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Some Topological Applications of Harmonic Mappings
by Domingo Toledo

One of the oldest problems in topology is to decide wheiher there exist continuous
mappings between two topological spaces inducing a given homomorphism beiween their
homology groups. One concrete example would be the following: suppose M and N are
compact oriented manifolds of the same dimension, when does there exist a continuous
map f : M —+ N of non-zero degree? This question has been formulated by M. Gromov
in the following very suggestive way: if one sayn M 2 N If such a mapping exista, then
> defines an ordering on manifolds, where intuitively M 2 N means that M is more
complicated than N, and the question is to compute this ordering. For surfaces the answer
is easy: M > N if and only if genus(M)} > genus(N). But for higher dimensional
manifolds very little is known, and the methods of algebraic topology do not give very
much information. There are necessary conditions, for instance an inequality for the Betti
numbers: b;(M) 2 b,{N). While this inequality gives the complete picture for surfaces, it
has very weak consequences in higher dimensions. ’

The purpose of this lecture is to indicate the proof of a general theorem, which was
proved jointly with J. Carlson, concerning the existence of mappings of non-zero degree
between two very well-known and extensively studied classes of manifolds. For the domain
manifold M we will always take a compact KBhler manifold, for the target manifold N
a compact locally symmetric space of “non-compact type”. The latter means that the
universal cover of N is a manifold of the form G/K, where G is & semi-simple Lie group
with no compact factors and K is a maximal compact subgroup of G. It is well known that
G/K has an essentially unique metric invariant under G, and that this metric is complete
and of non-positive curvature {cf [H]). It is also known, but more difficult to see, that G/K
covers plenty of compact manifolds N (cf [B]). Thus N can be represented in the form
N = I"G/K for a co-compact, discrete subgroup of G. It will be useful to keep three
concrete examples in mind;

1. Real hyperbolic space H§ = $0(n,1)/50(n),

2. Complex hyperbolic space HE = SU(n,1)/U(n), which is the same aa the unit ball
in C" with its Bergmann metric,

3. The space P, of positive deﬁnit; symmetric matrices with determinant 1; as a
homogeneoua space P, = SL{n,R)/S0(n).

Note that 2. has an invariant Kahler metric (ie, is a Hermitian symmetric space), while
for n > 2, 1. and 3. are not Hermitian symmetric. Also Hg = HE = P;.

Theorem 1: Let M and N = ['\G/K be as sbove, and suppose that G/K does nol
contein the hyperbolic plane as a factor. Then a continuous map ¢ : M — N of non-zero
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degree exists if and only if G/K is Hermitian symmetric and there exists o holomorphic
map f : M — N (relative to on invariant complez structure on G/K ) of non-zero degree.

In other words, the only mappings of non-zero degree that can exist are “obvious®
ones. If G/K is Hermitian symmetric, the above statement is (a consequence of) a famoua
theorem of Siu [Si]. Thus to prove Theorem 1, one only has to show that if G/K is
not Hermitian symmetric, then a continuous map of non-zero degree cannot exist. If
G/K = Hg, this is & consequence of a theorem of Ssmpaon [Sa]. The general statement is
proved in [CT] and was motivated by the theorems of Siu and Sampson.

The proof of the theorem is based on harmonic mappings. Recall that a smooth map-
ping from M to N is called harmonic if it is an extreme value for the energy functional
[ES}

By =3 [ lant )

Since N has non-positive curvature, the fundamental existence theorem of Eells and Samp-
son [ES] implies that any continous map from M to N is homotopic to an essentially unique
harmonic mapping. Thus the clasification of homotopy classes of mappings from M to
N i essentially reduced to the clessification of harmonic mappings. The latter was for a
very long time an intractable problem, until the foliowing breakthrough waa made by Siu
[Si] for harmonic mappings f : M ~—+ N, where M is compact Kahler and N is Hermitian
symmetric. Recall first that the Euler-Lagrange equation for (1) is

tr%df =0 2

where Vdf denotes the second fupdamental form of £, a section of the bundle S*T°M @
F*TN, and tr denotes contraction with the metric in M. Now ina Kahler manifold M the
bundle S*T*M splita 8a & direct sum of two sub-bundles, namely the tensors invariant and
anti-invariant under the complex structure J. The complexification of the first bundle is
the space of 1,1 saymmetric tensors on M, and we will use the superscript 1,1 to denote the
J-invariant component of a tensor. Using this notation, we can state Siu’s main discovery
as follows: if G/K is Hermitiao symmetric, then any barmonic map f : M —+ N is
pluribarmonic, ie, satisfios '

(v‘#)l" =10, 3
and from this he derived, in particular, the complex-analyticity of harmonic mappings of
non-zero degree referred to above. If dime(M) = 1 (3) is equivalent to (2), but in higher
dimensions (3) is an over-determined system much stronger than (2).

Now in [Sa] Sampson proved that (3) also holds for all aymmetric apaces G/ K (not nec-
essarily Hermitian), and also pointed out the following very useful consequence of (3): For
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s given 2 € M, T2 can be identified with the summand p in the Cartan decomposition
g = @ p of the Lie algebra of G. Let W = de f(TOM) C p©. Then W is abelian:

W, W] =0 4.

Thus one should be able to reduce many questions on harmonic mappings to algebraic
questions on abelian subalgebras of pS. For instance, d, f(TMC) = W4+ W, thus d, f(TM)
is the subapace of rea! vectors in W + W, thus one gets the estimate on the rank of d. f:

. rankg(d.f) < 2 dimc(W) {5

For the general definition of the Cartan decomposition see [H]. We illustrate it with
the example of P, = SL(n,R)}/SO(n). In this case g is the algebra of matrices with trace
gero, ¢ is the Lie subalgebra of skew-symmetric matrices, p is the subspace of symmetric
matrices, and the Cartan decomposition is the familiaz direct sum decomposition

X=X XY+ X+ XY,

Thus for G/K = P,, Sampson's theorem says that for each z € M, W is an sbelian space
of complex symmetric matrices.

