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Yang-Mills Theory and the Topology of 4-Dimensional Manifolds
DaNIEL S. FREED

Department of Mathematics
University of Chicago

December 9, 1888

This version is incomplete in many places, but is made available for the participants of the College on Global
Geometric and Topological Methods in Analysis.

This decade has seen tremendous advances in our understanding of fout dimensional manifolds. The
vigorous work of the 60's and 70's led to an understanding of higher dimensional manifolds in terms of their
algebraic topology. The 4 dimensional case is quite different in that these algebraic methods do not suffice.
Rather, techniques and ideas from differential geometry—and mast strikingly from high energy physics—have
yielded new information beyond what can be culled from algebro-topological methods. The early studies
of the classical Yang-Milla equations in the late 70°s used algebro-geometric methods and applied only to
special 4-manifolds [ADHM], [AHS]. Gradually techniques from the theory of partial differential equations
were brought into play, leading to general results applicable to a wide variety of 4-manifolds U1}, [U2],{T1].
In his 1982 thegis {D1)] Simon Denaldson used these results Lo produce new obstructions (not coming from
algebraic topology) to the existence of smooth structures on topological 4-manifolds. Since then Donald-
son has systematically developed the theory in quite general form {D2), (D3], [D4]). Many applications
of the theary have been to algebraic auriaces {D$], (FM1], [FM2]. There are topological applications as
well [FS1], [FS2], [Ma), [Ru}. Recently, Andreas Floer [F] has shown how Lo allach a new sort of coho-
mology theory to homology 3-spheres; the resulting cohomology groups play a principal role in the theory
on manifolds with boundary.! Atiyah's exposition of these ideas [A] inspired Ed Witten [W1] to place Don-
aldson’s theory firmly in the context of quantym Yang-Milla theory. Thus whereas the classical equations of
gauge theory inspired this decade of mathematical work, it is the quantum gauge theory which emerges as
the centtal idea. Clearly, the intuitions and techniques of quantum phyaics will play a primary role in futute
developments.

The reader will quickly gataer from our brief history that this subject is extremely rich and draws on
many fields. We cannot possibly do justice to all of this material. Instead, our alms are quite modest.

We begin in §1 with a recitation of major results close to the central development of the theory. These

The author partially supported by the Naliona) Science Foundation and is an Allred P, Sioan Research Fellow

Theae lectures were given at the College on Global Geometric and Topological Methods in Analysia, November 21- December 16,
1868. The college was held at the International Centre far Theoretical Physics in Trieste

1kt ja inportant to extend Floer's work to arbitrary 3-manifolds.
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statements never mention internal concepls (connections, instanions, eic.)—the ultimate Lestimony to t
theory's strength. Section 2 is an introduction to the basic configuration space attached to a 4+ manifold X
the space Cx of connections up to gauge transformations. Of primary importance are cohomology clas
attached to surfaces in X. The moduli space of instantons is, roughly speaking, 8 homology class in {
The justification of this assertion forme the guts of the theory. We summarize some highlights in §3. Final
in §4 we show how to derive some of the results of §1 from the theory.

CONTENTS: §1 Topology of 4-Manifolds
Homotopy and homeomocphism
Smooth slructures on 4-manifolds
Open problems

§2 Spaces of Connections
Principal bundles and gauge transformations
Connections and curvature

The space Cx

§3 The Moduli Space of {nstantons
The anti-sel-dual equations
Reducible connections
Generic metrics
Compactness and ends

Qrientation
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§1 ToroLogY OF 4-MANIFOLDS

notopy and homeomorphism

Oue of the basic invariants of & topological space X is ite fundamental growp m X 3 1t depends 3n

Joice of basepoint in X, and is the group of loope in X starting and ending at the basepoint, up to

wotopy. If all such loops are contractible, then x; X = 0 and X is simply connected. There are two

nected {topological) |-manifolds—the real line R and the circle §'—and these are distinguished by their

damental groups 7R =0 and m St = . ‘The situation is more interesting in 2 dimensions. Suppose Xis
losed (compact without boundary) connected 2-manifold. The abelianization of %, X is the first homology

up Hy{X), and it determines the manifold:

x| H(X)

