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A symplectic manifold (M,w) is 8 smooth manifold M equipped with 8 closed 2-
form  which is non-degenerate as a bilinear form on each tangent space.

In the case M is finite-dimensional the second condition forces M to be even-
dimensional. If the dimension is 2n, then each of the exicrior powers &, w2, .., olis
non-degenerate, In particular M is orientable and if it is compact the de Rham classes
fool, w21, ... , " are non-zero. The 2n-form (-1¥n/Zkon/af is called the Licuville
volume.

Bxample 1 The most basic example of a symplectic manifold is R20 with the
symplectic structure

o = ; dpjadg!

where we have divided the usual 2n coordinates on R2 into two groups of n: pq,...Py
and ql,....q". More generally, given any sympiectic vector space V, the skew-
symmetric bilinear form translates around V to yicld a symplectic form making V intoa
symplectic manifold. We refer to these examples as the linear symplectic
manifolds.

Example 2 M = T*N for any smooth manifold N, If x : M + N is the cotangent
projection then the tautological 1-form @ defined by Op = petr, can be written using
coordinates x1,....xN on U N as follows: set qi = xlow and for p € ®(U) Jet
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p = L, pilp) dxi(n(p))

which gives smooth functions pj on x'(U). Then it is casy to sec that © = Zipidqi.
Thus @ =db = %, dpiadgl is a symplectic structure on M. Note that in these special
charts on M the symplectic form is the same as that in Exampic 1.

Example 3 A manifold M is a Kachler manifold if it has a Riemannian metric g and an
almost complex structure J compatible with g (that is gUX,JY) = g(X.Y)) such that VJ
= 0 for the Levi-Civita connection. J is neccssarily integrable and o{X,Y) = g(UX.Y) is
skew-symmetric. Obviously Vo = 0 so do = 0 and @ is non-degencraic. Hence (M,@)
is a symplectic manifold.

Example 4 Let G be any Lie group, § its Lic algebra and g* the dual vector space. G
acts on g by the adjoint representation and on § by its contragredient - called the
coadjoint representation. Let M € g* be an orbit knd f& M. If Gy is the stabilizer of f
and gr its Lie algebra then

g = (Ee g:50=0),
- {aE ':foldt-ﬂ}.

Consider the bilincar form on g given by

Bf(goﬂ} - fafl-ED
= - foudf (1))

It follows that By has kemel gr, so induces a non-degeneraie skew-symmeiric form on
/8¢ = T¢M. This gives M a natural non-degenerate 2-form @, The Jacobi identity for
g implies that d = 0 so (M,w) is a symplectic manifold. The 2-form w is known as
the Kirillov-Kostani-Souriau 2-form of the coadjoint orbit M.

Example 5 Let I be a Ricmann surface and P - I a principal G-bundle. Let A be the
space of all connections on P. A is an affine space whose underlying vector space is
Gl (ad(P)) - the PxGg-valucd 1-forms where g is the Lie algebra of G. Let g have an

invariant inner product (.,.) and take By, Bz € 0! (ad(P)) then we can take (B1AB2)
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which is a 2-form on Z, and set

(81,87 = [3 (B1AB)).

Such 8 non-degenerate skew-symmetric bilinear form on £21(ad(P)) translates around
A as in example 1 10 give it » symplectic structure.

The fact that in example 2 we could find coordinates on T*N such that the symplectic
form was the same as cxample 1 is not an accident. This is the content of Darboux's
Theorem:

Theorem If (M,w) is & symplectic manifold and x a point of M then there is a
neighbourhood U of x in M and a diffeomorphism of U onto an open neighbourhood
of the origin in TM, which pulls back the linear symplectic form on TM to coincide
withwon U.

Proof See [Abraham & Marsden].

If M is finite dimensional then there is a basis for the tangent space at x 30 that wy has
the same form as the linear pymplectic structure on R, So any 2n-dimensional
symplectic manifold has a coordinate system (p{,....pn.q} ...q") in & neighbourhood of
any given point such that w = E‘i dpiadgi. These coordinates we call Darboux
coordinates on M.

