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1. Manifolds.

A manifold is a opological space that it is made up from pieces of some especially nice
space such as Euclidean space R which are 'glued' together by maps of a paricular type.
The kind of glue we shall use in this course is smooth or infinikely differentiable maps.
Rocanthazamon:x-rYherwemopenmbwslllm:xmn“:\’issmomhifm
components of F have partial derivatives of all arders. We denoie by DF the matmix of first

derivatives:

2,

DF = |

Let M be a Hausdocff iopological space. A coordinate chart on M is an open subset U of M
for which there is a homeomorphism ¢ : U — ¢(U) onto an opea subset of R . If x is in U
we call such a pair (U,4) 2 coordinate chart at x.

O

)

. -
We say that two chans (U 4) and (V.y) are compatible if either VU= or the transition
mapping (i.c. the ‘glue’ that sticks U and V together)

||ro¢'l 1 (UNV) = y(UAV)
insmoothmappinghuweenopenmbwuofnm:

An atlag is a family of pairwise compatible chans whose domaina cover M. For sechnical
reasons we need the notion of & neaximal stlay which is an atlas containing all charty
compatible with its charts. Any atlas always desermines a unique maximal aias so it
suffices just to give an atlas. _

A differentiable structure oo M is determined by specifying a maximal attas. A pair
consisting of a Hausdorff topological space wgether with a differentiable strocture we shall
call a differentiable or smooth manifold. The dimension of M is then m. We often abuse
temminology by refering to the smooth manifold simply ss M when it is clear which
differcntiable structure is meant. Note that it is only necessary to give an atas whose chans
cover M topologically as this amomatically desermines the maximal atlas of the

Given a chart (U,¢) in the atlas of M, then for each x in U, we write §(x) =
(x1(x),..x(x)) and call the xi the coordinate functions on U.

Example 1.1: R™ is itself a smooth manifold: We can fore a chart by taking the whole of
R™ as the domain together with the identity map and thea the maximal ailas containing
(R™id). This is called the standard differentiable strocture on R™.



Example 1.2. ‘The Euclidean n-sphere 57, the set of vectors in Euclidean space of unit
length, can be vicwed as a smooth manifold as follows: We form a chart by choosing a
point and then stereographically projecting from that point onto the opposite tangent plane.

N

To caver the sphere we need only choose two such charts, say by projecting from the
North and South Poles N and S. The open sets S™\[N} and S™\(S) are each diffeomorphic
to R” and one can check that the transition mapping is smooth,

Example 1.3. Any open set U of a manifold M is a smooth manifold of the same
dimension: for (V,$) a coordinate chart in the atlas of M with UV non-empty, then
(UnV.QIUnV) gives a coordinate chart for U. Tt is trivial to check that compatible charts
for M give compatible charts for U and hence that U inherits an atlas from M.

Exampile 1.4. Given two manifolds M and N of dimensions m and n respectively, the
product space MxN can be given the structure of a smooth manifold: for any pair of

coordinate charts (U,$) of M and (V.¥) of N, (UxV 4xy) will be a coordinate chart of
MxN. Taking products respects compatibility of charts. The dimension of MxN is, of
course, m+n. |

Remark: In the definition of compatibility of charts we could have used some other class of
maps, for example those which are just k times differentiable, and we would then have
defined the notion of a CK atlas, and a CX differentiable manifold. Using just continoous
maps (k = 0) yields the notion of 2 toplogical manifold whilst in the oposite direction we
can strengthen the requirement to real analytic transitions giving real analytic or C0
manifolds. For compatibility we denotc smooth manifokds by C**, The manifolds of class
CK with k = 1,...,0,00 ar¢ essentially all the same s0 we shall concentrate atention just on
the C*™ case.

2. Smooth functions and smooth mappings.

Once we can give a space & manifold stracture, that i cnce we can think of it locally as R,
wecmuymdoﬂﬁngsﬂmwemusudlyemyuhuﬂyonﬂ".lnwﬂcuhrwun
differentiate maps and fanctions as we now show.

Let M and N be smooth manifolds of dimensions m and n respectively, If f : M — Nisa
continuous map, we say that it is smooth if, for any pair of coondinate charts (U.¢) of M
and (V) of N, wefod 'z (€ (V)U) = R" ts smooth, Taking NeR gives the notion of
a smooth function, We denote by C™(M) the set of smooth functions on M and by
C™(M.N) the sct of smooth mappings from M to N,

Example 2.1. The Cartesian coordinate functions «l,..x*) on R™ ! reqtrict to smooth
functions on S™ and & map £: M — 57 is smooth if and ouly if xLof is smooth for all i



Example 2.2. For the product of two smooth manifolds with the smooth manifold structure
desuibedin&nmplel.llheuﬂnlpmjecﬁoupl:m—bMudpz:MxN—bNm
smooth,

Sinoeampbuwewopmmbmsofﬂmismnthptecildywhniuempmnm
smooth, it follows that a map into a smooth manifold is smooth whenever its composition
with coordinae functions on the range yields smooth functions on the domain,

A bijection beaween two smooth manifolds whose set-theoretic inverse is also a smooth

map is called a diffeomorphism. Two manifolds which have a diffeomorphism between

them are said to be diffeomorphic. This is a global property as locally all manifolds look
like RN- Since a diffeomorphism is pecessarily a homeomaorphism, topalogically distinct
spaces such as S1 and R% can never be diffeomorphic.

An important feature of working on manifolds is that bocally they look like euclidean space
where we understand everything. In order $o pass from this local situation to objects
defined on the whole manifold we frequently have 1o make use of what are called partifions
of unity. To make this notion precise we need a few preliminary ideas. If f is a smooth
function on M we define its support supp(f) to be the closure of the sct {x e M | f(x) » 0},
A collection of subsets of M is said 10 be locally finite if any point of M has s
neighbourhood which intersects at most a finite number of the subses.

Definition: A partition of unity oo a manifold M is a collection {4} of smooth functions
on M such that cach ¢, only takes values between 0 and 1, the collection of supposts
{supp(g)] is Jocally finite and for each point x in M we have

Dol = 1.

Note that because of the locally finite condition on the supports, there are only 8 finise
number of the terms of this sum which are non-zero, 0 no convergence questions are
invalved.

If we have any open covering of M we say that a pactition of unity is subordinaie to the
covering if for each function ¢, in the partition of unity there is an open set U in the
covering with U  supp(¢,,).

