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INTRODUCTION

These notes are the notes for the course on the Yang-Mills equations. The purpose
of the course is to introduce the Yang-Mills equations and to describe their "instanton”, or

point-like, solutions. There are three basic references which cover everything I have 1o say and

quite a lot more:

MF. Atiyah, Geometry of Yang-Mills Fields, Lezione Fermiane, Scuola Normale
Superiore, Pisa, 1979.

D.S. Freed and K.K. Uhlenbeck,  Instantons and Four-Manifolds, MSRI Publications,
Springer-Verlag, 1984

H. Blaine Lawson, Jr., The Theory of Gauge fields in Four Dimensions, Regional
Conference Serics in Mathematics 58, AMS 1985,

The Yang-Mills squations

{ Yang-Mills theory on r

To begin with [ will describc Yang-Mills theory on R%; for most of the time we will
think of R* with its usual Euclidean metric but it will sometimes be convenient to vary the
metric. On R* it is possible to give the key points in the theory and to describe the point-like
solutions 1o the Yang-Mills cquations with the minimum technical apparatus. The rest of the
notes will be devoted 1 developing the full global versions of these constructions.

In Yang-Mills theory there is a gauge group or structure group G. For
definiteness 1 will take this group to be either the unitary group U(n) or the special unitary
group SU(n). Recall that these groups arc defined as follows:

U = [ A € GLA©)IA’A = AA° = 1}
SUm = {A € Upldetan1}

I am using standard notation, in particular GLy{C) is the group of invertible, nxn matrices over
€, A* is the conjugate ranspose of A, 1 is the identity matrix and det is the determinant. Let

& be the Lie algebraof G. In our special cases these Lic algebras are

o) = { A€ My©) 1A%« -A )
#un) = { A ¢ 0(n) | Trace A = 0},

A G-connection or G-potential on R* is 2 smooth g-valued 1-form A on R, ie.

4
A= ZEA"%‘ A“:R‘-»;.
“-

where the A, are smooth functians. A gaugo trangformation is a smooth funcion
g: rR‘4G.
These gauge transformarions act on connections by the formula
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The Yang-Mills equations

FA =g lAg+glag

The simplest way to make sense of this formula is to remember that both g and A are matrix
valued functions. Two connections Ay and A, are gawge equivalent if there is a gange
transformation g such that g’A; = Aj. The curvature or gauge field of this connection
is defined by

FA-dA'I-AAA

where AAA is defined by using the combination of matrix product and the exterior product of
forms. Itis not difficult to compute F, explicitly in terms of coordinates

F= Y Fuydeads,

K<y

Fuv = duAy - Ay + (A A
Here | am using the notation 3, for the partial derivative d/3x, and [.] is the usual
commutator, or Lic bracket, of marrices [X,Y] = XY - YX. In particular note that this formula

shows that F isa g-valued 2-form. It is easy to work out how the curvature changes under a
gauge transformation of the connection,

F.o A" g"FAg .
Next we need the Hodge star operator. In general this is an operator
+: SPM) - Q" Pom)

where M is an n-dimensional oriented manifold equipped with a metric, This operator is
characterised by two facts:

The Yang-Mills equations

{1} It is linear over functions
(2) aa(+p) = <o, B>vol @, P e QPM).

Here the inner product is the inner product on forms induced by the metric and vol is the
volume form determined by the metric and the oricntation.

For example, on R* with its usual metric and orientation the star operator on 2~
forms is given by the following formulas:

#(dxyadxy) = dxyaday
a(dxjadxy) = - dxgadzy
#{dxjadxyg) = dxaadxy
e(dxpadns) = dxyadx,
*(dxpadxy) = - dxyadxs
»{dxyadxy) = dxjadxy

By way of contrast, and to illustrate how the star operator depends on the metric, one can check
that if we compute the star operatar using the Lorentz metric dx|2+dxz2 4dx32 - d:qz then it is
given by the following formulas

s(dxyAdxy) = dxzadzy
s(dxyAdxy) » - dxpadxy
*(dxyAdxy) & - dxaadxs
*(dxpAdxy) = dxyadxy
s(dxpadng) m dxyadxs
#{dx3adxy) = - dxyadx;.

Associated to the connection is its covariant derivative operator

DA' d+A,



The Yang-Mills equations

This operator acts on functions, or more generally forms which take their values in 2
represcntation of G and produces forms with values in the same representation. For cxample if
we use the standard action of U(n) or SU(n) oo € and f:R*- € is a smooth function
then Df is the €"-valucd {-form

Duf = df + Af;
where
4

AL = Y (Auhdey

Kot
As another example supposc that F is s g-valued 2-form, then
D,F = dA + [AAF]

whers the symbol [AAF] means that we use the combination of the Lic bracket [, ] of matrices
and the exterior product A of forms. Ican now state the Yang-Millg equations.