It it not known in general what are the topological restrictions on a smooth manifold so
that it admits a symplectic structure. Obviously it must be even-dimensional and
orientable, and if it is compact all its even Beiti numbers are non-zero. A futher
testriction is that it must admit an almost compiex structure. To see this, we pick any
Riemannian metric g on the symplectic manifold (M,w). Then we can represent @ with
respect 1o g by a skew-symmetric endomorphism A of TM: @(X,Y) = g(AX,Y). -A2
is then positive definite, so has & positive square root B. Se1 J = AB. Since A and B
commute, J2 = -1, whilst ®(JX,JY) = - g(BX,AB'Y) = - g, AY) = (X,Y). On
the other hand w(X,JX) = g(AX,AB"X) = g(X,BX) which is strictly positive for X
non-zero. Noie that this says that the modified metric g'(X,Y) = g(BX,Y) gives M the
structure of an almost Kachler manifold with Kachler 2-form @, An almost complex
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structure J on M such that @(X,JY) is an almost Kaehler metric we call & positive
compatible nlmost complex structure.

For a long time the only known examples of compact symplectic manifolds were all
Kachler manifolds (such as projective spaces, Grassmannians, flag manifolds). Then
Thurston constructed an example of a torus bundle over a torus with an odd first Bett
number, but whose total space was symplectic. McDuff used Gromov's symplectic
blowing up technique and Thutston’s example to construct simply-tonnected non-
Kachlerian compact symplectic manifolds.

If (M,w) is a symplectic manifold then a symplectic diffeomorphism of M (or a
canonical transformation) is a diffeomorphism o : M -+ M which preserves o:

o'w =,

Example 1 The group of tranalations of R2D acts symplecticatly whilst the linear
symplectic diffeomorphisms of R2? form the simple Lie group Sp(2n.R).

frﬁa 21fo is any diffeomorphism of N then p + psc™, gives & symplectic
dl[feo-nprphlsm of T*H #nce in fact it already preserves the 1-form @,

,’ "’”'

.mp%e 3 The group of holomorphic isometries of a Kachler manifold M will
_wmstsx of canonical transformations of (M,w).

Example 4 The Lie group G obviously acts on its coadjoint orbits, and by the natural
way that the Kirillov-Kostant-Souriau form was defined, it is invariant under the action
of G.

Example § The group of gauge transformations acts on the space of connections A
so as to preserve the symplectic structure.

Let 6l be a 1-parameter group of symplectic diffeomorphisms of (M,0) with generating
vector field X then
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ofm = W,
» £xtr = O,
* di(X)w) +iXdw) = 0.

Hence i(X) is a closed 1-form. Vector fields with this last property are called locally
Hamiltonian. If the stronger property that i(X)w is exact hoids then X is called
Hamiltonian, We denote by Ham(M,) the space of Hamiltonian vector fields on M.
If £ € C%°(M) then X denotes the Hamiltonian vector field with

iXpw = df.
We thus have a map

C®(M) + Ham{M,m),
f-+ Xg

If X and Y are locally Hamiltonian then for any other vector field 2,

0 = ExO)ZY) = XoZY) - ofXZY) - ofZDEY])
0 = EyodXD = YoX.2) - afYXiZ) - oX]Y.Z)
0 = (@)(X,Y.Z) = Xo(Y.Z) - YoX.Z) + ZoX.Y)
- w(X,Y}2) + X ZLY) - oY ZLX).

Adding the three equations yields

0 = 26(X.Y) - ulY X12).
Thus

m'ﬂ - -xu’(xiY)'

Hence the bracket of two locally Hamiltonian vector fields is always Hamiltonian. In
particular the Hamiltonian vector fields form a Lie algebra.

Now consider the operation Xg(g) of a Hamiltonian vector field X¢ on a function g. Set
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{f.gl = Xe(g)
{f.g} = dgXp) = 0(Xg.Xp).
Thus {f,g} = - {g.f}. One can further show that the Jacobi identity holds for this

bracket operation (essentially due to @ being closed) and so Co{M) with the operatinn
{.} is a Lic algebra. {.,.} is called the Poisson bracket on C®(M). Note that

KeXg) = - Xo(XgXg) = Xif.g}

which shows that the map f -+ X : C®(M) -+ Ham(M,w) is a homomorphism of Lie
algebras.

In rerms of Darboux coordinaies
Xg = L, 3/3q} 3/dp; - 3/3p; 3/3q}
t.g) = 3, 9/3qi 9g/ap; - 30/0p; 3g/%q.

It follows from these formulas that the integral curves far the vector field - Xy satisfy
the differential equations:

dqi/dt = Bf/3p;, dpj/dt = - 3f/dqh.
These are, of course, Hamilton's equations.