53 0

1 T2 = §1 x §1 1?

) TI4T? 74
Rre? /22

RP?gRP? | 2@ (/270

1¢ symbol ‘#' denoles connected sym, which is defined for any two manifolds X, Y of the same dimension.
is formed by cutting a disk out of each of X and Y and gluing together the remains vis an orientakion
versing diffeomorphism of the boundary spheres. Any closed connected 9.manifold is a connected sum
tori T2 and projective spaces RP?. In this reckoning the sphere 57 is the empty connected sum. The
\asification of manifolds in 3 dimensions is not known. ‘The (original) Poincaré conjecture states that a
ssed oriented connected simply connected 3-manifold is the 3-aphere S, but this is yet to be proved. Any
aitely presented group is the fundamental group of & closed 4-manifold X, which makes *; an ineflective
\variant in isolation. For simplicity we will usually assume nX =0

Now we introduce the intersection form Ix attached to an oriented 4-manifold X. 1t is the Yasic

Igebraic invariant. Let
1.2) Hyx = H?(X)/torsion

i the “free part” of the second cohomology group of X. (if ;X =0,then Hx = H3(X).) The intersection

orm is the cup product

13) Ix: Hy ® Hx — HA(X) 21,

| A even more basic invariant is xgX , the set of path componenis. For the most part we will work with connected spaces.

3

.
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where the Iast isomorphism uses the orientation. It is & symmetric nondegenerate paiting. Passing to real

coefficients we use differential 2-forms to represent elements of Hx ® R, and then Ix is the pair'ng
(14) a@BHjaAﬂ.
x
The basic invariants of (1.4) are the rank §3(X) = rank(Hx) and the dimensions b3 (X) (resp. b3 (X)) of
the maximal subapaces of Hx ® R on which (1.4) is positive (resp. negative) definite. We have
(1.5) ba(X) = b3(X) + b3 (X),
(1.6) Sign{X) = b1 (X) - b3 (X},

where Sign(X) is Lhe signature of X. The form [ is termed even if Ix(a,a) is an even integer foralla € Hx.

If X is simply connected, then Ix is even if and only if X ia & spin manifold. Here is & table of standard

examples:
x4 | 6a(X) | b3(X) | 45(X) Ix
5 0 0 0 0
x5t 2 1 1 (0 l)
10
17
(1 cP? ¥ 1 0 1)
cp? 1 0 1 (-1)
01
K3 2 3 19 -w.ea(l 0)

In this table CP? denotes CP? with the opposite orientation. Also, K3 is the quartic surface in CP*. Finally,
Eq is the 8 x 8 Cartap matrix altached to the Lie algebra Eq4:

{ 2 -1 o 0 0 0 0 0 \
-1 2 -1 0 0o 0 0 O
0 -1 2 -1 0 ¢ 0O
(1.8) Ey= 0 0 -1 2 -1 0 0 O
6 0 0 -1 2 -1 0 -1
o 0 0 o0 -1 2 -1
o o 0 0 0 -1 2

\o o0 0 0 -1 0 0 2/

If X and ¥ are simply connected, then for connected sums we have
(1.9 Ixgv=Ixly.

A basic result of Whitehead and Milnor asserta that in the simply connected case, the intersection fo:

is a complele Aomelopy invariant.
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TugoREM 1.10 (WHITEHEAD-MILNOR [Wh], [Mi]). Suppose X, X2 are connected, simply connecied,
closed topological 4-manifolds. Let 8: Ix, — Ix, be an isomorphism of the iniersection pairings. Then
there is a homotopy equivalence §: X, — Xg which induces 8. Furthermore, every nondegenerate symmetric

bilinear farm (over 1} occurs as Ix for some X.

