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First let me say that it is a great pieasure to be here at the ICTP and to have
the opportunity to speak to such an audience.

The subject of my talk, and one of the principle themes in the later part of this
college, is the application of the theory of Yang-Mills fields to the study of the
geomelry and topology of 4-dimensional manifolds. We mathemalicians are used to
the idea of mathematics being used in physics but it is important to point out that
here we are dealing with the opposite process, ideas from physics being used in
mathematics, and what is more used to prove very siriking new theorems. The
theory of 4-manifolds has advanced dramatically in the last 8 ycars and it is safe 1o
say that the key new ingredient is the introduction of Yang-Mills theory. My
present aim is 1o survey some of the high points and key ideas in the subject; of
course in order 1o do this it is necessary to leave oul many important and difficult
technical points. Detailed treatment of many of these points may be found in
Donaldson’s papers, the books “Instantons and Four-Manifolds” by Freed and
Uhlenbeck, “The Theory of Gauge Fields in Four Dimensions” by Lawson and
“Geometry of Gauge Fields” by Atiyah. I should say at the ouisct that most of the
material I will describe is due to Simon DONALDSON.

Naturally, I must begin by saying something about the theory of 4-manifolds
and mention the problems one wishes to solve. Throughout I will assume, unless it
is explicitly stated otherwise, thal we are working with a smooth, simply connected,
closed (i.e. compact and no boundary), oriented manifold. I will often be necessary
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1o assume that we have chosen a Riemannian metric on X, but I will try to make it
clear precisely where I am using the metric. Associated to X is a basic invariant, its
intersection form Qy. This is a symmetric, unimodular (i.e. determinant 11)
bilinear form defined on the [ree abelian group H(X) = Hz(x;l). More concretely
it should be thought of as a symmetric, unimodular matrix of integers: here are two

important cxamples.
0 1
1 0

2 -1
12 4
402
-1 -
Eg: 402 4 0 -
4 02 -1 0
0 -1 2 0
4 0 0 2

I will simply use the term forma for a symmetric unimodular form defined over the
inlegers.

The intersection form of a 4-manifold X measures the way that 2 dimensional
sub-manifolds of X intersect. In purely topological terms it is the bilinear form

QX(G-B) =<av ﬁl [X]>

defined, using the cup product U, on H(X). A lot of work has been done on the
algebraic classification of these forms Q. First they are divided up into two basic
classes.

DEFINITE FORMS. Positive definite means Q(o,oc) 2 0, and Q(o,a) = 0 if
and only if o = 0 and Q is negative definite if -Q is positive definite. Geometrically



we can always change the orientation of the 4-manifold to change negative definite
into positive definite so we will assume the form is positive definite. The study of
the definite forms involves some hard number theory, and though a lot is known
these definite forms have not been classified. A great deal of information is
contained in Serre’s book "A course in Arithmetic” or the book by Milnor and
Husemoller “Symmetric bilinear forms’.

INDEFINITE FORMS. Here there is a classification due to Hasse-~Minkowski.
There are two types

type I even forms: i.e. Q(o,o) is even, or in terms of the matrix,
the diagonal entries are even,

typel odd forms: the others.

Indefinite forms are classified by three invariants

type
rank = size of matrix

signature = number of positive eigenvalues - number of negative
eigenvalues when the matrix is diagonalised over R.

The classification of indefinite forms goes as follows: If Q is an indefinite form
then either Q or -Q is one of the following list

typel  n(t) +m(-1) }
01 amz20
type I nEs-!-m(“)

and two forms are isomorphic if and only if they have the same type, rank and
signature,

Now let us return to the theory of 4-manifolds and ask the natural first
question:
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REALISATION QUESTION. Is every form the interscction form of a smooth
4-manifold.

Theorem 1. Suppose that X is a smocth 4-manifold and Qy is positive definite;

then Qy is isomorphic (over the integers) to x12 4ot x,z wherer = rank H(X).

Therefore smooth 4-manifolds see none of the complications of positive definite
quadratic forms over the integers. Let us now tum our atiention to the indefinite
forms. It is easy to realise the type I indefinite forms since the intersection form of

nP? » sz

is just n(1) + m(-1). 1 should explain the notation:

P2 is CP2 is oriented so that its intersection form is 1,

2
P is CP? with reversed orientation so its intersection form is ~1
# is the connected sum operation which is most easily explained by drawing a
picture

Now we turn to the type 1 forms. The intersection form of shs?is

(51

but in general, for type II, life is not so simple.