Now assume we have a symplectic manifold (M,m) and a Lie group G acting smoothly
on M by symplectic diffeomorphisms. We call this a symplectic action of G. Thea
each ]-parameter subgroup t + expt§ of G gives risc to a 1-parameter group of
diffecomorphisms of M whose generator we denote by - X(E). This sign is chosen se
that & -+ X(£) is a homomorphism of Li¢ algebras. In general X(§) is a locally
Hamiltonian vector field, If X(£) is in fact in Ham(M,) for all § then we say the action
is strongly symplectic. If M is simply-connected, or if [g,8] © g then a symplecti:
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action will always be strongly symplectic. All the examples except possibly example 3
are of strongly symplectic group actions.

Given a strongly symplectic action of G on (M,w) we can choose a lincar map & : g~
C®(M) such that X(§) = X, (k) for each § & §. We say the action is Hamiltonian if
we can choose A to be 8 homomorphism of Lic algebras and call such a 4 a
Hamiltonisn for the action. This is not always possible, and the obstruction can be
studied using Lie algebra cohomology. For 8 strongly symplectic action of G there is
always a central extension of G which docs admit a Hamiltonian,

An example of a non-Hamiltonian sorongly symplectic action is given by the group of
translations of R22 with its linear symplectic structure (exercise). The central extension

of the group of wansiations nceded in this case is the Heisenberg group.

It is inatructive to write down the Hamiltonians for the examples with strongly
symplectic actions.

Example 1 Denote the lincar symplectic form on R20 by 0. The Lie algebra of the
group Sp(2n.R) consists of all linear endomorphisms § with the form Q(Ev,w)
symmetric. The function AE) = $03(Ev,v) is the required Hamilionian.

Example 2 The Lie algebra of the diffeomorphism group of N is the space of all

vector fields X{N). Any vector field X on N defines a function 1(X) on T*N in the
obvious way

AX)p) = - pX(=(P))
and this is the requircd Hamiltonian.
Example 4 In this case the Hamiltonian function is given by duality:
AGXD) = 5>

Example 5 The Lic algebra of the group of gauge transformations is Q9(ad(P)) so its
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dual will be Q2(ad(P)) with the duality given by first pairing in the Lie algcbra and then
integrating the resulting 2-formover L. If § € 210(ad(P)) then an easy calculation
shows that X(EXA) = DAE where A € A and DAS denotes the covariant differential
of E. Then

(XENMIAB) = wAMAEB) » [ (DAEAB).

But

(DAEAB) = d(&,B) - (£.DAB)
so integration gives

GXE)A®) = -[5 G.DAB)
which is the detivative of the function

A~ ‘Iz(ﬁfA)

where FA denotes the curvature of the connection A, Thus & Hamiltonian is given by
AGNA) = -fg GFA).

Returﬁirlig 1o the general sexting, let G be a Lie group acting strongly symplectically on
(M.c‘n) i_ca'iaii Hamiltonian function A. We can dualise this situation by defining a map

p:M-apg*
by .
HHE) = AG)(x).

We call the map | obtained this way the momentum map for the Hamiltonian action
of G, It generalizes to arbitrary groups of symmetries the linear momentum which
corresponds  with translations of R? ¢ R2D, and angular momentum which
corresponds with rotational symmetries.

Symplectic manifolds and geometric quantization

Early versions of momentum maps were ntroduced by Mackey and Smale for
cotangent bundles, but Kostant and Souriau developed the general theory.

Pethaps the most interesting momentum map of the above examples is the last one
where we have

HWA) = -FA,

That is: the curvature is the momentur map for the natural action on the space of
connections of the group of gauge transformations of & principal bundie over a closed
Riemann surface.

Let (M.w) have a Hamiltonian G-action with momentum map L. The image ofuisa
union of coadjoint orbits. If M is homogencous the image is a single orbit and it isa
theorem of Kostant and Souriau that W is then a covering magp. In the non-
homogencous case there is a far-reaching constniction due to Marsden and Weinstein
called reduction which generalises 10 symplectic manifolds with Hamiltonian group
actions the process which in classical mechanics is known as climinating cyclic
variables. '

There are several versions of reduction of varying generality. Lat us take the following
case: Suppose f € g* is in the image of the momentum map | M « g* and consider
the inverse image j(f) which we suppose is a submanifold of M. It is no longer a G-
space, but the stabilizer Gy of £ stitl acts. The symplectic form o will be degenerate
when restricted to p'(f), but it is not hard to see the characteristic directions are tangent
to the orbits of Gy. If the quotient p*(f)/Gr is a manifold it will inherit a symplectic
structure. This new symplectic manifold we call the {Marsden-Weinstein)
reduced phase space.

