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SPIN REPRESENTATIONS

1.Clifford algebras.

Let V be a finite dimensional complex vector space with a non-degenerate
inner product < , >. The Clifford algebra C(V) together with the inclusion
of V into C(V) are determined by the following universal property.

Definition Let A be an algebra and let ¢:V — A be an inclusion of
vector spaces such that

{#(v1),8{va)} = =2 < vy,v3 > for all v;,v2€V

where {a,b} is the anti-commutator defined by {s,b} = ab+ba. Then there
is a unique algebra homomorphism C(V) — A which extends the inclusion
of V.,

All non-degenerate inner products on V are equivalent so the algebra
C(V) depends only on the dimension of V.

This construction still gives an algebra when the inner product is de-
generate. In particular, applying this construction when the inner product
of v, and vy is O for all vy,v3 € V gives the exterior algebra on V. Now
replace the inner product < , > by h <, > where 0 < h < 1 and apply
the construction. For A = 1 this givea the Clifford algebra and for & = 0
this gives the exterior algebra. This gives a vector space isomorphism be-
tween the two algebras. This shows that if the dimension of V' is n then
the dimension of the Clifford algebra is 2". The exterior algebra also has
a natural Z;-grading. This map also shows that the Clifford algebra has a
natural Zz-grading.

2.Representations of algebras.

Recall that a representation of an algebra A is a vector space M and a
linear map 8: A ® M — M such that

a®o(b®m)) = 8(ab @ v)
wherea,be Aandme M.

DefinitionA representation M is reducible if there is a proper subspace
N of M such that if m € N and a € A then f(a®m) € N.

A representation that i not reducible is called irreducible. The al-
gebras in these notes will all have the property that every representation
can be written as a direct sum of irreducible representations. However this
needs to be proved using some special features of these algebras since not all
algebras have this property. An example of an algebra which does not have
this property is the algebra of 2 x 2 matrices whose bottom left hand entry
is 0. This algebra has an obvious two dimensional representation. This
representation is reducible because the vectors whose lower component is 0
form a proper invariant subspace. However this representation cannot be
written as a direct sum of two one-dimensional representations.

A construction that will be used later is that if ¢: A — B is an algebra
homomorphism and 8: B® M —— M is & representation of B then there is
a representation §*: B® M -— M of A defined by

0 (a @ m) = 0(¢(a) @ m)



3.Representations of finite groups.

Let T be a finite group and denote the group algebra over the complex field
by CT. Any representation of the group extends uniquely to a representa-
tion of the group algebra.

Theorem Every representation of T i# a direct sum of irreducible rep-
resentations.

Proof It is sufficient to show that if W is a representation and U is
an invariant subspace then there is an invariant subspace V such that the
representation W is the direct sum of the representations U and V. This
follows from an inductive argument on the dimension of W.

An inner product on W is called [-invariant if

< v1,Ug >=< TV, T02 >

for all vy, va €W and forall y€T.

Let W be a representation with a proper invariant subspace U. As-
sume that W has a I-invariant non-degenerate inner product. Then the
representation W is the direct sum of U and the orthogonal complement of
UinW.

However any W admits a [-invariaat pon-degenerate inner product.
Let <, > be any non-degenerate innet product and define an inner product

<<, >>by
1
L€ v,V P>= T < V1,1V 2
IT|

1€
Then << , >> is a I-invariant non-degenerate inner product.
This theorem implies that the group algebra ia a direct sum of matrix
algebras. Hence the group algebra is determined up to isomorphism by the
dimensions of the inequivalent irreducible representations. Note also that

the sum of the squares of the dimensions of the inequivalent representations
of T is the order of T'.

Definition Two group elements v, and ¥z are conjugate if there exists
a group element + such that

=12
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This is an equivalence relation on the group and an equivalence class
is called a conjugacy class. For instance the conjugacy class of the identity
contains only the identity.

Definition A characterof ['is a function from I to the complex num-
bers which is constant on each conjugacy class.