The seminal work of Michael Freedman {Fr] extends Theorem 1.10 (Whitchead- Milnor) to » clamification
by Aomeomorphism type. We state his result as follows.

THEOREM 1.11 (FREEDMAN). Suppase Xy, X3 are connected, simply connected, cksed smooth 4-manifolds.
Let 8: Ix, — Ix, be an isomorphism of the intersection pairings. Then there is a homeomorphism 6: X —~
X3 which induces 8.

In fact, for tepelogical manifolds there is an additional Z/2Z invariant, discovered by Kirby and Siebenmana,
which suffices for the homeomorphism classification.

In short, the classical invariants of algebraic topology ¢lassify topological 4-manifolds.

Smooth structures on 4-manifolds

Although our main concern is compact 4-manifolds, there is no better place to begin than with the
existence of an exotic differentiable atructure on RY. In any dimension but four the standard smooth structure
on flal space is known to be the cnly one. However, Donaldson's first resuit Theorem 1.13 combined with
Freedman’s work shows that there are other amooth structures on R* [FU §1]. More recent work underscores

this aspect of four dimensional space.
THEOREM 1.12 (GoMpP-TaubEs {G], {T1]). There arc uncountably many fake R*’s.

That is, there are uncountable many diffecomorphism classes of 4-manifolds homeomorphic to RY. In [act,
there is & 2-parameter family of such manifolds. We will not discuss the proof of Theotern 1.12 in these
nokes.

By general principles there can only be countably many differentiable structures on a compact topological
4-manifold. However, whereas in lower dimensions any topological manifold carries a unique differentiable
structure, there are some compact 4-manifolds with no smooth structures. For example, it follows from
Freedman's work that there is a campact simply connecied topological 4-manifold with intersection form £;.
Bul a classical theorem of Rohlin® implies that this manifold carries no amooth structure. Donaldson

extended this nonexistence resull 4o many other manifolds constructed by Freedman.

TreokEM 1.13 (DanaLpsoN [DE], [D3]). Let X be a closed oriented smooth 4-manifold whase intersection

form is definite. Then the intersection form is diagonalizable.

JRohlin's theorem states that the signature of a spin +-manifold is divisible by 8. Recall that if X is simply connected, then
X is spin il and only if Iy iv ann even form.
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Lt then follows from Theorem 1.11 and the classification of quadratic forme Lhat il X is simply connected, then
X is homeomaorphic to & connected sum of CP?’s or Lo a connected sum of CP%. Of course, any symnetric
bilinear form over Lhe reals is diagonalizable, but aver the integers there are many definite nondiagonalizable
forms. The forma E3 and Eg® E; are two examples. (Recali from (1.7) that £36 Eg is part of the intersection
pairing of K3. This relates to the construction of exotic R*'s.) The original proof [D1] of Theorem 1.13 uscs
s bordism argument; it forms the subject of [FU]. This proof only deals with the simply connected case.
The proof in [D2] uses & homology argument and is mote in line with the general theory. One goal of these
noles is to present the main ideas of this proof.

Doaaldeon also proves a nonexistence theorem for certain indefinite forme. Recall that b (X) is the

rank of the positive part of the intersection pairing Ix.

THEOREM 1.14 (DoNaLDsoN [D2]). Let X be a ciosed oriented smooth 4-manifold with even intersection
form. Suppase bf(X) < 2 and H,(X;Z) has no 2-torsion. Then X is homeomorphic to 5%, §? x 5%, or to
the conrected sum (57 x S7) #(5? x §%).

Donaldson actually compules the intersection form; Freedman's work {Theorem 1.11) then gives the home-
omorphism type. Of course, Thearem 1.13 is alightly stronger in case b} (X) = 0 (the definite case) as there
is no hypothesis on the first bomology group.

Complex surfaces give a rich supply of oricnted 4-manifolds. The classification of algebraic surfaces
a3 complex manifoids is known, and questions about their diffeomorphism type have been around for guite

some time.* A recent result of Donaldson answers some of these questions.