Theorem 1 follows from the following statement, which for simplicity we state only in
the case that G/K is irreducible, ie, G is a simple Lie group:

Theorem 2: Let G be ¢ simple non-compact group not isemorphie to SL(2,R), and let
W C pC be abelion. Then dim(W) < 3dim(p€), snd equality holds if and only if G/K is
Hermitian symmetric ond W s the space of 1,0 tangent veclors o one of the two invarisnt
complez structures on G/K.

Namely, a mapping of non-zero degres must have maximum rank at some point, and
the only way this is allowed by (5) and Theorem 2 is that G/K be Hermitian symmetric
and f statisfy the Cauchy-Riemann equations.

We indicate the proof of Theorem 2 for the space Pa, n > 2. The abelian space W
can be decomposed as & direct sum W = W, @ W,, of semi-simple and nilpotent matrices
respectively (Jordan decomposition). The space W, can be simultaneously disgonalized,
and then the space W, lies in the centralizer of W,, which consists of block-diagonal
matrices, each of the k blocks being a nilpotent subspace of symmetric ni by n, matrices,
fig + ... + 1y = n. Here k is the number of distinct cigenvalues of the typical matrix in W,
and n, is the multiplicity of the i** eigenvalue. Since there are no real symmetric nilpotent

matrices, none of these spaces can have real points, therefore their dimension i at most
half of the dimension of the corresponding block, and some simple arithmetic shows that
one cannot get to half the dimension unless W, = 0 and there is only one block. But »
nilpotent space of half the dimension is equivalent to an invariant complex structure: since
it has no real points, one gets a direct sum decomposition p¢ = W @& W, and since W
is isotropic for the Killing form, it follows that this complex structure is jsometzic, hence
invariant, which is impossible for Py,n > 2. A similar argument works for any G, using
the root space decomposition of G/K, see [CT] for details.

We give an immediate application of Theorem 2 to a well known problem in topology
and geometry, namely to find restrictions on the homotopy types of compact Kakler man-
ifolds. Suppose that rank(G) = rank(K) and V C K is the centralizer of a torus in K;a
concrete example would be G = 50(2p,q), K = S0(2p) x SO{q) and V = U(p) x S0{q).
It iz known that G/V is & homogeneous complex manifold [GS], hence I'\G/V isa complex
manifold which fibres over N = T'\G/K with fibre not homologous to zero, hence the map
induced on homology by the projection iv surjective. Just as Theorem | was deduced from
Theorem 2, one sees that if G/K is not Hermitian symmetric, then no Kahler manifold can
map to N surjectively in homology. Hence N = '\G/K cannot be homotopy equivalent to
a Kihler manifold. It is interesting to observe that here the non-linear harmonic equation
restricts the homotopy type of a Kihler manifold, much in analogy with the way the linear
barmonic theory has been used to derive similar conclusions, f[Mo]. For G = SO(2p ¢},
G/K is not Hermitian symmetric precisely when p # 1 and ¢ # 2.

Theorem 2 is & very erude estimate of the rank of harmonic mappings and just the
beginning of & serious application of (3) snd (4) to the classification problem of harmonic
mappings of Kihler manifolds to locally symmetric spaces. One would like to know for each
G/K the maximum dimension of an abelian subalgebra of p€, call this pumber a(G/K}.
One would aleo like to know the possible conjugacy classes of maximal abelian subspaces,
and to use their classification to totally classify harmonic mappings. For instance, in [Sa]
Sampson proves that a(Hg) = 1, hence in this case the rank of any harmonic mapping
f1 M — Nis at most 2. In [CT] we developed this ideas further for the rank one
symnmetric spaces, were abls to give a complete classification of the harmonic mappings,
and in particular sharpen Sampson's theorem for Hg to the statement that any harmonic
mapping must factor through a map of M to a hyperbolic Riemann surface § and a map
of § into N. This statement has & very interesting consequence, touching on another
classical problem: find restrictions on the possible fundamental groupa of compact Kihler
meanifolds:

Theorem 3;: LetT be the fundamentsl group of e compact manifold of conatant negative
eurvature and dimension ot least three. Then I is not somorphic to the fundamentel group
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of & compact Kihler manifold.

Theorem 3 is proved by contradiction: suppose there is a compact Kihler manifold M
with fundamental group T, take a harmonic representative f : M — N = T\H§ of the
classifying map of the universal cover of M (since N is the Eilenberg-MacLane space of '},
and the above factorization makes I' isomorphic to a subgroup of the fundamental group
of a surface, which is impossible.

Finally, we say & word on how one computes a(G/K). The problem is to find the
maximum dimension of various spaces of commuting matrices. The classical results here
are due to Schur [Sc] and Malcev [Ma}, for all complex matrices and for all the simple
complex Lie algebras respectively. Their methods can be suitably modified to apply here,
and we mention ony the result for Pa: a straight-forward modification of Schur's method
easily gives a(F.) < [‘:-'Fl , for n > 3. Moreover for n even, say n = 2k one can see
that this bound is sharp by considering the following abelian space of complex symmetric

matrices (cf [Saj):
A 14
(4 %

where A in an arbitrary complex symmetric & by k matrix. Moreover all abelian spaces

of this maximum dimension are conjugate, and can be realized in an obvious way by

harmonic mappings of compact Kahler manifolds, since they correspond to totally geodesic

embeddings of the Siegel upper half-plane of genus & in P, (cf{Sa]). It turns out that in

many cases the bound on rank arising from (5) is sharp, but in other cases it is not.
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