The set of characters is a vector space whose dimension is the humber
of conjugacy classes.

Let p:T' — End(W) bea representation of I' then the character is the
function defined by

4+ tr{p(7))

where 4 € I' and tr denates the trace of a matrix.

This construction shows that the dimension of the space of characters
also has a basis indexed by the irreducible representations of I'. These two
ways of counting the dimension of the space of characters give the following
result.

Theorem The number of irreducible representations is equal to the
number of conjugacy classes.

Every conjugacy class in an abelian group only has one element. Hence
the number of irreducible representations of an abelian group is the order
of the group. Also every irreducible representation of an abelian group is
one dimensional.

Definition The centre of T denoted Z(T) is
Z(l) = {yeT:va=ay for alael}

This is a normal subgroup.




4.The extra special 2-groups.
Choose an orthonormal basis of V say ey,...,6s. Then these elements in
the Clifford algebra satisfy the relations

-2 ifi=7g
e"‘!‘“"J“"’{o i

Hence these elements in the Clifford algebra are units and generate a sub-
group of the graup of units in the Clifford algebra whose order is 2"+1. This
finite group is denoted by ', and is known as an extra special 2-group.

There is clearly a surjective algebra homomorphism from the group
algebra of T, to the Clifford algebra. Hence every representation of the
Clifford algebra gives a representation of T',,. However nol every represen-
tation of T',, arises in this way.

The representation theory of I'y depends on whether n is even or odd.
Assume n is even, ‘

In this case the centre of 'y, is {+1,-1} and the conjugacy clasa of
each of these elements containa only that element. I v is any other element
of T then the conjugacy class of 4 is {7,~7}. Hence there are antl -
2)/2 conjugacy classes containing two elements and two conjugacy classes
containing one element. This gives a total of 2™ + 1 conjugacy classes.

In the quatient group Tn/Z(T's) the generators ey,...,€a all commute
so the quotient I'/Z; is the abelian group Z3. In other words there is a
short exact sequence

0— Z3 Ty — 2} — 0

This shows that every representation of ZJ gives a representation of Ty,
Since Z3 has 2" inequivalent one dimensional irreducible representations so
also does T',,.

Now T, has 2® + 1 inequivalent irreducible representations and has
2" inequivalent one-dimensional irreducible representations. Hence there is
one irreducible representation that has not been accounted for.

The dimension of this representation say d can be caliculated nsing the
fact that the sum of the squares of the dimensions of the inequivalent irre-
ducible representations is the order of the group. The sum of the squares
of the dimensions is 2™ + d? and the order of the group is 2"*!. Hence

]

d = 2°/3, This representation is the spin representation of the Clifford al-
gebra.

Assume n is odd.
In this case the centre of I, is

{+1,~1,e1€3...n,—€163...€n}

and the conjugacy class of each of these elements contains only that element.
I + is any other element of I' then the conjugacy class of ~ is

{'7! 4, €1€q .+ . EnY, —C€1£]3 ... e,,q}

. Hence there are (2" — 4)/4 conjugacy classes containing four elements
and four conjugacy classes containing one element. This gives a total of
9n=-1 1 3 conjugacy classes. '

In the quotient group I’y /Z(',) the generators ey,...,¢q all commute
so the quotient I'/Z(T',) is the abelian group Z2~%. In other words there
is a short exact sequence :

0— Z([,) ~—Tp— 277 —0

This shows that every representation of Z;"'l gives a representation of
I'n. Since Z;'"l has 2"~! inequivalent one dimensional irreducible repre-
sentations so also does T'y,.