Theorem.2.1 If M is a smooth manifold and the underlying sopological space is
paracompact thean any covering of M has 8 subordinase partition of unity.
Lemma If M > U o C where U is open and C is compact thea there is a smooth function f
on M only taking valucs between 0 and | which is identically equalto 1 on Cand U >
supp(f).
Proof (Spivak) Take any x in C and any chan (V.y) with the closurs of V contained in U
and y(x)}=0. Thea W(V) D (-£.£}(~&,£)x..X(~¢,2) for some positive &. If§ denotes the
smooth function on R given by
cO-D2xe1y2 iy,
o ={
o, x21,
then we set
fx() = jxlyVe)j(x"(ye), ye V
and extend fy by zero outside V 10 give a8 smooth function fx on M. Each f, is noa-
Degasive, and strictly positive oaly on & neighbourhood of x whose closure is contained ia



1J. The compactness of C allows ug 10 choose a finite number of points x1,...xN of C
such that those neighbourhoods cover C. Take the sum fi +...+fxy which has support in
U. Ttis strictly positive at each point of C, and 30 bounded below by some positive number
§. If we now compose this function with a function h on R which is 2ero on (-=,0),
increases monotonically from 0 to 1 on [0,5]'and identically equal to 1 on (B,s+), then we
have the conclusion of the Lemma. To sec that such a function h exists we can take

3
hx) = Jk(odt / !k(od:
where

ex2- (82, gexcs,
ko = {

0, otherwise,
Proof of Theorem 2.1, First we use the paracompactness of M 10 refine the open covering
to one which is locally finite, s0 without loss of generality we need only show that a Jocally
finite open covering has a subordinate partition of unity. Before handling this case we deal
with the case where each open set U in the covering has compact closure. In this case we
can find an open subset U'of each U whose closure is contained in U and such that the U
also cover M. Since the closure of U’ is a compact set we can aplly the Lemma to find &
smooth function fij, which has support in U and is equal to 1 on the closure of U". Since
the covering is locally finite, 30 are the supports of the f{j whilst the fact that the U cover
M foroes the function

f= 96y
U
1o be everywhere strictly positive. It follows that the functions
by =fy/f

give a partition of dhity subordiriate to the covering we started with. If the Letiyna had been
true for sets C which were just closed rather than compact, the argument we have just given
would have dealt with the general case, That this is in fact true foflows from this special
case. ForifM::U:CwithUopﬁandCclondtlmformy:inCwepicka
neighbourhood Uy, with compact closure and then cover M\C by open subsets Vg with
compact closure. I we now apply the first case to a locally finite open refinement {U) of
the open covering {Uy,Vy) we obtain & partition of unity ¢y, If { is the sum of the 4y,
where Ux 2 Up for sotne x, then the sum is finite in a neighbourhood of each point and 30
defines a smooth function, It is cazy to see that f is identically 1 on C and has suppost in U.
That completes the proof of the theorem.

3. Tangent spaces.

Although a manifold M is locally homeomorphic 10 R", it does not have locally the
structore of a vector space over . However we are going to assign at each point x in M a
vector space, the space of all directions at the point %, which is isomorphic 1o R This is to
be thought of s the “linearisation of the manifold" at the particular point and we call it the
tangent space of Matx. '

Fix & point x in M and let (U 4) be a coordinate chart around x. Let y: (-€.2) - Mbea
smooth mapping with W(0)=x. We call ¥ a smooth curve at x. According to the definition of
» smooth mapping #(y(t )} is & smooth mapping from the Interval (-,2) into . We.can
thercfore consider the linearisation v of ${¥(t)} at 0

ve gl ot

which of course lies in R”. Then $((0)= Yx}tv+0().
Wedefmutelaﬁmnmongallmonhtu:ufollom:fa'y’ md'rzcnrvuux.we



sy tlm'yl..‘yz if

S oty 0 = %I_om,(m
It is casy o check that ~ is an equivalence relation. As with everything that we shall define
in 1erms of local coondinases on & manifold, we need 1o cheek that it is independent of the
chaice of coordinates. For that consider another coordinate chart (V,y) around the point x.
Using the chain rule, we have

41 00 = 5o Wb oport) = Diyepd, S o010

il & o o)t =0
SMD(V-Q*)’(‘) is an isomorphism, the two curves are equivalent with respect w (U.4)
if and only if they are equivalent with respect 1o (U.w). This shows that the equivalence
relation is independent of the choice of cooedinates at x, and allows us 1 define the tangent
space of M at x 10 be the set of equivalence classes of curves at x and denote it by TM,.
The clements of the tangent space are called tangent vectors.
To see that the tangent space can be viewed as vector space, we define a map from R® onto
TMy by sending v ko the equivalence class of ¢ {(¢(x)+tv) and usc it 1o define the vector
space structure, One can check that this is independeat of choice of chart using the lincarity
ofD(w‘)m)-

Example. The Taylor expansion of any smooth curve with respect w its parameter shows
that every smooth curve 1(1) in R" is equivalent 10 one of the form { ~ X+tv, 50 that we can
identify the tangent space at any point x with R itself, More generally, any finite-
dimensional real vecior space V is 8 smooth manifoid, since we can identify it with R" by
choosing a basis, The map which sends a vector v to the class of the curve above identifies
TV with V in a canonical fashion preserving the linear structure,

Example. Consider the uait sphere 8%, the sot of poiats (x1,..x8*1)ia B! with
)y 2+x0*1)%a], A curve 1(t) on S™ is given by WO=(x!(D),..x=+1(0) with
x‘(;)2+---+xn+1(t)2 =}. Differentiating at 0 we have

2OV + -+ 2 iEpvT(0) = 0.
That is v-%'_o)(t)hpapeadimlunx(m.mvmdy,ﬁvenvinll“‘dthv-x-l)we
X+v | . d X+tv

have that mulmmmmhmﬂtmm E'Mm'“
Therefore,

TS% = (veR™ 1 i v m0).
Is is casy now to sec that the tangent veciors defincd as above can be made 10 act 0o
functions. For y in some equivalence class of curves at x and for £ : U — R a function
defined in a neighborhood of the point x, define Y(OXE) by:

d
YOXO= 3 o).

For any ¥ representing the same tangent vector we get the same number. Indeed we have

& FHomT | fr )

. i}:“%’{ﬂws’(m
[T

which is independent of the repeesentative,

This motivaies the second definition of the tangent space at the point x. We say that Xis a

derivation at x if for each smooth funciion f defined in & neighborhood U of x we obiain a |
real number X(f) depending linearly on £ and for any two functions fand g the Leibaitzrule . 7



X(fg) = X(D)g(x) + f(x)X(g).
It is an easy consequence of Leibnitz Rule that X(f) = 0 if f is a constant function.

Exampie. For (U.$) a coordinate chart, a derivation at the point x in U is given by
£
X(0 = 3‘-3—’{«:»
for any smooth function f on U. We denote this derivation by

20
ox

We shall not distinguish this derivation from the usual partial derivative on R" since no
confusion should arise. The space of dexivations forms a vector space by adding and
multiplying by scalars in the obvious way. To construct s basis for this vector space we
need first the following result.

Lemma: Let V be a star-shaped open neighborhood of 0 in R™ and let f be a smooth
function on V with f{0) = 0. Then there exist smooth functions g1 .....8n on V such that

of

50 = 3-3—1(0)
and

L]

f-ingi

=1
in a neighborhood of 0 .
Prool; Set

12

1
ax
g(x) = I;j‘"""‘
0

1 1
) = 0 - 10 = [Lreoa =Y [ Lmada
0 0

-

iml
Now, for any f defined in a neighborhood of the point x in the manifold, we apply the

)|
lemma to £ - {x) and have that f= £ (x) + Y, xig; .where now the xi's indicate the local
in) .

coordinates that send x to 0 in R, For any derivation X we then have that
L} n ]
X0 = XE00)+ 3, X(edg) =0+ Y Xahg, 0 + ), xiOX(g) =
[} =l -l
-ixtxl)ifT(x).
=l ox
Mmm%'smmmadeﬂm.snmg-‘;-sf.mmmy
ax ax
independent, too. Notice this shows that the dimension of the tangent space as a vecior
space is the same as the dimension of M as 2 manifold. This we summarize as
Theorem. If M is a smooth manifold, x a point of M and x,....x2 coordinates on some
chart around x then TMy has a basis

'a'ltu)....,i: (x).

ox
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One can easily check that for a curve ¥

df(:‘(t))|

satisfics the Leibaitz rule and therefore y defines a derivation which we denote by ¥(0).
This is the same tangent vecior as we would get using the definition as equivalence classes
ofcurves,mdukingdwequivahmechnnf'yu'\(d).Aeonvuseisdsomu:
lmﬂumydaivMXuxMeﬁmnm&meyxmﬂumhM for
any function f defined in a neighborbood of x,

d
Xt = gl o gflr, ).
Proof: If
-]
define, for sufficiently small 4, the curve
) = 4l (x),.e. 800()).
Then

d
S = 3| o Eob a1 0,000
"
- 3 A0
=l Ox
= X().