DpFpA =0
Dy(+Fp) = 0.

The first of thesc equations is an identity, the Bianchi identity which is always satisfied
when F, is the curvature of the connection A, I will use the term  Yang-Milis congection
for a solution of these equations. The Yang-Mills connections are the Euler-Lagrange equations
of the Yang-Mills functionsl

Y(A) = j FAA(SF,) = I IFs P vol.

4 4
R R

1 will prove this in the more general global context later in these notes.

Tha Yang-Mills squations

There is a simple analogy which might help to explain some of the significance of the
Yang-Mills equation. If we replace D, by the ordinary exterior derivative operator on forms,
and replace F, by a 2-form [ we get the equations

. df =0, d{sf) =0

and a form which satisfics these equations is a harmonic form. Furthermore these equations
are the Buler-Lagrange equations of the functional

I fA(tf)-I lfl2 vol.

So a Yang-Mills connection is one whose curvature is “harmonic” with respect 1o its own
covariant derivative and this gives them a natural appeal.

These equations are 8 system of sccond order non-lincar panial differential equations
equations. There is a simpler, and for our present purposes, more important, system of cquations
whose solutions are Yang-Mills connections. These are the self duval Yang-Mills
cquations and the anti self dual Yang-Mills equations:

«Fp=Fy  (self dual)
«Fpu -Fy  (anti-self dual).

In view of the Bianchi identity it is clear that a solution of these equations is automatically a
Yang-Mills connection, A connection which satisfies the scif dual equations will be called a
self dual conaection and one which satisfics the anti self dual equations will be called an
anti self dual connection.

Of course the Yang-Mills functional and the full Yang-Mills cquations make sense
in any dimension. However the self dual equations arespecial to dimension 4 since it is only in
dimension 4 that the + opcrator takes 2-forms to 2-forms and so it only makes scase 10 look
for connections with self dual curvature in 4-dimensions.
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e Yoy Mills equations

There i3 another gpecial geature of 4-dimensions: yang-Mills theory 18 conformally
invariant in dimension 4. This means that §f we chang® {he metric b on R toanew mewic ¥
which is conformally equivalent 10 h, ie. Y = 22h where 2 jsaresl valued function, then the
Yang-Mills functional y, which Jooks a8 though it ought to depend on the metric, is in fact
unchanged. To$€ this itis not difficult 1o check that the innet product on 2-forms given by the
metric i iS A, > where <o » is the inner product 08 9-forms given bY the metric h and
the votume form in the new metric is given by 54 yol. So the sar operator remains unchanged

and also the Yang-Mills fonctional Y is unchanged- This conforimal jnvariance i8 8 very

An interesting special case 1o took at is the casc where G isthe circle group ut)
and we work over R with the Lorente memic. Since {he Lic algebrd of the circle i R wecan

A= Bydxy 4 Agdxy + Aadrat Agdxs

Since the Lic algebra of the circle is commitative, that is the pracket 1.} ia identically 210 the
cornponents of the curvature becom®

£y = kg~ O
and the Bianchi identity comes out as
9Fx* Fut HFy=0
A neat way w0 write out the Yang-Mills equation is as follows:
3yFy +oFnt 3yFi3 - 9aFia = 0.

If we now make the following substirutions

e s e

1y = Ay - B2 " Fn
Hy= -9 ?t M= -F3
Hy= 91A2° 3:Ay = Fi2

By = d1Ae- At = Fi4

Ep= 32A4” daha = Fa

Ey= - Ay =Fu
xy=% 52 Y ay=t xg=t

then we get Maxwell's equations (in vacuo)

cnlE= - ad/a divA=0
cutH= - oE/3t, divE=0.

2 The basic jnstanton 00 [\

Now 1 will describe the pasic SU (2)-inswanton i.e self dual solution 1@ the Yang-
Mills cquations on g with structure grove su(2). This is easiest 10 describe using the
formalism of quatcTnions and s0} witl begin by explaining some of the basic propertics of
quaternions- The algebra of quuwrnionl M isthe algebra over R, with unit 1, generawd by

i,j.k subject 0 the relations

P
ij--ji-k, jk-—ki-i, k'l-—'lk-i-

The general qumm‘misomwform
x= x‘+ix1+jxg+m xe R

and the product is defined using the above formulae. The conjigate of x is given by

————
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X= xl-‘ixz-j13-h4

and it is easy to check that

4
o
IxP u x¥ = Xx = Zx;
pe=t
where x| is the length of the vector x. Tt follows that provided x #0

x-St - k.1

le2 le2

s0 M isaskew-ficld, i.c. the non-commutative analoguc of a field.
The imaginary partof x is
Imx = ixy+jx3+kxg
and we will denote the space of purely lmngmnry quaternions by Im H.