Now I, has 2"~ + 3 inequivalent irreducible representations and has
27-1 inequivalent one-dimensional irreducible representations. Hence there
are three irreducible representations that have not been accounted for. The
sum of the squaree of the dimensiona of these three inequivalent representa-
tions is 2"+) — 2n=} — 39n=1, These three representations are indexed by
the three non-trivial irreducible representations of the centre. Each of these
representations when restricted to I',—; is the irreducible representation of
dimension 2(*~1)/3,

The restriction of these representations to Cp— is a direct sum of two
representations given by the basis of the last copy of M. Each of these
representations is irreducible because it is irreducible when regarded as a
representation of C,—a They are inequivalent representations of C,,—; since



by Schurs lemma the map which gives the equivalence as representations of
C.,.—3 is unique up to scalar multiplication and these maps do not give an
equivalence of representations of Cp-1.

Finally there is the problem of which of the irreducible representations
of T’ come from irreducible representations of the Clifford algebra. It is
easy to see that the Clifford algebra has no one dimensional representations.
This shows that for n even the only possible representation of the Clifford
algebra has dimension 27/2, Since the dimension of the Clifford algebra
is 2" this shows that the Clifford algebra is a matrix algebra. However
a more restrictive condition is that a representation of I, in which the
element ~1 acts trivially cannot come from a representation of the Clifford
algebra. This again excludes the one dimensional representations. For
n odd this condition alsa excludes one of the irreducible representations of
dimension 2("~1)/2 in the case when n is odd. The remaining two irreducible
representations each come from inequivalent irreducible representations of
the Clifford algebra. In one of these representations the central element
€1...¢n acts by 1 and the other by -1.

Theorem For n even the complex Clifford algebra is isomorphic to the
algebra of 2"/2 x 2"/3 matrices. For n odd the complex Clifford algebra
is isomorphic to the direct sum of two copies of the algebra of 2(n-1)/2
2(n=1/2 matrices.

8.Construction of the spin representations.
The Clifford algebras are Z;-graded algebras and for any vector spaces |4
and W there is an algebra isomorphism

Civew)zC(V)@C(W)

where the tensor product is the Zz-graded tensor product. If A and B are
Z3 graded algebras then the Z;-graded tensor product is the algebra whose
vector space is A ® B and whose multiplication is defined by

b bo) = { 3102 ®b;by  if by and a; are both even or both odd
(21®b1)(a;@b2) {—alag ® b by if by and az are even and odd

In particular if V is even dimensional say dim(V) = 2m then there is an
algebra isomorphism

C(v) = e™C(C?)
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Now C(C?) is the quaternion algebra which is isomorphic to the algebra of
2 % 2 matrices. Let M be the two-dimensional irreducible representation
of this algebra. Then the algebra isomorphism gives an action of C(V) on
@™ M. The following carries out this construction and this is used to show
explicitly that for n even the Clifford algebra is a matrix algebra.

The construction is by induction on n for n even. The start of the
induction is the case n = 2. Define two matrices by

{1 0 {01
1= {0 -1 211 0

Then these matrices satisfy the Clifford relations and generate the whole
matrix algebra. The Clifford algebra in this case is the algebra of quater-
nions. For the inductive step assume that 2™ x 2™ matrices ey, ..., €3m have
been defined and satisfy the Clifford relations. Then define 2™+! x 2m+!
matrices El, eeey E2m+2 by

E,-:(“ 0) for 1<i<2m

0 ¢
_ {te1...eam 0
E2m+l - ( 0 —l‘el ...egm)
- 1] ‘I'CI voeCOpm
Eamz= (s’cl e C3m 0

Then the proof that these matrices satisfy the Clifford relations uses the
following identities

(er...ezm)? =1
Ci(el aes sz) = "(61 . --sz)e.‘

These identities are consequences of the Clifford relations.