Take the momentum map for example 5. If we take the origin as the element of the dual
of the Lic algebra at which to perform the reduction, then the stabilizer is the whole
group of gauge transformations and the set jt%(0) is the set of flat connections. The
reduced phase space is the set of equivalence classes of flat connections, and the above
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argument shows that at least where it is a smooth manifold, it has a symplectic
strocture.

Let us now tum to the question of quantization of (M,w). The object is to try to find a
Hiiben space Hand and associate Lo each f € C™(M) an operator Q(f) on H'so that

QOQE-QEAD = QL.

Where ) is a positive constant h divided by 2x. Apart from the factor of il this means
that f -+ Q{f) is a representation of the Lic algebra C®{M). The most naive solution isto
take Q(f) = ihX, but this has the consequence that Q(1) }a zero, so that if we apply tie
procedure to R22, it would imply that the operators corresponding with position asd
momentumn commute and that disagrees with the standard quantization of a particle with
one degree of frecdom.

Ideally we want Q(1) 1o be the identity operstor which means we could try Q{f) =
ihX¢ + £, but a calculation shows that this is no longer a homomorphism. We can ald

another term depending linear!y on Xy so that it does not spoil the normalization for the
identity operator. In other words we can take a 1-form & on M and set

QD = b (XpraXp)+f
then the commuator can be computed 1o give
QEQ)] = i QUlf.g}) + i ( th da(Xg.Xp) - 0(X5.Xp) )
80 we have a possible solution if o can be chosen so that @ = ihda.
This is not possible in general, since w is not always exact. The way around that is to
observe that since @ is closed, it is at least locally exact by the Poincare Lemma, 50 we
should only interpret the formula as being true on some open set. We recognize the tamn

X + a(X) as a covariant differentiation in the direction X, so the correct glodal
formulation involves a complex line bundle L over M with a connection D, If s is a

10
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section of L then we define
Qf)s = DX s +fs

and and obscrve that this reduces 10 the previous operator when the bundic is trivialised
so that o is the connection 1-form. Then the condition @ = ik dot says that the
connection must be chosen so that it has curvature @/ij. There is, of course, a
topological restriction resulting from this, since the Chem-Weil theorem says that i/2x
times the curvatire gives the real Chem class of L. Hence we have to assume /284 =
@/h is an integral 2-form and then choose & line bundle L with this as its real Chem
class. Such a bundle always has a connection with curvature @/ih and this we use to
define the quantization as above. This condition on w we call the quantization
condition.

In order 1o form a Hilbert space from the sections of L. we need it to have a Hermitian
structure, then the Hilbert space consists of all sections which arc square~integrable
with respect the Liouville volume. i we choose a metric connection for D then the
operators Q(f) will be formally self-adjoint for real functions f. Such a connection has a
pure-imaginary 2-form for its curvature - which is consistent with the quantization
condition. We call @ Hermitian line bundle L with a metric connection D having
curvature ©/ih a prequantization of (M,m).

The above procedure appears 1o be a solution. When the manifolds in question are
compact we get an integrality condition on the symplectic form which leads to
discreweness of the parameters describing the quantization. Where it fails is in giving the
'right’ answers for even the simplest of models. For exgmple we take R2 with

coordinates p and q, and the form @ = dpadq. We interpret p and q as momentum and
position respectively, then

Xp - ‘B/&I. XQ - a/ap,

5o that if we take the connection form o = pdq/ih, then

Qp) = -ihd/dq, Qo) = hd/dp+q.

1n
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The first operator is the standard one for momentum in the Schroedinger picture, but the
second operator is only correct if it acts on functions of q alone rather than on the
' functions of p and g which we have ended up with. There is an equally bad result if we
apply the formuln to the harmonic oscillator 4(p2 + q2). This gives

Qukp2 +q2)) = i a/ap - pasda)+4igd - p),

which is an operator with spectrum (~co,+00). A partial solution can be found by taking
the space of functions depending on q alone. Then the formuias for position and
momentum are correct. The hanmonic oscillator is not even defined in this picture as the
operator above does not preserve the space of functions of q.