We can identify the algebra of quaternions with a subalgebra of the algebra of 2x2

complex matrices as follows:

1S IR A AN M A

Under this identification SU(2) gets identified with the space of unit quatemions, i.e. those
quaternions x with 1x|={ and in panticular this shows that topologically SU(2) is the 3-
sphere S*. The Lie algebra su(2) gets identified with the space of purely imaginary

-9.
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quaternions, that is all quaternions of the form xi + yj + zk. In particular, when we identify Rt
with H, an SU(2)-connection is given by

4
A= 3 Ay
k=1

where now the A, : R*-»Im H are smooth functions.
Just as in the theory of complex variables where one uses the complex differentials
dz = dx + idy, di « dx -idy,
we shall consider the quatemnion differential
dx = dxy +idxy + jdxy + kdxy
and its conjugate
dE = dxy - idxp - judxg - kg

The use of the quaternion differentials is particularly well-suited 1o the study of self duality since
a routine compulation shows that

dxad® = -2 {ildxyades + dxyadeg) + j(dxgadxy + dxgadxg) + kdxiadeg +dpades) }
and we see that the coefficients of ijk are a basis of the seif dual 2-forms. Therefore, this form
dxadx is a self dual su(2) valued 2-form. Similarily the coefficiems of dXadx give a basis for

the anti self dual 2-forms and dXadx is an anti self dual su(2) valued 2-form.

If £:H-H is any smooth function then the expression
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AG) = Im (F(x)x) = .;-{ fox)dx - d% 00 |

is an SU(2)-connection. Here these expressions are computed formally starting from the
formulas ,

f(x) = fl(x)dxl + ifz(x)d.'iz + jfg(x)dx:; + kf4(x)d14
dx = dxy + idxy + jdxq + kdxy

and the usual rules for multiplying quatemions and differential forms. Now we compute the
curvature F = dA + AaA of this connection; it is given by

F = Im{ dfadx + fdxafdx }
We arc now it a poition to describe the basic instanton on RY. In fact it is stightly

" easier to begin by constructing the basic anti seif dual connection on R‘. Consider the SU(2)
connection A defined by the formula

x xdx -dx
AW = {22} | Lpxdenden
1+l 1+Ixl

It is not difficult to read off eaplicit formulas for the components Ay from this quatemion
notation; for example

=iy - Juy - bx, ixy - jx, +kx,

Ay(x) = y Aglx) =
14l ? 140

We now compute the curvature of this potential as above,

The Yang-Mills equations

dxadx + id((l-I-lx!z}'l + x dx A x dx

Fulm
{ l+|x|2 (1+|xlz)1 :

Now if we write | x ¥ = xX, the middle term in this expression becomes

xdxaXds  xxdxadx
a+hD A+

and when we substitute this in the formula for F we get

dx Adx

F = ——
(1 + k0

Therefore from the above remarks relating quaternion differentials and self duality we see that F
is anti self dual, thatis +F = -F and therefore the original connection A is an anti self dual
connection. This is the basic snti-instanton i.c. anti seif dual connection on R,

Clearly if we interchange the roles of x and X we will get a self dual connection A
with curvature F given by the following formulas

dx A dx

(1 +b)’

x dx

1+

A-Im{ } , F=

This is the basic instanton on R*.

Now we will use the earlier remark that the self dual and anti self dual equations are
conformally invariant to construct many more solutions from these two basic instantons. First
note that the basic instantons are invariant under the transformations
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x -» axb

where a and b arc unit quaternions. These transformations generate the group SO{4) acting
on R* in the usual wiay o the basic instanton is invariant under SO{4). The other simple
natural transformations to use are Ty 4

X - Ax-R);

since these are conformal wransformations they transform instantons to instantons, We will use
the notation AX(a) for the instanton T),"A, and F'@) for its curvature, explicily

lz(x-a)d:-n }  Pa - A dx A dX

N
A%a) » Im .
{1+f|x-u’ (1+3 Ix-al)

Note that the pointwise norm of the curvature of anains its maximum value A2 dxAdX | when x
= & and, since the pointwisc norm of the curvature is a gauge invariant quantity, it follows that
for distnct pairs (a,A) the self dual connections A¥(s) cannot be gauge equivalent.

Now we tum to the main task of these notes, the global formulation of this Yang-
Mills theory and the project of taking these solutions AMa) and glueing them into & general 4-
manifold, or more generally superimposing k such solutions at distinct points in the manifold.