4, Differentials of maps snd functions.

A smooth map between manifolds has a lincar approximation st each point called its

Jacobian matix or, in more invariant serms, its differential. Applicd 1o the case where
the target is the real numbers R this gives the notion of the differential of a smooth
function which forms the basic idea in the differential calculus.
To make this mare precise we can use cither of our ways of thinking of angent veciors.
Perhaps the simplest is to consider the action of 2 smooth mapping F: M = Noan s
smooth curve ¥ : {(-£,€} — M through the point x in M. Then Fey: (-€,2) & Nisa
smooth curve through the point F(x) in N. We can then think of F as defining a
mapping

Fy : TMx — TNR(x)
by

M - [Fed,

where [] denoses the equivalence class in the tangent space. We call Fythe differential
of F. To see that such a mapping is well defined we have 10 see that it respects the
equivalence class of the curve a x. If (V,y) and (U,$) are coordinate charts oo N and
.Mmpectiwlywehve:

4 L ‘ - 4

i) t_ov(l‘-fr'(l D=zl w(V'N $)¥t)) D(v-F-Q‘)’(x)d(lmﬂ(‘Kt »
and since the Jacobian in the last term is linear, composition with F preserves the
cquivalence.
Alternatively, in terms of the tangent space as detivations:

d
FuX(D = Y x® = St x)

d d
- Gl RGO gl R a)=XED
Therefore K X(f) = X(Fef) and this can be viewed as an aiternative definition. One
easily checks that F,, is a lincar mapping, As an example, we calculate
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F.(i—i)m - i—l(f-n = i—i(fom*) = -aax-,(f-\r'-v-F-O*)

L)
= fo
gl,;( T')'a-ﬂ’axi ok
- o
.=§;ax, g

which shows that the matrix of the linear mapping F,, relative o the bases for the
mngent spaces given by coordinate chans in the range and domain is given by:

[ oty oFep? AyleFot? |
&| [ N ] a‘.

AYReF) Ay

S "

Enmple:mdiﬂ‘uenﬁdoflheidunitymppingmnuuchpoimx is the identity
Brm
Consider two maps G : L ~» Mand F: M - N. If X is a tangent vector to L at x, and f
a smooth function on N in & neighbourhood of F(G(x)), then
X(fo(FeQ)) = X((f+F)<G)
implies
(FsQ)y = FyoG,.

16
Written in coordinates (exercise) this is the Chain Rule.

5. Submenifolds
Let F: M — N be 2 smooth map between manifolds of dimensions m and n
respectively, Take coordinates xi on a chart U around s point x of M and yl on an open
set V around F(x). As we have seen above, the nwm Jacobian matrix

o
Tepresents the differential of F at x in coordinases. We call the rank of this matrix the
rank of F at x. x is called a regular point for F if the rank is equal to n, the dimension of
the range N. All other points of M are are called eritical points. A point of N is catled &
critical value of F if it is the image of a critical point, All other points of N are called
regular values. This means that a regular value is either not in the range of F atall or
else the image of regular points only,
Example. If f is a smooth function on M, then x is a critical point if and only if the
differential vanishes at x: df{x) = 0. A map F : M < R" has 0 as a regular value if and
only if dF1,... dFD are lincarly independent at each point x where F(x) =0,

A smooth map F : M — N is said to be an Immersion at x in M if its differential Fa is
injective on the tangent space TMy, that is if F has rank m = dim M at x. Of course this
can only happen when dim N 2 dim M. Fis called an immersion if it is an immersion at
each point of M.

A smooth map F : M — N is called a submersion at x if its differential is a surjective
map TMy — TNE(x). Fis called a submerslon if it is a submersion at each point of M.
Clearly a map is a submersion if all its values are regular values,
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The above ideas are all local in nanre, 0 we can apply the Implicit Function Theorem
and Inverse Function Theorem from differential calculus of Buclidean spaces to yield
the following:

Theorem 5.1, (Implicit Function Theorem) Let F: M — N be a smooth map and x a

point of M.

(1) If F is an immersion at x then there are coordinates x1,....x™, o & neighbourhood

U of x in M and coordinates yl,....y% on a neighbourhood of F(x) in N such that
yoRy = xi, iw1,..m

(2) If F is a submersion at x,then there are coordinates x1,....x1, on a neighbourhood

U of x in M and coordinates yl,....yB on a neighbourhood of F(x) in N such that
yieFiy = xi, i=1,..0.

(3) If Fe is an isomorphism of TMy onio TNE(x) thea there are neighbourhoods U of

X. V of F(x) such that F is a homeomorphism of U onto V and the inverse map from V

to U is also differentiable.

AnimmenedwhmanﬂddofMiummequwhichhuiummua
manifold, and such that the inclusion map L ¢, M is an immersion. If in sddition the
inclusion map is a homeomorphist of L with its image (in other words if the topology
oﬂ.uumanifoldugreawiththelthﬁvebpologyuuubeﬂofM).wenyLism
embedded submanifold and call the inclusion map an embedding. An immersed
submanifold is called a closed submanifold if it is a closed subset of M.
Closedmhmnifddsmonewayofobuiniagagoodsupplyd'mmhmmifolds.

Proposition 5.2. If F : M — N is & smooth map and y is a regular value then F(y) has

& unique differcatiable structure which makes it a closed submanifold of M of
dimension m-n.

Example. The map R%*1 — R given by
GlL.xot) o )2 + (22 4.4 (x0+])2

has 1 as a regular value (exercise) and so the sphere SO is a closed submanifold of
RM].Youshmlddwckthmhemuhmitmnlchwdmmwd
Ro+i agrees with that we gave it using stercographic projection.

MWWWNMMMMth
Eucﬁdeanspmu.aequnaidqﬂuuinsphulnevuymchwkthﬂymmn
regular value of your smooth map,

6. The tangent bundie
Let T denote the disjoint wnion of all the tangeni spaces of M. 50 a point in TM is a
mmtmnmuumpdmthEthxhlmmvmwmw
u(&thepoimxuwhichthevmistmmt.m;immnmp

:TM—+M
whiwwmuauhpanWemmﬁwmﬂsmd:m
muﬁfoldaoﬂmthismapilmm.WedolhisuiaMs:Takeaehm@.U)onM
undconsidctz‘w).mnsimplyﬂnmohumgmmmwunpoinuofu.
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Weknowtlmthemdimmxl.....xﬂ;lvcri;etonbudsi‘i(x)fwdnungmt

spweucwhpoﬁltxofu.lhmﬂx:l‘ﬂn.ﬂlmlhﬂemwm'immhﬂm

n
Xm= Za‘(x)‘a'i(:om.
Wl O
The map
X = (a10)...8200),x1(%(),...xP(x(X)) € 20
gives x(U) the structure of a chart. It is an exercise to check that compatible charts on
M give compatible chasts on 'TM, and hence that we have made TM into a 2n-
dimensional manifold. We call TM the tangent bundle of M. It is immediate from the
way we have constructed charts that % is a smooth map. Notice that the fibres of x are
the tangent spaces of M. TM is an exarple of a vector bundle about which you will
leam in the course on fibre bundles.
lfF:M—tNinmodlm.imliffcmﬁanowndmnnngmWanme
the tangent space 10 N at F(x). This means we have a commutative diagram

F,
™ - ™
xl Ix
M - N

of smooth maps.

