vg}~C™(V,) be an elliptic complex where A is sllowed to be a paeudo-
differential operatar, Let a:T*(M)—+Hom(Vy,V,) be the symbol of ‘A; this is
assumed to be invertible for wyi0 and homogenecus of some non-negative degree.
Let S(M) be the unit sphere bundle of T*(M) and let (M) be the unit aphere bun-
dle of T*HM)BR. If (w,t)EX(M), let

tly, a'(w
Ha)e L(:). “!Iv). ] EM)—Hom(Vo@V,,V,aV,).
H{a) is self adjoint aud Invertible. In analogy with the Bott bundle discussed in
section 2, let 11,(Z(a)) be the sub-bundie of Vo®V, over Z(M) of eigenvectors of
() corresponding to positive eigenvalues. This bundle encodss all the topologi-
cal information Dhecessary (o deseribe the index theorem,

Let D, (Mo {{w,t):t 0 or t50} be the upper and lower hemispheres of £(M).
Projection or V, gives an isomorphism between M, (E{s)) snd V, over D, (M);
similarly projection on V, gives an isomorphism between 11_(E(s)} and V, over
D_{M). On the equator S{M}-D,,(MYD_(M], these two isomorphisms are related
by the original symbot n(w):S{M]"-‘l'lom(Vo-va); thus N,(Z(s)} is defined by the
clutching data VoV, 2}

Let Todd(M) be the real Tod class of M; Todd(M)=Todd(T(M)QC). There
exists & suitable choice of orientation for the bundle ZM); we refer to Atiyah-
Singer |AS] for details. With this choice of orientation,

Theorem {.8: (Indez theorem) indez(Vo—V | A Ju L‘ ) Todd(M)-ch(n,((a))).
Remark: There are nop trivial index problems jn on dimensions since we have
permilted A to be g pseudo-differential operator,
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compatible, we can use a partition of unity to establish the global existence once
the corresponding local existence is established. We use the construction of
Theorem 1.3. Let {v,,...,vy} be a local oriented orthonormal frame for T*M). Let
@, =i"cg(Vay_) )og(Va,) 2nd let Eqme{e€E:qa, -eme for 1<v<m/2} be the simultaneous
eigenspace. Clifford multiplication gives an isomorphism between E and AQE,
which preserves the module structure: eg=co®]1; this proves the first assertion of
(c). ACCIif(—)®C inherits a natural compatible metric (,)as as A is irreducible,
()a is unique up to scale. The tensor product of this metric with an arbitrary
fiber metric on Eg is a compatible metric on E; we patch together these metrics
using a partition of unity to construct a global compatible metric on E. This
proves (a). Fix a compatible metric on E. Let {¢,} be an orthonormal frame for E,
and decompose E=gp, A®d.. Let Soaa={l=(i},...ki, sre odd}. Then
D®&wlmku?m?_v.&»v_.mml“ the {og(v|)4,} are unit vectors. Since cg(vi)d, and
¢g(vy)'dy belong to different eigenspaces of the a, for Is£J, they are orthogonal.
Similarly cg(v;)'4, and cg(v;)d, are orthogonal for askb. Consequently
{ce(vi) b hes,,, is an orthonormal frame e for E. This proves (,)g=(,)a®(,)g, and
establishes the second assertion of (c).

Let BV be a connection on E and let EV.e=Y, ET(e)@v,. Let [x,y]=xy-yx.
Sublemma {.4: The following conditions are equivalent:
(a) BV is compatible
(8) ET;+ET*=0 for all i and _m_.....nm.?.,..zlﬁ..umnm?t Jor all 1,3,
Proof: Since the frame e={ep(vy)-,} is orthonormal, EV is compatible with the
metric (,)g if and only if ET;+ET, =0, Let ¢;mca(V;) s0 cg(V;)=c;®1. Since these are
constant matrices,

ﬁmd.nmv?_u.olmm L w.am?_.vl.omﬁdq_a,&.vlam?umhx&@ﬁ.
namn.om?_,V_Iﬁawom?wz.m
This vanishes if EV is compatible. Conversely, if [ET ireE(V;)] T cg(vy)=0 for all
i.j then mqnm?tﬂc and by linearity (EVep)(w)=0 for wET*(M). It then follows

EVeg=0 on Cil{T*M)®C so the connection is compatible. This proves the sub-
lemma,

Let ETi=(1/ 4)8Likep(v;)eg(vy). Since
{ee(vjep(vi)} =eg(viex(v; Jm—cg (v, )ep(v,),
(ET,)'=—ET : 50 EV is Riemannian. We compute
[°T,,cx(v;)}=(1/ ) FTaleg(va)eg(vi)her(v; ).

Since _om?nvom?uv.om?_.:ﬂo for j¢{u,b} we may suppose j=a or j=b. These two
cases are symmetric so _mm.._..omﬁai_lﬂ_.aom?& and EV is compatible. We patch
together such connections using a. partition of unity to construct a global