Next we show that this algebra homomorphism from the Clifford alge-
bra to the matrix algebra is surjective. Since both algebras have the same
dimension it follows that this homomorphism is an isomorphism. Let E; ;
denote the elementary matrix with a 1 in the (3, 7) position and let F denote
the matrix all of whose entries are 1. Then it is sufficient to show that the
matrices E;; and F are in the image because

E;;=E;iFE;;



6. The Dirac equation.

As an application we describe the Dirac’s relativistic equation for the elec-
tron. The Clifford algebra of Minkowski space has dimension 16 aad the
spin representation has dimension 4. The spin representation is given ex-

plicitly by the following matrices

/0 0 01 /0 00 —i
0 0 10 o o0 o0
M=o -100) P lo 0 0
\-1 0 00 ~ 00 0
/0 01 0 /10 0 0

0 00 -1 o1 0 o
B=|_1 00 0] *“loe -1 0
0 10 0 \o0 0 0 -1

These matrices satisfy the relations
7?.2,3 =-1 '72 =1 NP+ NTu= 0 foru#v

The states of the electron are vector valued functions on Minkowski space
and they take values in the spin representation. Since we have chosen a
basis of the spin representation we can write a function ® from Mirkowski
space to the spin representation as

& = (91,92, 93, 9)

The Dirac equation for a free electron is then

3
$h1ede® —the Y 1,0,% = mc*®
=i

This equation is usually written with ¢ =1 and k = 1 in the more concise
form
TuOu® = —im®

This represents a system of four simultaneous first-order linear partizl differ-
ential equations. Replacing 1,2,3,4 by z,y, 2,1 respectively these equations
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9%, _CBQ, —c?—& '.929_ _ —imczq’

at ot ‘oz Yoy T m ®
%, a®, . J%, e, —ime?

% s oy e - kW
0%, 0%, .30, 9%, —imc?

et %%y et -k b
—ihe?

P, .08, 8%, 0%, ik

dz 3y  “ar ot h

Suppose S is a transformation of the spin representation. Then S trans-
forms the wave function by &' = S® and the y-matrices by v, = §7,S -1,
Then it is an exercise to check that the Dirac equation is not changed.

The left hand side of these equations is the Dirac operator. Another
excercise i8 to check that the square of the Dirac operator is a diagonal
matrix with the Laplacian in each diagonal entry.

This equation is for Minkowski space. For a general space-time we need
some additional geometric data. A space-time is an open 4-manifold with
a Lorentz metric. Each tangent space is then a copy of Minkowski space.
Since the construction of the Clifford algebra of a vector space is natural
we can construct the Clifford algebra bundle. This is a vector bundle whose
fibre at any point is the Clifford algebra of the tangent space at that point.
A spin structure on the manifold is then a vector bundle such that the fibre
at each point is a apin representation of the fibre of the Clifford algebra
bundle. A general space-time may not admit any spin structure or there
may be several inequivalent spin-structures. The number of inequivalent
spin-structures on a space-time M is the order of the cohomology group
HY(M : Z3). In fact this group acts freely and transitively on the set of
inequivalent spin-structures. The reason for this is that the cohomology
group H'(M;Z;) can be regarded as the group of equivalence classes of
real line bundles over M where the group operation is tensor product. Now
given a real vector bundle whose fibre at each point is a spin representation
of the fibre of the real Clifford algebra bundle and a real line bundle then
the tensor product is also a spin-structure.

Given this data then the Dirac operator acts on the global sections
of the bundle of spin representations. The Dirac operator is a first order
linear diferential operator and is defined by simply replacing /8, by V,,

10



the covariant derivative in the direction p.

11

REPRESENTATIONS OF SU(2)

The unit vectors in four dimensional Euclidean space form the compact
three dimensional manifold $3. This manifold is also a Lie group. There
are three ways to define the group structure :

1 as Sp(1) i.e. as the unit quaternions

2 as SU(2) i.e. as the unitary 2 x 2 complex matrices with determinant
1

3 as Spin(3) i.e. as the double cover of the identity component of the
group of isometries of 3 dimensional Euclidean space

In this lecture we take the second definition.

Let C[z, y] be the commutative algebra of polynomials over the complex
field in two indeterminates z and y. The group SU{2) acts on this algebra
by algebra automorphisms. This action is defined by

(: Z) (‘Z}P-‘.ﬂ"v") = Y pij(dz — by)(—cz + ay)?

i

where (: 3) € SU(2) and Ei.’. pi s2'y € Clz,y).