7.Vector fields and integral curves.

X

We have defined the tangent space at each point of a manifold We now wish o
consider ficlds of such tangent vectors. These generalise to manifolds the notion of
vector valued functions or flows in three dimensions. We say X is a vector field on M
if X(x) is a vector in the tangent space TMy, for each x in M and i, for any £ in
C**(M), the function X(f) : M — R that sends x 10 X(x){) is smooth.
Notice that such a vectorfield can also be thought of as a map X : M ~ TM with feX =
idpg. In the terminology of fibre bundles we say X is a section of TM. We leave itas an
exercise to show that X is smooth as a map precisely when it is smooth in the sense of
vectorfields above. We denote by X(M) the set of all vectorficlds on M.
We have two ways of thinking of tangent vectors, either as derivatives on functions or
as 1angent vectors to curves. We now consider vector fields from these two points of
view,
First we Jook at the action of tangent vectors on functions: If X is a vector field and fa
smooth function, then £ — OX(D)(x) = X(x)f is a derivation at x. From this it easily
follows that

X(fg) = X(Dg + £X(g)
for any pair of smooth functions f and g. Thus X is & derivation of the algebra of
smooth functions, The converse is also true: by evaluation at a point x of M each
derivation of C**(M) defines a tangent vector at x. Thus the space of vector fields on M
coincides with the space of derivations of C**(M).
Our second point of view regands tangent vectors as equivalence classes of curves. If
we take a chart (t7,4) on M, we know that a tangent vector ata point x in U

muumummmmofiq(x)t.mm-mﬁemxmu
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n
can be expressed a5 X(x) -z.i(x)-a;(:).muﬁlydmmmmqum
=1 *
be smooth a3 defined above, the functions al have 10 be smooth.
We can now ask the question: given a vector field X in U, does there exist a curve
such that the tangeat vector 10 Y at any point on the curve equals the value of the vector
ficld at that point ? In terms of equations, we want to solve

-3‘-1(:) =X
on the manifold. Using Jocal coordinates in which 4(1) = (x1(t),....x0()),this is
equivalent 10 solving the ordinary differential equation

% X)) = al(x1(),..x8(0)), iml,.0

Thus a vector ficld on a manifold is simply an invariant way of writing a sytem of
ordinxydiﬁuenﬁaleqmﬁon&ﬁimmhﬁﬁdcondiﬁonﬁﬂ)-xo.wemwﬁomdw
local theory of ondinary differcntial cquations that & unique solution exists at least for
time ¢ close 10 0. By piccing together and using the uniqueness of solutions we can find
a solution ¥ on a maximal interval. Such a ywe call an integral curve for the vector field
X. If for each x , the integral curve of X through x | is defined for all tin R we say that
the vector field X is complete. In what follows we shall always be assuming that the
vecior fields we are working with are complete.

Assume now that we have a complete vector field X defined on M. Denote by ¥(x;1 ) the
mhndhngﬂmhtdtzm—ruheddmedby x-»yY(x;t) forany tin R.
Clearly, uo-ldM .Using the uniquencss of the solution of the ordinary differcntial

-]

equation we se¢ that c‘ 'ctz-ot

"y
Sinceotoo_‘-oouId:l.mhc'i:hvuﬂhbmmo_fmmdlin
diffeomorphism of M Therefore, lct:tcll] is a one-parameter group of
diffeomorphisms of M which is called the flow of X,
Conmscly.wppoumnwemﬁmum-mmddiﬂmpﬁmclof
M. We defing X(x) at the point x by:

Fud:ﬂme.othjoinﬂymhinundx.

d
X = Flug %>
This gives an element of TMy for cach x in M and hence & vector field X on M. Clearly
X is smooth, and we have:

d
o' oXix) = % Ihod'(ct(;)) -3 lb-O o m(l) .

This is equal to both % Ihoal(c'(x)) = X(a,(x)) and-:-’- 6'(1) ywhich shows that

t—m‘(x)istheimgnlmfu-XuxnndhmeXismhu.Wemf«loXulhe
infinitesimal generator of the the one-parameter group of diffeomorphisms o, . The
property osnx‘-xa.(x)memthulhevecuﬁddxuinuﬁmmduiumﬂow.

The Lie algebra of vector fields,

Recall that on R® d:evmﬁeusi—i and ij'mmmonmuhﬁmcﬁuu.'ro

measure the extent w which two vector fickds X and Y on & manifold fail to commute '
one uses the commutator brackes whea they are viewed as operators on the space of
smooth fuctions: Define the Lie bracket of X and Y by:

(XY = X(Y{0)- YX(D)



then it is easy 0 see that the result is again a derivation of the smooth functions, and
hence & vector field,
In terms of the flows genermed by X and Y, we can describe the Lic bracket as follows:
let @, be the flow of X and define a curve of vector fields Y by:

‘fl'“-l'yot(x)
which i the image at time t of the vector fied Y when acted on by the flow generated by
X. Then for any f in C*™(M)

d d
(& Lot (= T | g 12O

d
= 3 heo 91 Yo, 0 (1)

'c% Yo () o 0t} =
=X, (Y()) - Y, X0 = [ X, Y100 .

‘This is an example of the Lic derivative - the derivative of a geomesrical object along the
flow of a vector ficld. If we denote such a Lic derivative by £ then we have the identity
£XY = [X.Y).

The basic properties of the Lie bracket are:

LI: (XY} = - [Y.X];

LZ: [aX+bY,Z] = a[X.Z] + b[Y,Z], Va,beR;

L3 [[X.Y).Z] + ([Y,Z},X] + [[ZX],Y] = O, (Jacobi Identity),
Any vector space over R with a product satisfying these three properties is called a real
Lie algebra.

B. Differential forma.

Let M be & smooth manifold of dimension n. If x is in M, then the tangent space at x, TM,
is an n-dimensional real vector space whose dual space we denote by T*My and call the
cotangent space to M at x. ks clements are called covectors, If x1,...x? are coordinates on a

chmonMmdxiupoiminmeclm.weluwnbuili‘l(:).....sa;(x)fame
X

tangent space TMy. We denote by dx!(x),....dx"(x) the dual basis for T*My, The
collection of all cotangent spaces we denote by T*M. It can be made into a smooth
‘manifold called the cotangent bundie of M by a method analogous o that used for TM,
using the basis described above. As before we have & smooth map x : T*M — M called the
Projection map.

A smooth section of this bundle is catied & smooth 1-form on M and we denote the space of
smooth 1-forms by £21(M). Thus a 1-form o is the smoothly varying chaice of & linear
form on the tangent space st each point of M. If x1,...x? are coordinates on & chart on M,
we can express o in terms of the basis dx!(x),....dx"(x) for T*My:

ox) = Zi', 0(x) dxi(x).