3 Covariant derivatives and connections and curvature

T will begin the formulation of the global Yang-Mills theory with the gobal theory of
connections. I will take the analytic approach to the theory of connections, so a connection will
be defined by its covariant derivative operator. Let E be a smooth vector bundle over a smooth
manifold M. Then a smooth section of E is a smooth function s: M~+E such that fos = 1,
where x is the projection of the bundle E; so s(x) € E, where E, is the fibre of E at the
point x € M. We treat sections of E as generalized functions, in the sense that s(x) isa

13-
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function of x but it takes its values in the variable vector space E,, and we try to differentiate
these sections.

T will use the notation

C™(8) » C*(M;E)
for the vector space of smooth sections of E and I will write

Q(E) = QP(M.E)
for the space C™(E®APT") where T" is the cotangent bundle of M; this is the space of
differentiat forms on M with values in the bundle E. Atapoint x € M an clement « € QPE)
is an alternating multi-lincar map

Oy Tyx.xTy+E,

where T, is the tangent space 10 M at x and there are p factors. Locally every element of
$P(E) can be writien as a linear combination of elements of the form s®a where s is a section

of E and o isa p-form.

A conncction will be defined to be the analogue, for sections of E, of the total
derivative operator d : C™(M) - 2'(M); recall that locally

S of
Z'&;d"i'

df =

A connectionon E is a linear map

V:C®) - 0\®

14
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which satisfies the following form of Leibnitz rule
Vifs) = f(Vs) + s&df

where s € C”(E) is a smooth section of E and f € C”(M) isa functionon M. We often refer
"to V as the covariant derivative; from this point of view there is no distinction between the
connection and the covariant derivative and the two terms will be used interchangeably.

A choice of a local trivialisation of the bundle E‘J' will be called a local frame, or
local gauge for E. Such alocal frame is given by k = dimE pointwise linearly independent
sections ey, ... ¢, of E defned on an open set U. Using alocal gauge for E we can express
the connection as a matrix of t-forms on U as follows. Let 8 be a section of E, defined over
U, then s = syeq +... + 8y where the 3; are functions. From Liebnitz rule we get the
following formula for Vs:

k
Vs = Z 5 Vej+¢; B dy;.

i=1

Now write

k
Vei - Z cj@lji
ji=1
ere the ) are (-forms; then we get the formula

Vi=ds+As

where A is the matrix of one forms A = {aj) defined on U. This matrix A is the
connection matrix determined by the gauge e = (ey, ..., & ). Sometimes, when it is
necessary 10 emphasize the dependence of A on e, we will write A = A(e)

The Yang-Mills equations

We must work out how the connection matrix depends on the frame e, Let = (f;,
we » fm) be & new frame and let g be the transition function, or the gauge transformation from
the frame ¢ to the frame f. So g is a matrix valued function and;

e= Z gjifj f
=]

Then it is straightforward 1o check that

Ae) =g A(Dg+57'0g
So a connection on E is given locally by a matrix of 1-forms A which transforms
by the above formula under the transition functions of the bundle E and the corresponding
covariant derivative is the operatar d + A. As these notes progress we will encounter many

examples of connections,

There are several constructions which are suggested by the analogy between the
covariant derivative of a section of E and the total derivative of a function. Supposethat V iza
vector ficld on M; then we define an operator Vy : C*(E) » C™(E) by setting

(Pys)(x) = {(Vs)NV{x)).

We will refer to the operator Vy as covariant differentistion in the direction V. In
terms of these operators Vy Liebnitz rule can be formulated as follows:

VV (fs) = (V)5 + f(Vvs)

where Vf is the operation of vector field V on the function f. We can get a local formula for
V interms of the Vy

-16-
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Vs = i (Vis)@dx;

where we have chosen local coordinates x = (X, ..., %,) for M and V; is the covariant
derivative in the direction of the i-th coordinate vector field. These operators V; which are
locally defined operators on sections of E are analogous to the partial derivatives d; = 9/0x;,
which are locally define¢ operators on functions on M.

The connection allows us lo definc paralie] transport along a smooth curve
7:[0,11- M. Suppose that s is a section of E aloag ¥, (ic s(t) € Eyp for all t € [0,1]), then
s is paraliel along v i

VfI-O

where 7' is the velocity vector of . There is the usual uniqueness theorem; if we arc givena
curve ¥ in M and a vector e € Eyg) then there is 4 unique section s of E along y which is
paraliel and has the property that s(0) = ¢. The paralle! transport operator

Py By > Byt

is defined by Py{e) = 5(1) where s is the unique paraliel section of E along ¥y with the
property that s(0) = e.

Next we analyse the space of all connections A(E) on E. Let End(E) be the
vector bundle whose fibre at the point x € M is the space End(B,), i.c. the space of all linear
maps from B, toitself. Note that a section of End(E) defines a linear map of vector bundles
E+E. Thercfore, if A is an clement of Q'(End(E)) it defines an operator

A:CYE)+ ﬂ‘(E).