Let V* be the space of homogenous polynomials of degree A for A =
0,1,2,.... Note that the dimension of V* is A + 1. Then clearly V2 is an
invariant subspace and there is a direct sum decomposition

Clz.y] = PV?*

Az0

Theorem For every A > 0 the space V* is an irreducible representation of
SU{2). Furthermore every irreducible representation of SU(2) is equivalent
to V* for some . :

The Lie algebra of SU(2) is a real 3 dimensional vector space and there
is a definition of the Lie bracket for each of the three definitions of the group
structure on the manifold $3.

1 in terms of the unit quaternions the the Lie algebra is the vector space
of imaginary quaternions. A vector space basis is 1,7,k and the Lie
bracket is given by

bol=2 k=2 [ki=2j

1



2 in terms of 2 X 2 complex matrices the Lie algebra is the vector space
of 2 % 2 skew-Hermitian matricea whose trace is 0. The Lie bracket is
the commutator. A vector space basis is

w=(®3) a=(i 2) w=(50)

These satisfy the same commutation reiations as £,7,k.

3 in terms of SO(3) the Lie algebra is three dimensional space. The Lie
bracket is the vector cross product, If ¢;,e3,¢s is an orthonormal basis
then this Lie bracket is given by

[es,ea] =es [ea,eq) =e1 [es,e1] =e2
An isomorphism with the first definition is
¢1Hl./2 Gijla CsHk

The Lie algebra of any compact Lie group has the property that any
representation can be written as the direct sum of irreducible representa-
tions. This is equivalent to the property that if W is a representation and
V is a proper invariant subspace then there is an invariant subspace V such
that W = U@V . Instead of giving a proof we describe a naturally ocurring
Lie algebra which does not have this property.

Definition The Heisenberg Lie algebra is a 3 dimensional Lie algebra of
differential operators. A vector space basis is 1,z and d/dz. Calculating
the commutator [d/dz, z] gives

d df
[d/dz,z)(f) = E;(zf) -z
= f
In other words this Lie algebra satisfies the relations
[¢/dz,z]=1 [z,1]=0 [d/dz,1}=0

2

This Lie algebra has a three dimensional representation defined by

0 0

1=10 0

1 0

0 0

z=1{1 0

0 0

0 0

difdz= |0 0

0 0

The vector space spanned by the third co-ordinate vector is a proper in-

variant subspace. However there is no invariant complement.
Exponentiating each of these matrices shows that the Heisenberg Lie

algebra is the Lie algebra of the Lie group of matrices are of the form

1 00
+» 1 0
s & 1

This Lie group is known as the Heisenberg group. As a manifold the Heisen-
berg group is a real 3 dimensional vector space.

In these notes we only consider complex representations both of the
group and of the Lie algebra. The complex Lie algebra is defined by taking
any of the three constructions and regarding the matrices as a basis for a
complex vector space. This gives the Lie algebra of SL(2,C). There are
other Lie groups whose complex Lie algebra are isomorphic to this complex
Lie algebra but none of them are compact. Examples of such Lie groups
are SL(2, R),50(2,1),U(1,1) and their covering groups. The fotlowing is
the Cartan presentation of the Lie algebra of SL(2,C). Thisis a complex
Lie group and is the complexification of SU(2). Regarded as a presentation
of a real Lie algebra this definition gives the Lie algebra of SL(2,R).

Definition A vector space basis for s/(2) is the matrices

we(§3) em(20) (0 8)

3
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These matrices satisfy the relations

[hyta) = 2¢a [hre—a] = —2¢-a [taye-a] =h

Definition Let ¢:SU(2) — GL(V) be a representation of SU(2) on
the vector space V. Then V is alao a representation for su(2) the Lie algebra
of SU(2). The homomarphism of Lie algebras ¢.: su(2) — gl(V') ia defined
by

6.(X) = %qﬁ(exp £X) |e=o

where X € su(2) and ¢ — exptX is a particular function which represents
X.