If Q is a form, define b™(Q) to be the number of negalive terms which appear
when Q is diagonalised over R. Soifnm20



b'(nE3+m(g }))=m.

If X is a smooth 4-manifold then we define b™(X) to be b™(Qy). Next note that X
is a spin manifold if and only if Qx has type II, this gives us a geometricat way of
viewing the condition that the intersection form has type II. The next theorem gives
some information on the realisation of type II indefinite forms.

Theorem 2. Suppose X is a smooth spin 4-manifold with indefinite intersection
form:

@ If b@)=1, then sz(g})
® I b =2 then Qy= (O’)e(g})

However here things stop. The K3 surface is defined to be

K3 = {kzgzy:75:29) € CP3IZ:, +z: + z; +z; = 0}

and a calculation using characteristic classes shows that
_ 01 01 01
Qka = 58953&’(1 1) 9(1 0)69(10).

2Es+3((1] ,‘))

occurs as the inlersection form of a smooth 4-manifold. In fact it is still unknown

This shows that

what possible indefinite type II forms occur as the intersection forms of
4-manifolds, but there is a well-known conjecture,
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CONJECTURE Suppose X is a smooth spin 4-manifold with indefinite
intersection form, then

wheren,m 2 0.

Ox = n(st)+m(‘,’ (‘,)

Finally let me point out thal the theory of topological 4-manifolds is
dramatically different: According to Freedman every form is the infersection
form of # topological 4-manifold. This difference leads to a very surprising
conclusion. The only way to reconcile the difference between Donaldson's results
and Freedman's results is that there must exist a fake IR4; by this I mean a smooth
4-manifold X which is homeomorphic to R* but not diffeomorphic to R, Itis
known that in every other dimension there cannot exist a fake R™.

Now let me tum to the methods Donaldson uses to prove these results, so I
must now do & complele turn around and start to discuss Yang-Mills theory.
For simplicity I will describe the Yang-Mills equations on R equipped with its
usual Euclidean metric. I will assume that the gauge group or structure group of the
theory is SU(2) the group of 2 x 2 unitary matrices with determinant 1 (i.e
AA’ = A’A =1, det A = 1). Its Lie algebra su(2) is the space of skew adjoint (i.e.
A’ = -A) matrices with trace zero.

Then an SU(2) connection is simply a 1-form on R* with values in su(2)
ie.

A= ZAdx" AR ),

et

A gauge {transformation is a smooth function g : RS su(2) and gauge
transformations act on connections as follows:

gA) =g lagrglag.



Here, to make sense of this formula, remember that we are dealing with matrices, so
for example dg is just the differentiated matrix. Two connections A4 and A are
gauge equivalent if there is a gauge transformation g such that g*A; = A;.

The curvature of A is the matrix of 2-forms
FA =dA+AAA

where A A A is defined using matrix product and exterior product of forms: in
coordinates

F= 2 Fyynydzy

ev

F"v = ap.Av - avAu + MF.AJ

where if X, Y are matrices, then [X,Y] = XY -YX . In particular these formulas
show that F is an su(2)-valued 2-form.

The next ingredient is the s-operator: This i3 the operator on 2-forms
given by

t(dxide) =% dxkdx,

where {i,jk2} = {1,2,3,4} and the sign is + if (1234) - (ijkI) is an even permutation
and - if it is odd.

The connection A defines the covariant derivative operator Dy = d +A;
so for example if F is a su(2)-valued 2-form on R* then

DAF = dF + AAF.

It is now possible to state the Yang-Mills equations.
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THE YANG-MILLS EQUATIONS:

DpFa=0
Dp(+Fp) =0

These equations are a sysiem of second order non-linear partial differential
equations for the components of the connection Ay. In fact the first of these
equations is an identity, the Bianchi idemtity, it is always valid if F, is the
curvature of the connection A. This observation leads to the self dual Yang-Mills
equations.