The smoothness of o is then equivalent to the smoothness of the functions o in every

chart. '

If X is a vector field on M, then for each x in M we can evaluate the linear form a(x) on the

angent vector X(x) to give a number a(x)(X(x)) which we denote by a(X)(x). Thus we

obtain a function ct{X) on M. We have defined a natural bilinear pairing
ﬂi(M)xX(M)-)C"(M)

which clearly has the property that a{fX) = fa(X) for any smooth function f, In fact this is

an alternative way of defining vector fields as the next theorem shows



Theorem. 8.1. Every map X(M) — C™(M) which is linear over C*(M) is given by
pointwise evaluation of a 1-form on veciorfields.

Proof Given such a function-linear map A, take a tangent vector X st x and extend it to a
vectorfield X' on M. Let a(x)(X) = A(X'x). If we show this is independent of the
extension of X 10 X' we shall be done as it clearly defines & linear form oa the tangent
space at x for each x in M. It is enough to show that if X is a vectorfield with a zero at x,
then ACX) vanishes at x. Assume first that X vanishes on a neighbourhood U of x, and
choose & smooth function f on M which vanishes at x and is identically equal 1o | outside
an open 6t with closure in U. Then X = £X, 50 A(X) = A(FX) = fA(X) vanishes st x. In
fact this shows that A(X) vanishes on U. This now atlows us to assume that the vectorfield
X we are considering vanishes at x, and outside some coordinate neighbourhood U. If X =

o n
Zl‘a‘lmUMwemeandlhedainﬁmbymfmmmmuuopmsamd
i

mﬁMgbbaﬂydcﬁwvmﬁestimmeZﬂxilmwlmghm
i

ofx.ltldlowsdmA{X)lndZliA()(i)ag:eenx.Bmtheaivmi;hnu,pwin;me
i

Theorem.
This theorem allows us w0 view 1-forms in two different ways: pointwise they are sections
of the cotangent bundle, whilst at the same time they are linear functionals on the space of
vecior fickds, We shall choose whichever viewpoint is the most convenient in & panticular
situation.
We can muhiply 1-forms by functions

(fo)¥X) = f(a(X))
since the righi-hand-side of this equation is function-linear.
If £ is a smooth function on M then the map

X = X(D)
is clearly linear in X over the smooth functions and so defines » 1-form which we denote
by df:
4fQK) = X(D.
and call the differentlal df of £. Obviousty

with respect 1o coordinascs.
I we introduce the notation QO(M) for CO(M) then we have defined & map

d: 9% - ol
with the propexty

d(fg) = (di)g +f(dg).
Our next objective is to geacralise both the spaces and the map d.
We denote by OP(M) the space of aliemating p-linear maps (tincar over C(M)) from
vector ficlds to functions and call the clements of IP(M) the p-forms on M. Thus each p-
form « cvaluaies on pvm'ﬁddsxl....xpwgiwnfuncdm a(xl.....xp)which

X)X eeKjororKp) ® UK oK oo jpoermrXph ¥ 1, Ji
WX fsrerfKijsrenXp) = 10K ueeXjreenXp) V 1, .

We have an analogue of theorem 8.1, namely that if we take the pth exterior powers of each
cotangent space APT* My (that is: the altemating p-linear forms on TM,) then we can form
these into a bundle APT*M whose space of sections is SSP(M),
Elements of QP(M) can be multiplied by functions as before, but they also admit & more
gencral multplication called extesior multiplication which is defined as follows: given & p-
form & and a q-form B then we take p4q vectorfields X 1,...Xpyq and st



1
(@AB)(X .. Xpaq) = ch. X o( 1) Xo(p)BXa(p+1)-Xatpq)

™
This is obviously linear over the functions and aliernating 5o yields a p+q form aap. We

thus have defined the exterior multiplication

QPMPLEIM) - QPHI(M).
The same formula applics K each fibre also, and it does not matter whether we multiply
forms pointwise or as functionals on the vector fields.
If we take coordinates x1,....x8 then we have 1-forms dx1,...,dx" which form a basis for
the cotangent space at each point. It follows that st the point x we get a basis for the p-
covectors at x from dx'1(x)a...dxP(x) for 1 <...cip which for convenience we denote by
(@x'1a..adx'P)(x), This means that if i a p-form then on a chart we can expand it a3

- HUa. adxlp
a l|z;" qlmipdx A ADX
whueuilmipisunmhfuncﬁononthecthemmﬂﬂtloulmdinm

expression to extend the definition of d to all p-forms by setting

s D doxy i Adx T adxlp.
ll<...d’ P

The only problem with this local definition is that it is far from obvious that do is globally
defined. This is most easily seen by giving an alternative global formula for dot and
checking the two formulas agree in coordinases. The checking is left to the reader, The
global formula is as follows: If  is a p-form then dat is the p+1-form which, for p+1
vectorfields X0 Xy is given by

d0)(Xu... X ) = g(-nkxg(u(xow-ﬁ.....xp»

+ § (_l)’+ka([xj1xk]vx0u---a?l--u?l"-lxp)-

where a hat over an argument indicates it is i be omitted,
It is easy 1o see from the Jocal formmla that d satisfies
d{do) = 0
and
d(eap) = (de)ap + (-1Pan(dp)
for any p-form & and g-form P. This last property which generalises Leibnitz' Rule so
p-forms we refet 10 as the graded derivation propesty (graded because of the presence of
the sign in the second term),
d is in fact completely desermined by the properties d2 = 0, being a graded derivation of
exterior multiplication and its normalization df(X) = X(f).
We have produced a sequence of maps
nomf»nlm)-"....fpn"(m
with the property that the composition of two successive maps is zero. This is an example
of a complex called the de Rham complex which we have associated to the smooth
manifold. When we have such a complex we denote by
ZP(M) = { ae QP(M): do =0 | - the closed forms;
BP(M) = (e OP(M) : a =dp, P e QP 1(M) | - the exact forms,
Then ZP(M) > BP(M) since d2 = 0 and s0 we can form the quotient space
HP(M) = ZP(M) / BPOM)
called the pth de Rham cohomology group of M. This appears 1o be an algebraic object



associated to the smooth structure of M, but it is a theorem of de Rham that in fact these
groups depend only on the underlying topological space, and in fact coincide with the real
Cech cohomology groups of M. ‘
We now consider the behaviour of forms with respect to smooth maps F: M = N. For O
forms we can simply compose functions fon N to yield functions foF on M which we
denoie by F*f. This gives us a map '

F*: O(N) -» 00M
which we now generalise to arbitrary p-forms.
Tahnp-fnmumﬂandpmwlﬁeusxl,..xpmdm

)X Xp)x) = GEONFX(6)s X)),

The result is clearly alicmating and p-linear over (M) giving

F* : OP(N) - OP(M)
for cach p, and callod the pull-back of forms. It is easy to check that (FeG)* = G*oF* and
thas this operation commutes with the previous ones:

F@p) = F0)AF*@), F*@do) = dF*a).