Apply this definition to the action of SU(2) on C[z,y]. The exponen-
tials of e, and e_, are

exp(te,) = (; ;) exp(te_q) = (: (;)

Now calculating the derivative gives
d d
2 blexpta)(p) = (2~ t9,9)

e 6 t )
= yazp(z v,y

Evaluating at t = 0 gives

a
¢O(au) = “95;
A similar calculation shows that
8
¢‘(e—n) = "'ma_y

Now another calculation or the relation [e,,e_q]} = h shows that

This defines an action of su(2) on the vector space Clz,y]. Again it is
clear that for each A the «nhspace V' is invariant and there is a direct sum

decomposition
Clz,y] = @VA
A

Next we prove the following theorem.

Theorem For every A > 0 the space V' is an irreducible representation
of 5l(2). Furthermore every irreducible representation of sl(2) is equivalent
to V* for some A.

Assume that V is an irreducible representation of the Lie algebra. De-
fine subspaces V,, by
Vo= {veV:hy=pv}

If V,, # 0 then p is called a weight of V. Now if v € V,, then eav € Viuya
and e_qv € V,.z2. For this reason ¢4 is called a raising operator and e_,
is called a lowering operator. The proof is a short calculation using the
relations,

heat = [h,ea]v + eshv = 200 + peat = (p+ 2)eqv

and similarly for e_,v.
Now because V is finite dimensional there is a largest weight say A.
Choose vp € V) such that vg # 0. Then for 1 < p define v, € Va_3, by

1

vy, = me'_‘_-uo
Then let m be the integer such that v, # 0 and vpm41 = 0. Then we have

0=ea-mt1 = (A — m)tm

and since v,, # O this shows that m = A. Then the vector subspace of V
spanned by vp,...,v) is an invariant subspace of V. Since V is irreducible
this must be all of V. Also these are linearly independent because they are
eigenvectors of b with distinct eigenvalues. This shows that they are a basis
for V.



There is an isomorphism between these irreducible representations and
the representations on homogenous polynomials. To describe the isomor-
phism note that

hz?y? = (q - p)z*y*
This shows that the highest weight vector is y™ and that h is already diag-
onal. _

There is another approach to the representation theory of compact Lie
groups in terms of characters. A character is a amooth complex valued
function on the group which is invariant under conjugation. Every element
of the group lies in a maximal torus. Any two maximal tori are conjugate.
For U(n) this follows from the observation that any unitary matrix can be
diagonalised. This implies that a character is determined by its restriction
to a maximal torus. The maximal torus of SU(2) is U(1). The one param-
eter subgroup generated by h is a maximal torus. Since we have already
determined the eigenvectors of h in each irreducible representation we have
already determined the restriction of each irreducible character to U (1).
Write ¢ for ¢’®. Then the character of V™ is

—n —nt3 _ 1_q2n+2
" +gq +o4q"=9q n(_l_:qT)

The Clebsch-Gordan formula givea the decomposition of the tensor
product of two irreducibles into a direct sum of two irreducibles. Assume
n < m then the formula is

yr o™ = QVmntie
p=0
This can be proved using characters. The character of a tensor product is
the product of the characters. To prove the Clebsch-Gordan formula it is
sufficient to show how to write the product of two irreducible characters as
a sum of irreducible characters. For example
(@ +a ' +a+¢°) a7 +1+4%)
= ¢ +q 7 +q  +gq
+a +q +a+g®
+q ' +g+d+4°

6

Now taking the top edge and the right hand edge of this rectangle gives
g%+ g~ + -+¢°. Removing these two edges and then repeating gives
g~ +¢~' + g+ ¢>. The remaining terms are ¢~* + ¢. This shows that
V3@V2is Vi@ V3@ VL. This method also proves the general case.