THEOREM 1.156 (DonaLpbson [D4]). If a amooth simply connected algebraic surface X is decomposable as
» smooth connected sum X = X, # Xa, then one of X; and X; bas negative definite intersection form.

We remack that the blow-sp of an algebraic surface X has the diffeomorphism type of X #-C-I;’.
There is a family of algebraic sucfaces, the Dolgachen surfaces S, 4 (p, g relatively prime), each of which
is homeomorzphic to CP? #9 CPY.

THEOREM 1.16 (DONALDSON [DS]). Sa,s is not diffomarphic to CP? #9CP7.

Theotein 1.16 was extended in many ways by Friedman and Morgan [FM1), [FM2]. One of their conclusions
is
THEGREM 1.17 (FRIEDMAN-MORGAN [FM32]). There is an infinite (countable) number of inequivalen:

smooth structures on CP? # $CP2.

This is a great contrast with higher dimensions where a compact topologicai manifold carries a finite numbe

of inequivalent smooth structures. One can speculate [FM1) that the classification of algebraic surface:

$See [FM1] for & survey.
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diffeomotphism type is closer to the classification as complex manifolds than to the classification by

meomorphism type.

pen problems

Thete are still open problems concerning the existence and uniqueness of smooth structures on closed
nanifolds.®. The existence of differentiable structures on simply connected manifolds would be settled by
:onjecture of Kas and Kirby.

INJECTURE 1.18 (“THE 11/8 CONIECTURE"™). Suppose X is & closed, oriented, simply connected, smooth

manifold with even indefinite intersection form. Then

h(X) 1
[Sign(X)| = 8"

1e bound is sharp—it is realized by any connected sum of K3 surfaces. In fact the conjecture is equivalent
the assertion that every such manifold is homeomorphic to a connected sum of K3 and $? x §3.

The most well-known open problem about uniqueness ia the four dimensional Poincaré conjecture.
ONJECTURE 1.19. There is a unigue smooth structure on S*.

Finally, one can ask whether algebraic sutfaces form the building blocks for oriented 4-manifolds, just
tori form the building blocks for oriented 2-manifolds.

UVESTION 1.20. Isevery closed, oriented, smooth, simply connected 4-manifold a connected sum of algebraic
rfaces and their conjugates?

“he conjugate surface has the reverse orientation. Also, $* is the empty connected sum.) As Theorem 1.17
dicates there is an infinite number of building blocks. Friedman and Morgan [FM1] credit René Thom

ith the speculation that Question 1.20 has an affirmative answer.

\ more exiensive discussion is given in the survey article [FM1]

7
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§2 Seaces or CONNECTIONS

Principal bundles and gauge transformations

Let X be s compact oriented 4-manifold. Then for any connected Lic group G we consider principal
G bundles x: P — X. Thus P is a amooth manifold on which G acta freely (on the right) with quotient X.
The group G acts simply Lransitively on the fiber x~!(z) = P, over 2 € X—given py,p; € P, there is
a unique g € G with p; = pyg. The simplest example is the trivial bundle P = X x G, with G scting
on the second factor. More generally any P is Jecolly trivial. That is, about each point in X there is a
neighborhood U so that the restriction of P to Uf is trivial: #~'(U) 2 U x G as G-spaces. A trivialization is
equivalent to a local section s: I/ — P. (A seclion s is a smoothly varying choice 2(x) € Py for each 2 € X.
In other words, x o s is the identity.} For then

UxG— x~Y(U)
{2.1)
(2,9) v o(z)g
ia the corresponding trivialisation.

The topological classifleation of principal bundles depends on the nature of G. For example, if G is »
finite group then P is & (principal) covering space of X. If G is abelian these covering spaces are classified
by elements of H'(X;G); the classification is more complicated for nonabelian finite G. If G = T ia the
circle group, then principal T bundles sre in 1:1 correspondence with elements of H2(X;2). When G is s
connected, simply connected, compact, simple Lie group there is a single characteristic class in H4(X;Z) = 2
which classifies G bundles. The case of most interest to us is G = SU/4, the group of 2 x 2 unitary matrices

of determinant 1:

(22) sv,={(_"ﬁ f’)m.nec. |a|’+|m’=1}.