Note that this means that F* sends closed forms to closed forms and exact forms to exact
forms, and hence there is an induced map

F* : HP(N) - HP(M),
with (FeG)* = G*+F* on cohomology. In particular any diffeomorphism induces an
isomorphism on the de Rham chomalogy groups.
Aparﬁcuhrcmhwhch-NMwehwul-pummpofdiﬁwmphimot
gmmmdhyawcuﬁcldeecmpun-bncknfumﬂbyu,uﬂmﬁumﬁmdw
resultingcm'veoffa'mx.Wenlllhislhcugd:ﬁntiw.ofn-wilhmpectmxdcmtedby
£xo:

d
£xa = 3o el

EXOHX 0 Xp) ® KO0 Xp) - Z‘_,a(xl.....(xxu.....x.,)

which makes sense for all veciorfields, not just those which generate global -parameser
groups. In fact since we differentiste at t=0, we oaly need a local group for the first
definition. It follows from the first definition that £y is a derivation of the exterior
£x(and) = Ex(a)aP +anifxf)

(no sign!).
Another way in which a vectorficld X can act on forms which does not involve
differentiation at all is interior product i(X) which produces a (p-1)-form from a p-form:

(E0NX ) Xp-1) = BXX}emXp.1)-
This is well-defined, is again & graded derivation of the exterior multiplication and is
defined for consistency o be zero on functions.
There is a relationship betweep the three derivations d, £, and i(X) known as Cartan's
Identity which follows casily from the definitions:

£x = dei(X) + I(X)od.

Let us use this identity 1o determine the de Rham chomology of RS,
Theorem If p>0 then a p-form & on R® is closed if and only if it is exact.
Proof We know alrcady that exact impties closed, 0 it remaing 1o show the converse. For
this we consider the 1-parameter group of diffeomorphisms o, givea by

O(x) = ¢tz
‘The generator is the vector fiekd X givea by



n 2

Nou:tha:Ho(thimofmefmdonsfwiﬂldf-O.mdithmnemdﬂlhm

X= lei-,-. that HOM) = R. Hence we have the
Sincewehmuclooed.Cnhn'lidenﬁ:yhn::ﬁuﬂm | Corollary HP(RT) = 0 for p>0 and HO®") = R.
£xa = 00, This result has an important local application on any manifold:
But then Theorem (Poincare Lermma)
I a is a closed p-form (p>0) on a manifold M and x is any point of M then there is a
o 'fxa = o.‘%o;,‘al,.o neighbourhood U of x and a (p-1)-form f on U with adyy = dp.
‘. Proof Any point x in an n-dimensional manifold M has a neighbourhood U diffeomorphic
=-5G%% 10 RN, and $o the cohomology groups of U are the same a3 those of RM; the result follows
If we now make the substitution t = ¢'8, we obtain the curve of maps from the previous Corollary.
&) = tx
which have the property that ¢ is the constant map 0 and §, s the identity map. In terms 9. Integration of Forms on Orientable Manifolds.
of ¢, we have . Afer differentiation , we intend 1o show how integration, 100, has its natural
' a, . generalisation on a manifold, It turas out that this is not as straight forward as
tarh @ = 94100 diferentiation: to integrate differential forms we need to impose an extra condition on
which makes sease even for t=0. The term ¢, "i(X)cx vanishes for t=0 since dy) is the the manifold, that of orientation. It s only afier we have defined Riemannian structures
constant map, consequently t¢, *iC0a exists and is continuous on {0,1). If we divide that we are able to integrate fanctions.

across by t and then integrate from 0 to 1 we obtain

i 1 We say that the manifold M is orientable ifthere exists an atlas such that for any
a=éa-¢g'a= J Sh'ad = d!t"ﬁ'i(xymdt N

which shows tha s exact a roquireL twomdinmchm(U.x)uﬂ(VJ)wehlvedet(-a-;ppodﬂve.mvingchom
Remark. We should really generalise Cartan's Identity w0 curves of maps rather than groups such an atfas on an orientable manifold, we say that the manifold is oriented.

of diffeomorphisms, and then we would have an casier version of the above proof by Let us cover an oriented manifold by oriented charts U and take a subordinase partition
applying the generalization directly w0 the curve ¢,. Exercise: work out this more general of unity ¢;. Consider the n-form

version.




W= Z,tidx:AAdx:
which clearly is globally defined, and without 2¢x0s 0o M. Moreover, if X3,.... X, is
myuienwdmfmnheunm:pmnlpﬁmx,m(x)(xlw.xn)ispositive.'l‘he
cxistence of such an n-form is in fact characteristic of oricntability, for if « is &
nowhere vanishing n-form thea we say muﬂéﬁhﬁsxl,._xno{tbe tangent space
at & point x is positively (resp. negatively) oriented if @, (X ... X) is positive (resp.
negative). This applies in particular to the coordinate devivatives defined by charts, and
so we construct an ariented stlas, Chaosing a zero-free n-form is obviously a slighily
stonger condition than choosing an oricnttion.

Now let @ be & 10p degree form on the a-dimensional manifold M with compact support
contained in a coordinate chart (U,x). Thea in terms of the local coordinates we have @
w fdxla..adx® for f:U-R. Define

Im B‘L (f-x'l) dxl..dxn,
" |

where now dx|...dxy, denotes the usual Lebesque measure on R, If the support of @
is in another coocdinate chant (V,y), 100, then @ = g dylA...ady® for g:V—R with
respect to the y local coordinates. Since

3y

det (; )dxlA...N:Ixn -dylA...Ady"

%

Sy (x))det (; Mxla..Adx® = gly)yPa...ady™.

Hence
S(y())det (=) = £(x).
™
The usual change of coordinates formula for the integration on R® gives:
_[l(!(l)) | M(Eli dxl..dx0 u"L‘(y)dyl._d,n_
L) ax

It is exactly here that we use the orientability assumnption. For (U,x) and (V.y) in the
oriented atlas we have that the sign of the determinang in the first iniegral is always
positive and therefore this integral is equal to:
Il(y(x)) da(-?’—},-) dxl..dx0 = Ar(x) dxl,.ax8,

«{y ax
The integral of & is then well defined.
To define the integral for an arbitrary form, we use a partition of unity subondinase to a
covering (U .x.),say §,. Define thea

[+

To see that this is independent of the chosen covering, notice that for any other choice
ofcova-ing(vj.yj)andpmiﬁonofunityvjmbotdimtebil.‘ivjiupmiﬁmofmhy
suhomdimwmmemuinvj.\vethenhvc



Xf‘[ﬂ(‘ "% L;’vjm = ? ir[vjm .

This compleses the procedure of integrating a top degree form on an orientable
manifold.

10. Manifolds with boundary and the theorem of Stokes.

An n-dimensional manifold with boundary M is a space on which we have coondinate
homeomorphisms 4 ; U — ¢(U) where ¢(U) is cither an open set in R™ (as before) or
the upper half region of R", R", = l(x',...,x"): x" 20 ). The compatiblity
conditions for the coondinate fanctions are the same as before, The boundary 3M of M
i the set of all the points in M that are mapped 1o the boundary R™1 of R, and these
form an (n-1)-dimensional manifold. If Mis €5 then 3M is CX, 100, for 0 Sk S .
Notice that if 6ot ia & top degree form on the manifold with boundary M thea the
restriction of ot is & sop degree form on the boundary 9M. In this sinuation we have the
following

‘Theorem: (Stokes Theorem) Idm-'[m
M o™

11. Riemannian mefrics

We shall now try to impose on a manifold the notion of distance, in analogy with the
Euclidean distance on R, For that we shall use inner products and therefore the
linearisation of the manifold, the tangent spaces, In addition we shall ask that the whale

procedure is done in & smooth way.