SELF DUAL YANG-MILLS EQUATION:
iFA = FA

Of course one could equally well look at the anti-self dual equation *Fp = -F. In
view of the Bianchi identity a solution of the self dual equations, or anti-self dual
equations, is automaticzlly a solution of the full Yang-Mills equations. The self
dual equations are a system of first order non-linear equations for the A,

A solution of the self dual equations will be called a self dual
connection. It is easy to check that if A is self dual then so is g'A or more

generally if A is a sotution of the full Yang-Mills equations then so is g*A. This
leads to the introduction of the moduli space of self dual connections

self-dual connections
gauge equivalence

All this can be done globally on a smooth 4-manifold equipped with a
Riemannian metric. 1 will not really try to say anything precise about this here but I
will make one important point. If we are working on a compact 4-manifold X, then
we must really work with a principal SU(2) bundle over X and there is one moduli
space for each such bundle. Principal SU(2) bundles on X are classified by an



integer k and I will denote the corresponding moduli space by M. This integerk is
often referred 1o as the topological quantom number.

There is a strong interaction between the structure of the moduli spaces My
and the topology of X and this is the point which Donaldson exploits to prove the
above theorems. Here is a simple example of this interaction. Suppose tha. X
salisfies our initial assurnptions (i.e. simply connected, closed, ... ) then it follcws
that, for a generic mefric, the moduli space M is a smooth “manifold with
singularities” of dimension

8k -3(1+b (X))

50 that the dimension of the moduli space is determined by a topological property of
X. Here the phrase generic metric means that this result is true for an open dense set
of metrics.

One of the important technical points is the existence of point-like solutions
to the seif dual Yang-Mills equations. These point-like solutions provide the
method for using the moduli spaces to get information about the points of :he
manifold X. On R* the norm of curvature, or gauge field ¥F of these special
solutions looks like this:

L
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These solutions A* are determined by a single parameter A, and as A - oo the
function IF} converges {0 a delta function at the origin.

Now we try to take these solutions defined on R* and “graft” them in to a
general 4-manifold X by gluing them in to a neighbourhood of a chosen point x, to
get a self dual connection Al(x) on X, or more generally we try 1o superimpose k
solutions A"'(x,)....,Al'(xk). If successful this process will produce a self dual
connection with topological quantum number k. However this is not always
possible but there are extensive results due to Taubes on when this can be done
and when it cannot. This process is very important; this is what gives a precise
relation between the peints of X and the solutions of the self dual equations.

Let me illustrate how 1o put all these ideas together by outlining, very briefly,
the proof of the following special case of Theorem 1. Assume that X is spin, so that
Qx is even, and also that Qy is definite. If we go back and look at Donaldson’s
Theorem 1 this means that H(X) = 0 and Qy = 0 since Theorem 1 says that Qy
must be isomorphic (over the integers) to xlz +..+ x,2 where r = rank H(X). But
if Qx is even this is only possible if r = 0. I will outline how to prove that
H(X)=10.

Look at the k = 1 moduli space: Then for a generic metric it turns out that this
is an open 5-dimensional manifold and outside a compact set C

M; \ Cx X x(1,0)

This copy of X x (1,00) is the space of solutions of the form Al(x). The proof of
these facts requires some hard analysis. In particular the proof that there is a
compact set outside of which M; looks like Xx(1,00) requires an existence theorem
due to Cliff Taubes and a compactness theorem due to Karen Uhlenbeck. Hereisa
picture:



X x(1,0) {

Given that this is the structure of the moduli space My, it is natural to compactify

M, by adding a copy of Xx1. This compactified moduli space M, is a smooth
5-manifold with boundary X,

A simple general topological argument shows that if W is any 5-manifold
with dW = Y, then

signature Qy = 0.

In particular we conclude that the signature of Qy is 0; but since Qy is definite and
unimodular this must mean that H(X) = 0.

There is another and equally interesting part of Donaldson's theory of
4-manifolds that there has not been time to touch on here. This is Donaldson’s
work on the Classification Problem: classify smooth 4~manifolds with a given
intersection form. This leads to the theory of the Donaldson polynomials which I
am sure we will hear much about later on during this meeting. However I hope I
have said enough to convey one or two key points in the applications of Yang-Mills
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theory to 4-manifolds and enough to convince you that this is a very striking and
deep subject.
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Coventry CV4 7AL, UK.