This operator is lincar over functions (e A(fs) = fA(s)) and it is a standard exercise in the

-11-
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theory of vector bundles 1o check that any lincar map C(E) + R2)(E) which is linear over
functions arises from some A € Q'(End(E)).

Now suppose we are given a connection V and an element A € nl(ﬁnd(E)); then,
since A is linear over functions, the operator

V+A:CPE)+»Q\E)

satisfics Licbnitz rule and is a connection. Conversely giveﬂ two connections Vg and V; on E
the difference

v -Vn:C"(E)-oﬂl(E)

is linear over functions and it follows that there exisis a unique A € Q‘(End(E)) such that V=
Vo + A. A sophisticaied way of saying the same thing is as follows.

Lemma The space A(F) of all connections on E is an affine space associated to the vector
space £2'(End(E)).

This means that if we pick a connection V on E then we may identify Q'(End(E)) with
A(E) using the mapping A + ¥+ A, Bui there is no preferred connection on E, that is the
space A(E) has no natural origin.

If the bundle has extra sruciure then this extra structure often determines a canonical
connection, an origin for the space of connections, but the connection will depend on the extra
structure. For example if the bundle E is trivial and we arc given an isomorphism t of E with
the product bundle then we can define a connection on E by the formula V, = t'edot. This
connection does depend on the choice of 1. As ancther example a Riemannian stucture on X
determines a canonical connection on TX, see the notes for the course on Differential Geomerry,
but this connection depends on the Riemannian structure.

18-



The Yang-Milla equations

Tt is not difficult 1o show that every vector bundle admits a connection. We will give
two ways to construct & connection on E. The first way is based on the observation that if f isa
smooth function on M and Vj, V, are connections on E then Vg + (1-H)V; isalsoa
connection. The trivial bundle admits a connection, for example the total derivative d, and using
local trivialisations of E we get Jocally defined operators on sections of E. The above
observation allows us to piece these locally defined operators together, using a partition of unity,
t0 obtain a global operator. I will now give this construction precisely.

Pick a covering of M by open sets U; and local trivialisatons ¢ of the bundle
Ely.. Pick a panition of unity ¢ subordinate to the covering U;. Let
A i

be the operator given by

Vi = ti'edetier;
where 1, : CV(E) » C°(B !Ui) is given by restricting sections of E to the open set U,
4: C (Ely)» C°(Uy; RY) is the isomorphism given by the local rivialisations and d is the
total derivative operator acting on vector valued functions. We now get an operator

ov,: C°E®) + C°®)

by extending @,Vi(s) 1o be 2¢r0 outside U;. Itis easy to check that

Ve Y oV

i
is a connection on E.

The second general method of constructing connections is to use an embedding i of

‘The Yang-Mills equations

E in a product bundle MxC" (or MxRN if the bundie is real). Itis a standard fact in the
theory of vector bundles that any bundle over a compact space can be embedded as a sub-bundie
of a product bundle. Let p: MY S E be the orthogonal projection onto E. We now define
the operator

V:C™(E) » C°(EST") = Q'(E)
10 be the composition
C™(E) » C°(M: €% 4 C7(eNOT") » P BT
i d p®1
1t is straight forward to check that V is a connection on E.
We can represent this connection by a matrix valued 1-formon M without using s

gauge for the bundle E, but instead by working in the ambient space N and producing an
NxN matrix rather than a ok matrix where k = dimE, Let q = t-p be the complementary

" projection and take the Mp(T)-valued 1-form

B = qdq.
A function f: M- €N is actually section of E, if and only if pf = , or gf 0. If we now
compute the covariant derivative operator Vg » d+ B acting on sections of E, using the fact
that 0 = d{gf) = (dq)f + qdf, we see that

Vpf = df+(qdg)f = df - q*f = pdf = Vf

where V is the covariant derivative operator acting on sections of E defined above. Therefore
Vp exiends V 1o all €N valued functionson M.
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Now if we differentiate the equation qz- q we get (dq)q+qdq = dq and 50
B = qdgaqdq = qldq -qdgladq = O.
Hence the ficld Fg = dB + BAB is just
Fp = dqadq.
If we now restrict this field to the bundle E, we get the curvature F of V is given by
F = p dpadp.
This i3 a particularly useful way of constructing connections.
As a particular example of this construction note that if X is a submanifold of RN
with the induced Ricmannian metric then we get a natural embedding of TX ia the wivial bundle
XxR™  which preserves the metric. The above construction gives the standard covariant

derivative operator on vector fields and we recover the usual definition of the Levi-Civita
connection on TX.