Definition: We say that g is a Riemannian metric on the smooth manifold M if

0 g, is an inner product on TMy forall x in M and

b) for any two vector fields X and Y on M the function x-)gx(xx.Yl)isMUn
M.

A manifold M equipped with a Riemannian metric is called a Riemannian manifold.

Example 11.1: The manifold R™ has at each point tangent space R” with the
umummmmmmnmn“n.mmmmm

Example 11.2: The manifold O(n) ={ A In GL(n): AA* =1} is Riemannian: For the
identty element in O(n) we have the tangent space given by T,0() = (A : A + Al
=0]. On this space one can check tha the following formola defines an inner product
CA,B>=-trace AB'.

To define the innner product for each tangent space, we can use the (smooth)
tranalation mappings L._ 10 carry around the inner product from the tangent

2
space at the identity to the tangent space at §.

Theorem 11.1 A smooth manifold admits a Riemannian structure if and only if it is
paracompact as a topological space,

Sketch Proof: If the manifold is paracompact we can use & partition of unity 10 build up
a Riemannian metric from the obvious local ones. Conversly, if the manifold has a
Riemannian metric we can show (using geodesics, see below) that the manifold itself is
a metric space and therefore paracompact.

A linear connection on a manifold M is a mapping



V: X(MpxX(M) — X(M)
xX.Y) = va

such that
1) Vx(Y+Z) - va + vx&
2 Vo = Ty
V2 = T
4 Vx(Y) = x(f)Y”va-
We call Vy the covariant derivative of Y in the direction of X. This is a kind of
dircctional derivative. Given local coordinates (x1....,x1) around a point of the

mnifold,wecancnlculneevuydﬂngﬁd:mmwlhebuhi?

smcev_a_i;mwﬁeummmwﬁm r‘i‘ such tha
b

g

Wcmfcrwﬂwl‘; 's as the Christolfel symbols for the connection ¥ with

respect 10 the coordinates x1,

Example: For two wecior ficlds X =E X;oxi undY-EY.a-ax‘i'oall“.defmc

VbeyVxY-EX(Yi)?;;.Q\emiﬁenhuthhgiMIwmecﬁmonlhe

wector fields on R",

Let 7:(a.b) ~ M be a smooth carve ia umy-%-z%gi; be the

velocity vectorficld. We say that a vector field X is parallel along vif VyX = 0. A
curve ¥ is a geodesic if v.{r-a

Theorem: (Parallel transport) Lety: [ a, b] — Mbe a curve in M. For any tangeat
vector v a2 (a) there exists & unique vector field X pmllel;loug‘ywidlx,‘w-v.
Proof: Let U be a cooedinate chart around (a) with coordinates x} and

Clristoffel symbour:.wmmmtmuq.mmmmum
curve Ylies in U, otherwise apply what follows on pieces of it. For a vector field X{1)

-zxi(oi;m"mhepunumwemmmv,f(-annequﬁmis

equivalent
e Tagirieo

for all k and for all t. The theory of ondinary differential equations with the initial
condition X(y(a)) = v gives the existence and the uniqueness of & solution. Since the
initial data is smooth, the solutions X, wilt be smooth, toa.

Notice that the theorem above gives & mapping from the tangent space at %(a) 10 the
ungent space at(f) for all tin the interval {a,b). The linearity of the equation that gives
the solutions guaranices that this mapping is linear. We call this linear transformartion
the paraliel transport of v along the curve ¥ 10 %1).-



Theorem: (Existence of geodesics.) For any point x in M and any vector v in the
mmtspmuxmmnimnpdﬁvemmb&rnﬂamiqmm?deﬁmdm
(-r,r) with (0) = x and ¥(0} = v.

Proof: Arguing as in the proof of the previous theorem, the problem is eqeivalent to
finding solutions to the system )

Bkt et

Once again, the theory of ordinary differential equations provides us with everything
asserted in the statement of the theorem.

Given two vector ficlds X and Y we have by now two ways of creating a new one: the
Lie bracket and the covariant differentiation with respect to a connection. To compare
the two results, we introduce the notion of the torsion, Given & linear connection V,
define: .

Torg (X.Y) = V, ¥ - VyX - [X.Y].
We zay that the linear connection V is symmetric or torsion free if Torg = 0. One easily
checks the following properties:

1) Tor(X,Y) = -Tor(Y X)

2) Tor(X+Y,Z) = Tor(X,Z) + Tor(Y ,Z)

3) Tor(fX.Y) = fTor(X,Y)
Aswehaveoﬁcnsem.tlmepmpuﬂesnemughmdmih-ﬂer(x.?)xdepmds
onlyonxxlndYx.

Furthermare we define the curvature of V to be

RIX,Y)Z = VxVYZ - VYVxZ - vpm,]z

“This is 10 be understood as follows: for any pair of vector fields X and Y we define a
inear transformation on the space of vector fickds whch on a vector field Z acts by the
formula given above, Then R has the following properties:

DRX.Y)Z = -RYX)Z;

2)REXY)Z = fRX.Y)Z;

3 ROLYHZ = fR(X,Y)Z;

4) 1s aditive with respect 10 X,Y and Z.

12, The Levi - Civita connection.
The following theorem provides a link between the metric and the linear connections on
the manifold

The Fundamental Theorem of Riernannian Geometry: For any Riemannian metric g
=<.,.> on the manifold M there exisis a unique kinear connection V with the following
properties:
1) Tor y=0,
DX(<YZI>) = <VxY.Z> + <Y.VxZ>.
Proof: The following calculation using (1) and (2) allernately establishes uniqueness:
<VxY.Z> = <VyX +[XY],2>
= Y(<X,Z>) - <X,VyZ> + <[X,Y),Z>»
= Y(<X,2>) - <X,VZY +[Y.2]> + <[X.Y).Z>
= Y(<X.Z5) - Z<X,Y>} + <VZzX.Y> - <X[Y.Z}> + <[X.Y].Z>
= Y(<X,Z>) - Z(<X,Y>) + <VxZ + [X.Z].Y> - <X [Y¥ . Z]> + <[X,Y]),Z>
= X(<Z,Y>) + Y(<X,Z>) - Z(<X,Y>)



4]

+<[XZ}LY> - <X [Y.Z> + <[X.Y), 2> - <Z Vx>,
Since we have ended up where we started, we can now solve 10 give

<V, YZ> = HX(LY) + V(X 25) - UXY>)

+<[X.Z).Y> - <X,[Y.Z]> + <[X,Y).Z>}
Not only does this formula prove uniqueness, it alse provides us with an existence
argument, for we can check this formula is function linear in Z, 3o defines an operation
of the vector ficld X on Y, and then check this satisfies the identities for a covariant
derivasive. This is complesely routine, 50 left 10 the reader.

In a chart with coordinates ( x1,....xB ) with the corresponding basis for vector fields

iT.....sa';mﬁnmuhfathemwﬁnnmheﬂvedmﬁwmoﬁmffel
) 4
symbols:

- lz ‘h lfﬂ.'.i‘-ﬂ_?—‘lll

Y "

whuc(gij}isd\einvaumnixof l-(jij).