An alernative which does give an operator comesponding with the harmonic oscillator
is to use a complex coordinate z = p + iq. Then we take the form o = -Zdz/2h end
obain

Q(43) = hzd/dz - K2 d/o%.
This can be made to have positive spectrum by restricting it to the holomorphic

functions of z. The norm in this case has to take account of the complex connection
form o The formula is:

" - ;c i Ly

Which means that this time the quantization is on the Segal-Bargmann space of
holomorphic functions which ate square-integrable with respect to a gaussian measure.

Themi:r problem with tie above operator is that it will give a purely integer spectrum
1 the harmonic oscillator, rather than the comrect half-integer spectrum. This can be
cured by introducing a s_ymplectic analogue of spinors called half-forms which give an

intrinsic 'way to form Hilbert spaces on symplectic manifolds.

The above examples show that we should try to cut out half the variables in order to get

12
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the correct spectral and irreducibility properties. The geometrical way to do this is to
introduce the notion of a polarization. We form the complexified tangent bundle
TMC and consider a subbundle F of half the fibre dimension, Extending the symplectic
form o to be bilinear on TMT we say F is a polarization if it is closed under Lie
brackets and isotropic with respect to .

Given a polarization F and a prequantization (LD} of the symplectic manifold (M,w)
we form the space I'p(L) of polarized sections of L, namely

Tp(l) » {s&TL):Dxs=0, YXelF}

This subspace of the space of sections is stable under Q(f) if [Xg. ()l < T'(F). This
last space of functions we call Cly. It is easy to check that C1f is 2 Lie subalgebra of
C(M) and we call it the space of quantizable functions for the polarization F.

Examples:

A) A polarization of R2 is given by taking F to be €3/3p. When a is pdq/ih the
polarized sections are then given by functions of q. A generalization of this example can
be obtained by taking M to be a cotangent bundle T*N. The complexification of the
vertical distribution gives a polarization of M. Since the symplectic structure is exact we
can take L 10 be trivial and ¢ = 9/ih as the connection form, The polarized sections are
then the functions on the base manifold N and Cly: consists of the functions on M
which are polynomials of degree { on each cotangent space (i.e, linear in the momentum
variables). In this cotangent case the symplectic spinors alluded to above would
correspond with the bundle of half-densities on N. These form a natural Hilbert space
L2(N) on which elements of C1f act by formally self-adjoint first order differential
Operators.

B) A second example is provided by the identification R2 = €. Then F = €3/0Z isa
polarization and the polarized sections are the functions independent of Z - i.e. the
holomorphic functions. More generally, the space T“M of antiholomorphic tangent
vectors is a polarization for the Kachler 2-form of a Kaehler manifold. If L is a
Hermitian line bundle with connection D such that D has curvature w/ih then D has
cutvature of type (1,1) so L has a unique holomorphic structure such that a Jocal section

13
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s of L is holomonphic if and only if Ds vanishes on antiholomorphic tangents. But that
i just the condition for s to be a polarized section of L. Hence TR(L) is the space of
global holomorphic sections of L, whilst it is easy to see that a function f s in Clpif
and only if Xg is the real part of a holomorphic vector ficld on M. The sympleciic
spinors in this case comespond with & square 100t K* of the canonical bundle of M and
the quantization of C1F is constructed on holomorphic sections of Lex?.

A polarization F of (M,w) is said to be real if F o F . It is casy to scc that & raal
polarization is the tangent space to a foliation by real Lagrangian submanifolds and ttat
locaily such a foliation is symplectically equivalent 1o the vertical distribution of a
cotangent bundle.

A polarization F of (M) is said to be (pseudo-) Kaehler it FAF =0. For

dimensional reascons we then have TMT = FEF and so there is a real endomorphisra J
of TM with -i eigenspace F. J is an almost complex structure on M and the fact that we
require F 10 be closed under Lie brackets says that J is integrable by the Nirenberg-
Newlander theorem. The fact that F is isotropic translates to the compatibility of T with
@, but J may not be positive. This leads 10 the following notion:

Let (M,0) be a symplectic manifold and F a polarization of M then F is said 10 be
positive if iw(X.X) 2 0 for all X € F. A positive Kachler polarization is then he
antiholomorphic tangent bundle of some Kachier manifold M. Notice that rzal
polarizations are also positive. The general positive polarization is a mixture of the swo
cases, but there are technical problems even at the formal level with integrabi ity

conditions 5o we assume the intersection FAF has constent dimension and F + T is
inlcgrable.