Now suppose the bundle B is a complex bundle and it has a hermitian metric <, >,
in other words the structure group of the bundle is U(n). Then a connection V on E is
bermitian or & U(k) -connection if

desi>a <Vt +<s, Vi,

if we pick an orthonormal Jocal gauge for E, thatis k = dim E pointwise linearly independent
sections of E defined on some open set U ey, ..., ¢ such that

<ei.ej>-8ij

-21.
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then the matrix of the connection in this gauge satisfies A’ = -A sothisisa U(k)-connection
in the sense described in Section 1. If the structure group is SU(k) then in addition to the
requirement that d<s,t> = < Vg, 1>+ <5, Vi> we will also require that

Vieia .. neg) = 0

if ¢y,..,¢; isanorthonormal local gauge. It is casy to sce that this condition means that the
matrix of V determined by a suitable locat gauge for E satisfies A® = - A and Trace A =0
so this is an SU(k)-connection as described in Section 1.

If the bundle E is embedded as a sub-bundle of MxC and the metric on the
pundlc is the same as the metric induced by the standard hermitian inner product on € and we
now use the method described above 10 construct & connection on B then it is straightforward to
check that we get & U(k)-connection oo E.

Now we tumn to the definition of the curvature of a connection. Unlike the partial

derivatives 9; the operators V; do not commute with each other and this is a reflection of the
global twisting of the bundle. To define the curvature, first extend the covariant derivative

operator V 10 an operator
& f@® - M ®)
as follows: Lacally @” is given by the formula
dv(s&o) = V(s)am + s&dw.

and globally it is given by the natural extension of the formula for the exterior derivative ofa
differential form o sections of E®APT® that is

d’ (V. .., Vp) = f: (D'Py Vo s Victs Visgs s Vp)
i=0

.n-
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We now have the gemtaliseddekhmsequence
) » ') + QP+

0

where the first operator is the covariant derivative and the others are the operators a'. Here we
ore identifying C™(E) with P (E). Now one very slick way of recording the fact that the partial
derivative operators 0j commute is to simply say that &> = 0, where d isthe exterior
derivative. In the present case of the genemlised de Rham sequence it is natural to form the
operatof (dv)z and 10 regard this as 8 mCasWe of whether the operators V; commute with each
other.
We define the curvature R = R(V) of the connection ¥ to be the operatot
R = d%e0 : 00 + OFE).
If we are givmmvectorﬁelds vV, Won M then the cutvnmreoperstnrgivesanopemor
Ryw: 0@+ 0°®)
and from the definition it is easy 0 check that
Ryw™ VyoVw - Vo Vv - Yiv.m

where [V, W] ismel..iehncketofmetwovmﬁelds.

One of the key propesties of the curvature is that it is lincar over functions; R(fs) =
fR(s). This means that it is given by an clement

R € QXEnd(E))

The Yang-Milla oquations
If we choose a local gange & it is easy 1o see that the curvature is given by
Fle) = dA®)+ Ale)rAle)

where Ale) isﬂ\emu'lxofﬂ\ecmnecdminmegiven gaugeandlhntinadiffetem gauge f the
curvature is givﬁn by

O = 37 'Flo)e
where g is the gauge sransformation from the gauge © 1o the gauge £

Now we will suppose that we arc dealing with & U(k) bundle E, ie. abundie
cquipped with a hermitian metric. Now introduce the group of gauge transformations
G(E), this s just the group of all bundle isomorphisms of E, mare precisely

QE) = {gi (.'“(End(E))lg(x)isinvenibleformh € x}.

Under composition of maps G(E) becomes 3 bundle of groups, but beware, it is not &
principle pundle. Analogously we may form

§6) = CT(End(ED.

There Is a pointwise exponential map #(E) » G(E), gE) isalie algebra using the pointwise
Lie bracket [g.hix) = {g(x), bl and we can regard this Lie algchra as the Lie aipebra of the
infinite dimensional Lie group G(E). provided we 1ake due carc over the necessary
technicalities of infinite dimentions.

Now suppose that E is & G-bundle where G is Uk) or SU k). Then we require
that, ast each point x € M, the gauge transformations g ¢ G(E) must be isometries and if we
are dealing with SU(n) we also require g to have determinant 1. Similarily an element Xe€
g(E) is required o be skew adjoint at each point and if we are dealing with SU(K) it is also
required to have trace Zero.

T
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These gauge transformations g act on connections by forming the new covriant
derivative operator g'l-V-g and using a local gauge for E to identify the connection with a g
valued 1-form and to identify the gauge transformation g with a G-valued function we get the
1sual formula for the matrix of the connection g sV, ic.

g lag+gldg

If E isa G bundle and V isa G connection, where G = U(k) or SU(k) thena
gauge transformation of V is also a G-connection. Note also that the curvature of 2 G-
connection is naturatly an element of QX(g(E)).