As & smooth manifold St is diffeomorphic to the 3-sphere. Associated to a principal 5Uy bundle P — X
is a rank 2 complex vector bundle E — X with trivialised determinant line bundle det £ — X, (This is the
line bundle A’E — X.) In genetal, & rank 2 complex vector bundle E has Chern ciasses ¢i(£) € HY(X:1)
and ¢3(E) € HA(X; I}, but the condition on the determinant mesns ¢((E) = 0. Under the isomorphism
H*(X;Z) = I given by the orientation, the second Chern class c3(E} goes over into an integer k.

To summarize, specilying the Lie group G = 5U; and an integer & determines a unique equivalence

class of principal SUy bundles over any given compact oriented 4-manifold X .0

*More generally, we can take as starting dats any compact Lie group G, though it may not be so casy to spedfy & unique
inomorphism class of G bundles on each closed oriented 4-manifold. Recent work in three dimensional topology and two
dimensional physica [W32] suggests that this more general framework is desirable. We will develop some aspects of the theory
in this generality, but the analysia has only been worked out in the literature for G = $Uj or G = 50;. The difficuities in
[ ding to more compli d Lie groups are nontrivial.
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Now if P, P' are G = SU; bundles over X with the same Chern class, then there exist difleomorphisms

(2.3) pi PP

which commute with the G action and induce the identity map on the base X = P/G = P//G. f P = P then
the set of such mape forms a group under composition. This is the group Gp of gauge transformations. It is
the basic symmetry of the theory, onte & bundle P — X ia fixed, and all of our constructions will be gauge
invariant, or at least account for this symmetry. One can give Gp the structure of an infinite dimensional
Lie group. The terminology comes from the case of & trivial bundle. For s trivialization P = X x G allows
us to express any global section s: X — P as w map i: X —+ G. This is » (global} gauge, and any other
gauge i: X — G is related by the equation

(24) t(z) = @{2)i(z).

Here $: X — G operales on the icft and 60 commutes with the right G action on P. In other words, {p is
the mapping space Map(X,G). This picture applies locally on any principal G bundle P — X: A gauge
transformation is & group element at each point of X operating by left muliiplication on P, though now the
copies of the group twist as we move on X. Mote precisely, the automorphisms of the fiber £, which commule
with the right G action form & group G.. To each a point of P, is sasociated an identification £y ~ G, and
g0 an isomorphism G, & G. These identifications depend on the point in Pe. (However, there is & canonical
identification of the center of G, with the center of G.) Aa z varies the groups G, form a bundle of groups
Gp — X, and the group Gp of gauge transformations is the group of sactions of Gp. On the infinitesimal
level the Lie nlgebra g, of G, is {ncncanonically) isomotphic Lo the Lie algebra g of G. As z varies these Lic
algebras ge form a bundle of Lie algebraa gp — X, and the Lie algebra of infinilesimal gauge transformations
in the algebra of sections of this bundle. More geometrically, an infinitesimal gauge Lransformation is a vector
field atong the fibers of P — X which is invariant under the G action on P. Notice that (local) trivializations
of P induce (local) trivializations of Gp snd gp.

Let p: G — Aut(V) be a representation of G on & vector apace V. Then for each z € X the space of

G-equivariant maps f: P — V lorm a vector space V. The G-equivariance of f is the condilion

(2.5) e 9 =pe~" V() s€G,pEFs.

To each point of P, ia associated an isomorphism Vy = V. The vector spaces V; fik together io form a
vector bundle Vp — X This is called Lhe associated bupdie construction. A global section of Vp is then a

G-equivariant map P — V. For example, gp is the vector bundie associated to the adjoint representation
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Ad: G — Aut(g). Finaliy, gauge transformations act on an sssociated bundle Vp. If ¢, € G, and f € ¥
then

(26) wef(p) = (7' P) = plipe) J{P),

where p;: G, — Aut{V;) is the representation induced by p.