We refor W the connection in the above theorem as the Levi-Clvita connection of the

Riemannian manifold (M,g). The Jacobi identity for the Lie bracket, the vanishing of

the eensor and an easy computation show that the curvature of any symmetric

connection and therefare of the Levi - Civita connection satisfies the Bianchi identity;
RXY)Z+REZXY+R(YZ)X = 0

for any vector fields XY and Z,

13. Volume element atd integration on a Riesnannisn manifold.
Suppose now that M is a Riemannian manifold that has an oriention as defined in the
chapier on integration, Thea choose & positively oriented basis which is orthonormal
with respect to the Riemannian metric say X,....X for the tangent space at cach
point. If g!,....2% is the dual basis, consider the n-form & A...ae™ This form is
independent of the choice of basis: fof if Y],....Yy, is another oriented orthonormal
basis as above with corresponding n-form &1 a...A8%, we have:

el anc® w des(A)S .. AS".
The transformasion A whose deserminant appears in this expression is an arthogonal
one since it takes an orthononnal basis 10 aa orthonormal basis and therefore the
descrminant is either +1 or -1, The oricntation condition excludes the -1 case, Sinoe the
n-form we obtain is independent of the choice of basis, it is globally defined. We call
thhfumdnvﬁlmedemdtbmnifddhlmdmnbyv“.
We can now integrate functions on orientable Ricmamnian manifolds: for s smooth
function f:M—»R and with the extra assurnption that the manifold is compact (0 avoid
infiniries) we define:

[1=[ o

14. Complex manifolds.
We remarked in the beginning that we could consider different classes of manifolds by
1aking different gluing together maps, such as smooth or CK maps. There is another
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more radical change we can make, namely % replace R by € and consider manifolds
M built from open subsets of € and glued wgether by complex analytic maps. We call
such a manifold M a complex manifold of complex dimension n. Since €7 can be
viewed as R21 and complex analytic maps are certainly smooth, a complex manifold of
dimension n is at the same time a C* manifold of dimension 2n.

If we take a complex chart on M and denote the (complex) coordinate functions by
(z1,....2") then we identify €P with R2D by taking rea) and imaginary parts. Thus each
complex coordinate zi gives two real coordinates xJ, yl where 3 = xJ + iy,
Weinuodnceﬂremjumfunc&om

7. o - iy,
wldch are useful in calculations. If we formally change coordinates from X, ¥ t0 2, Z we
obtain the following relationships between the tangent vectors:
iy ik
We refer to the first of these as holomorphic derivatives and the second as
antiholomorphic. Note that a complex function f on an opea set of M is complex

analytic or holomorphic precisely when the Cauchy Riemann equations
af
— 0

Bij

hold. We use these formulas 1o define the compex desivatives on the underlying smooth
manifold. This means that when we complexify the real tangent space TM to Mat x
we get two subspaces TMy spanned by the holomorphic derivatives, and T"My
spanned by antiholomorphic derivatives.

Exercise: Show that this decomposition is independent of the coordinates chosen.

We call TMy the holomorphic tangent space snd T"My, the anéibolomorphic tangent
space. It is clear that the splitting

| (TMp€ = TMy + T'My
is a direct sum of two subspaces of equal dimension related by complex conjugation.
There is a unique endomorphism J; of TM,, whose + eigenspace is given by TMy and
whaose -i cigenspace is T'M,. It can be given in coordinates by

:,‘g:,- - g-}- :,.35- - -i,-.
We call the section J of the endomorphisms of TM the complex structure of the
manifold. It is clear from the above that J2 = -1, 80 it gives the action of the complex
numbers on the real tangent space. In fact it is cascatially equivalent 1o the complex
analytic structure. |
If we have a smooth manifold M of dimension 2n we say M has an alimost complex
structure if we are given an endomorphism J,; on each tangent space TMy which has
square -1. We say (M.,J) is an almost complex manifold, (M,J) is said to be Integrable
if J arises from & complex analytic itructure as above. In any case we still have the
splitting ofﬂ:comnpluiﬁedmgwlwuiuhmﬁm-leimspmoﬂwhichm
still denote by T'M and T*M respectively. The following very deep theorem completely
deterntines when an almost complex structure is integrable:
Theorem, (Newlander-Nirenberg) The almost complex structure J on a smooth
manifold M is integrable if and only if TM is closed under Lie brackets (1.c. whenever
two complex vectorfields X and Y on M have their values st every point in TM then so
does their bracket [X,Y]).
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If (M,g) is a Riemannian manifold of even dimension, and J is an almost complex
structure on M then we say g is almost Hermitian if

SUXIY) = g(X.Y)

for any tangent vectors X sad Y. This is equivalent 10 the roquircmeat that
SUIXY) = - g(JY.X).

1t follows that '
o(X,Y) = gUX.Y)

defines an alternating and function-linear bilinear form on the vecior fields and hence
gives 2 2-fonn © on M. We call @ the Kaekler form of the almost Hermitian manifold.
If the almost complex structure is integrable then we say (M.g.J) is 2 Hermitian
manifold. A Kaehler manifold is 8 Hermitisn manifold whose Kachler form is closed.
Kachler manifolds represent an important clasa of manifolds with a very rich structure
resulting from the interplay between the complex structure and the Riemannian
structure.
Theorem. If (M,g.J) is an almost Hermitian manifold then J is covariant constant if and
oaly if J is integrable and the Kachler 2-form is closed: i.e. M is a Kachler manifold,
Proof: First see that J covariant constant is equivalent o TM being closed under
covariant differentiation, Then the vanishing of the torsion shows that
[X.Y] = VY - VyX

and hence that T'M is closed under Lie brackets. The almost complex structure is
integrable by the Newlander-Nirenberg Theorem. That the Kachler form @ is closed
follows from the casily proven identity

da(X,YZ) = (VxuXY.Z) - (Vya)dX,Z) + (VZa)(X.Y)
and the fact that both J and g are covariant constant (and hence also ).

Retuming to the case of complex manifolds, the decomposition of the tangent spaces
into holomorphic and antibclomorphic tangents has an analogue for the cotangent

bundle. If we choose coondinates 7 & before, then dzj and &% give & basis for the
complexified cotanges spaces which we refer 10 as the bolomorphic and
antiholomorphic differentials. The spaces they span are invariantly defined, 50 give a
splining
(M*MPC = AlOM; + ADIM,
and a comresponding splitting of the complex 1-forms into
il + a0low,

A (1,0)-form is & complex 1-form which when written in terms of the complex
differentials culy involves the holomorphic differcntials. Likewise for the (0,1) forms
which only involve antibolomorphic differentials. More generally & (p.q)-form is a
{p+q)-form which when expeessed in complex coondinates involves p holomorphic and
q antiholomorphic differentials: i.e. & combination of differentials of the form

il A..adzPAd3I ... A0
‘We thus obtain spaces QP(M) of fonns of type (p,q) which are spaces of sectioos of
covectors APAM of type (0.9
If we examine the formula for the exterior derivative in local coordinates, then on

functions we have
of of
o= 3, S5+
2
It follows that the differential of a {p.q)-form & has componeats of types (p+1,q) and
(p,q+1). The component of da of type (p+1,q) we denote by da and the component of

lype(q.wl)wedenowbysu.%isgimadeeomposiﬁmofdhmmmd-
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a+5whm
3: OPAM) — QPHAQM), 3 : QPAM) — QP+ (M),
From a comparison of types and d2 = 0 we deduce
P w0, 32u0,30+30=0.
hpuﬁ:ihmhvedwbdbuuﬂwSmnm
ar%n 3 el 3 .3,
which give the Dolbeault cohomology groups HP/A(M). There is an analogue of the

Poincare Lemma for the 3 operator whose proof involves the Canchy integral formmula
extended 1o smooth functions.
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