Finally note that the connection V defines a connection on the bundle End(E) by the
following formual. 1f L € Q%End(E)) then L defines a map L : Q%E) + 0%EB) which is
linear over functions. Then we define V(L) = VoL - LoV, it is casy to check that this gives a
well-defined element of £2'(End(E)) and so goves 8 connection on End(E). This extends 1o
QP(End(E)) where the amalogous formula is d"(0) = Ve - (~1)P0eV. It is & nice simple
exercisc 10 sce that this farmula agrees with the formula given in Section 2 for the operator Dy
applied 10 a Lie algebra valued 2-form.

4, Some remarks on characteristic classes

I will now give a very brief summary of the Chern-Weil method of consiructing
charateristic classes in de Rham cohomology using connections and curvature. Let E be a
complex vector bundle and pick a connection V on E with curvature R € ﬂz(End(F.)). We can
form the following inhomogencous differential form

i
¢(R) = dct(l-l-ﬁ R) e M)
where

The Yang-Mills equations

oMm) = Qéld(m

is the space of all complex valued forms on M (n = dim M). The important propertics of this
form ¢(R) are summarised in the following theorem.

Theorem (1) The form c(R) is closed, i.e. de(R) =0,
o {2) If V; and V, are connections on E with curvatures R; and Ry
then there is a form B € (M) such that dB = c(R) - c(Ry).

For a proof of this result sec Appendix C in Milnor and Stasheff.

If we write c(R) = Co(R) + ¢ (R) + ... + G(R) + ... where ;(R) € Q¥(M) is
homogeneous of degree 2i, thea, by part (1) of the theorem, each ci(R) is a closed form and by
part 2) the cohomology class [¢(R) € H¥jz(M) is independent of the choice of connection.
Using dc Rahm's theorem identifying singular cohomology and de Rham cohomology

H'(M;C) & H'g(M)

the classes [c;(R)] give cohomoiogy classes in H(M;€). The second theorem identifies these
classes with the Chern classes of E, ¢(E) & Hz‘(M;C) i.e. their images in cohomology with
complex coefficignts.
Theorem In HYML), IciR) = o(E)
Again this is proved in Appendix C of Milnor and Sasheff,

Let us look at the concrete application of this o Yang-Mills theory in 4-dimensions.
Let E be an SU(2)-bundle over a closed orienied 4-dimensional manifold M. Pick a

connection on B with curvature R. Then since we arc dealing with 2-dimensional bundles

.26-
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cy(R) = Lz Trace (RAR)
3

Now define an integer k by the formula

k(En--JQ(R) .- TLEJTMM"

"This number is an integer since ca(R) is s integral characteristic class and therefore its integral
around any closed cycle is an integer. It depends only on the bundle E and not on the
connection ¥V in view of the previous theorems and Stokes theorem. The sign is conventional,
but it scems to be so firmly entrenched that I dare not try to alier it. 1can now state an imporatant
result.

Theorem Two SU(2)-burdies E; and E; over a smooth closed oriented 4-manifold are

isomorphic if and only if k() = k(E3).

5. The Yang-Mills fun:tionsl

Let E be 2 vectar bundle with structure group G aver a compact closed Riemannian
manifold M. As usual we will assume that G is U(n) or SU(n). Let V be a G-connection
on E. Then the curvature of V

R = R(V) € Q2 (4(B))

‘is a section of the bundle u(E)QA’T'. iThe bundle g(E) has a natural metric; on each fibre
8(By), which is the space of skew adjoint endomorphisms of E,, it is given by the Killing
form

The Yang-Mills equations

- Trace AB.

So the bundle g(E)OAzT' has a natural metric and we can form the function | R, the
pointwise norm of the curvatare. From this function we can form the L2-norm of the curvature

IRP = [IRP vl
M

where dvol is the volume form on the Riemannian manifold M. By definition the Yaag-
Mills action of V is given by

Y(V) = IRMF.

Using the star operator we see that this may be written differemly

YO) = - | Tracs @aGRY)
M

Let us work out the forrnula for Y in terms of local coordinates for M and a local orthonormal
gauge for E so that the connection V is given by a g-valued 1-form A where g is the Lie
algebra of the group G and the curvaiure is then given by the g-valued 2-form Fo= dA +
AAA with coordinates

Fuv = GuAy - dyAy +AL AL

Now using the metric to raise and lower indices the formula for Y is

- [ Trace @™ vl .
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The Yang-Mills action makes sense in all dimensions but the following lemma shows that in 4-
dimensions it has a special feature.