For another approach to the quantization of Kachler manifolds which is closely releted
10 geometric quantization see [Berezinl.

There are various deficiencics in the over-simple approach above which rules out many
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interesting cases by requiring L and K* to exist separately when all that is needed is the
tensor product LOK*. A way around this is described in [Robinson & Rawnsleyl The
fact that in the cotangent case we only handle Hamiltonians depending linearly on the
momentum misses the siandard quadratic kinetic enesgy terms. These can be handled by
a gencralization described in [Kostantl. In some situations one is forced 10 use non-
positive polarizations or for reasons of holonomy there are no polarised sections; in this
case there is a notion of cohomology which may still provide the Hilbert space see
[Rawnsley), [Rawnsley, Schmid and Wolf).

Lzt us look briefly at the case of coadjoint orbits. It is a theorem of Kastant that if &
momentum map exists then the Hamiltonian action of G on M lifts into the line bundle
L as automorphisms of the connection D, 50 there is an induced action on the space of
sections of L. Further the infinitesimalization of this action is just the quantization of the
function A(E) for each & € g. If the polarization is in addition G-invariant we get &
representation of G on I'g{L). There are two basic cases where invariant polarizations
always exist for coadjoint orbits. If G is nilpotent then Kirillov showed that all the
unitary representations of G can be obtained by geometric quantization of the coadjoint
orbits. For this case all the orblts are simply~connecied and have real polarizations
giving them the structure of cotangent bundles of homogeneous spaces of G.

If G is compact scmi-simple, g and g* can be identified using the Killing form, so the
coadjoint orbits as homogeneous spaces are the same as G modulo the centralizer of a
torus. Such spaces are simply-connected. If M is the orbit of §, then M has a complex
structure defined as follows: the stabilizer of & is its centralizer, which has Lie algebra
the kemel of adt. The tangent space to the orbit of § can then be identified with the sum
of the non-zetro eigenspaces of adk, There is thus a natural splining of the tangent space
at § into twa hatves acconding as the eigenvalue is above or below the real axis. Itis not
hard to scc that this gives the orbit of £ a positive Kaehler polarization, which is G-
invariant by construction, Hence each coadjoint orbit of & compact semi-simple Lie
group has a unique positive invariant polarization. If the orbit is integral there is &
unique Hermitian holomorphic line bundie L with the holomorphic connection having
cutvature w/ih, and the group G has a representation on the space of holomorphic
sections of L. That these representations are imeducible and exhaust the representations
of G is the content of the classical Borel-Weil theorem.

15
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For more general Lie groups there are some difficulties finding all the data needed for
geometric quantization of all the integral coadjoint orbits, but for example for type 1
solvable Lie groups or for real semisimple Lie groups, enough orbits can be quantized
10 give the unitary representations occuring in the Plancherel theorem.

In example 5 the linear symplectic structure is exact 3o we can use the trivial line bundle
to quantize the space of connections. A polarization may be found by obscrving that the
choice of a complex structure on the Riemann surface Z induces a splitting of the
complex 1-forms into (1,0) and (0,1) forms, and this splitting of QladPHT is
isotropic for the symplectic structure. So the space of connections on P+ £ has a
natural Xachler manifold structure.

Let us look at the compatibility of reduction and geometric quantization. Suppose we
have a Hamiltonian G-manifold (M,w) with momentam map 1, and that (M,®) has a
quantization (L,D) and invariant polasization F. if we choose f in the image of |1 then
because the orbits of Gg are isotropic for © they are isotropic for the curvature of D.
Hence the pull-back of L to a Gy-oebit is flat. If L can be parallelized on each Gg-orbit

there will be an induced line bundle on the reduced space g*(f)/Gg and n connection in
this bundle whose curvature is the induced symplectic structure. One can also see that
there is an induced polarization, at least generically, so that the whole of the quantization
can be reduced. For example if this is applied to example 5, it induces a holomorphic
line bundle on the moduli space of flat bundles. In the case G = S1, the moduli space is
the Jacobian of £ and the line bundle is the universal bundlc on the Jacobian.

T hope that in these brief notes 1 have conveyed some of the fascination of symplectic
geometry and its relations with the of questions of global analysis which are the subject
of this College.
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