Lemma If M is a 4-dimensional Riemannian manifold then the star operator on 2-forms and
the Yang-Mills action is invariant under a conformal rescaling of the metric.

Proof This is just the same the proof given in Section {, teplacing the metric g by lzg
multiplies the metric on 2-forms by 2~4 and the volume form by 3% 50 that both the star
operator and the Yang-Mills action are unchanged.

A connection V is called a Yang-Milly connection if it is a stationary point of
Y. We will now work out the variational equations associated to this functional Y. Recall that
the star operator » : (M) -» Q" P(M) is linear over functions. This means that it is given by a
bundie map APT® -+ A™PT"; therefore extends as +®1 1o a map E@APT® «» E@A"PT* and

50 gives a siar operator QF(E) + Q" P(E). The following lemma can be checked by a direct
computation.

Lemma ¥ we 0P(E), then s+ = (-1)PO Py,

The operator a¥: QP(E) -» Q") (E) has o formal adjoint 8v: OPE) + o \(E).
This means that

I <dvu.|3>vol- I <u.5vb>vol
[ ¥] M

for o € 0" Y(E) and B e QP(E). Here of course the inner products are induced by the
Riemannian metric on M and the given inner product on E. The following standard lemma
identifies the operator 8% in terms of the *—Operalor, ‘

Lemma L&t M be an oricnted n-dimensicnal Riemannian manifold and let B be a G-bundle

..
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on M with a G-connection V; then
§7 - (-1 % OPE) 4 0P @)
Proof 1tis sufficient 10 check the result in the case where E is the trivial line bundle. We must

show that if & € 2P '(M) and P € QP(M) then

I <da,f> vol = (--i)"'(’"“‘1 I <, »d(+p) > vol .
M M
From the definition of » it follows that
I <do, B> dvol = I daa(sp) ;
M M
since M is closed and d(A(sp)) w daaa(eP) + (-1)P 'aad(sB) Stokes theorem shows that
[ doniom = -1 f andiody.
M M
Now we use the formula for »+ and the relation between » and the inner product to get
I aad(sP) = (-1 PIPY _[ arssd(sp) = j <, od(sp) > vol.
M M M
Hence we see that
I <do, B> vol = (-1)(""’")(""*’ I <, sd{«f) > vol.
M "
and simplifying the signs gives the requined result.
Now I shall show how to prove that the Yang-Mills equations
d'®=0, F®=0

are the variational equations of the Yang-Mills functional.

Lemma The foliowing are equivalent
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i V is a Yeng-Mills connection.
@) 3R = 0.
) AR = 0 where A is the Laplacian 4'5° + 874"

Proof Fix A in Q'(X;g(E)) and consider the curve of connections V' = V+1A, te R. It
is straightforward to compute the curvature of R' = R(VY):

R' = R+1d"(A) + A, Al

where [, ] is defined by the combination of the Lie bracket of matrices and the exterior product
of forms; therefore

< (YV) = I <d"A.R> vol = J' <A,5'R> vol.
dt 1=0 i i

and this shows that 5'R is orthogonal to every element of Q' (#(E)) with respect to the inner
product

I«:a.lb vol .

M
However this inner product is non-degencrate 3o that

d
&l on-o

for all choices of A if and only if "R = 0. This shows that V isa stationary pointof Y if
and only if BVR = ( and therefore shows that (1) is equivalent to (2). To see that (2) is
equivalent to (3} we use the Bianch identity dvR = 0 and then argue as follows:

J<AR,R> vol = j <@ 8" +8%")R,R>vol = j (1d"RE+18"RP) vol
M M M

- j IBVRE vol .
M
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Now we will assume that M is 4-dimensional and that the structure group G of the
bundie E is SU(2). We will give a topological lower bound for the functional Y and show
that the self dual connections are precisely the absolute minima of Y.

Lemma (1) Y(V) 2 82K(E)
€2) ¥ k(B) 2 0, then Y(V) = ank(E) if and only if V is self dual,
(3) If k(E) < 0, then there are no self dual connections on E.
Proof Let R be the curvatore of V and break R up into its self dual and anti seif dual
peices;
R=R*+R", *R'=R% +R" =R

It is easy to check directly that the self dual forms are orthogonal to the anti self dual forms so it
follows that

Y(V) = j AR* R +IR" ) vol
M

On the other hand one can check that R¥AR™ = O so now it follows that
Trace RAR » Trace RYAR" + Trace R™AR™
and therefore

$#°%(E) = = jaR*F-ln'F)vol
M

Therefore

Y(V) = _[ (R* F+IR" P vol 2 8x%K(E)
M
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and we have equality if and only if R™ = 0. Similarily it follows direcily that if k(E) <0 then
there can be no self dual connections on E,

-33.