Connections and curvaiure

The (real) cohomology of & marifald is & global invariant; locally & manifold has no cohomology. Sti
differential geometers study cohomology via local objecta—differential forms. Similarly, we use connectio,
to study principal bundles. Let ®: P — X be a G bundle. The infinitesimal g action gives a canonic
identification of g with the tangent space Lo P along the fibers of x. Thua for each p € P there is an cxa

sequence
(27 0—g—T,P S TuX —0,

where z = ¥(p). A horizontal space at p is a splitting of (2.7); & connection o » G-invarisnt splitting of t

corresponding sequence of vector bundles over P:
(2.8) 0—=Pxg—TP—12'TX —0.

As 8 map T,X -+ T,P a splitting gives horizontal lifts for tangent vectors to X. As a map TP — ¢

connection is a g-valued l-form A on P satisfying

(29) g°A=(Adg™")A, g€G,
(2.10) A=id on kerr,.

Note that (2.9) is & linear coudition, but (2.10) is an affine condition. That is, if 4, A’ are connections th

their difference o satislies (2.9) and
{2.11) a=0on kerr,.
The set of all such « is a linear space. It is the space {1} {gp) of 1-forms on X with values in the bundle

Lie algebras defined in the last section.” So the space Ap of all connectiona i an affine space with associa:

vector space Q5 {gp).

TRecall that 0% {gr), the space of sections of gp, is the Lie algebra of infinitesimal gauge | f ions. More genen
clements of (% (9p) are g-valued &-forms a on P satislying (3.9) and the condition that o annihilat in kerx,,

10
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The detivative of functions on X is an operator

'l

(212) ok — 0y

into 1-forma on X. Let A € Ap be a connection on P. Thea (2.12} extenda to an operatot
4

(2.13) 0% (or) — Dk (o)

4 follows. An element of % (ge) ie » g-valued function £ on P satislying (2.9). Then

(2.14) daf = df +[A.€)

is & 1-form on P satisfying (2.9) and (2.11). Note that if g is abelian, then d4 = d. The operator ds obeys
the Leibaits rule

(215) da(fO =& €+ do, [ 0%, E€05%00)
The same formula {2.14) extends to the whole de Rham complex:
da ' da 3 da da 4
(2.10) 0 — 0% (sr) — Oklor) — Ak (gr) — Ok (or) — D5 (er) — 0.

Io general d% £ 0. Rather it is multiplication by an element Fu € 0} (gp), the curvature of A. The
compulation

26 = da(dt +1AL))
=LA L +[A.dE] +{A 1AL

(217
= [4A,€] - 14,6 + 4,461 + [4, [4.€1
= (44 + 314,414

shows

(2.18) Fr=dA+ %[A.A].

(AL the last stage of (2.17) we use the Jacobi identity.) Locally, Fy is a g-valued 2-form.
Next we must understand Lhe effect of gauge transformations on these construclions. Lel p: P — P be
a gauge transformation and A & comnection. Define & new connection A - ¢ by

(2.19) A-p=(p)A

u

PRELIMINARY VERSION Decamber 9, 1908

Then A - @ satisfies (2.9) and (2,10}, s0 is & new connection on P. Thue {2.19) defines a right action of Gp
on Ap. Our major object of study is the quotient '

{2.20) Cx = As/Gr,

the apace of connections modulo gauge equivalence. Nolice that we wtite Cx sather than Cp. This is because
for any principal G bundle P — X which is isomorphic o P there s canenicel identification

(221) ApfGr = AsfGr

(c€. (23)). So Cx just depends on X and the fixed isomorphism claas of G bundles. For G = SUy the
apace Cx = Cx(k) just depends on the integer k (though we often delete 'k’ from the notstion). For any
connection A € Ap, we dencie by A its projection in Cx.

From (2.14) we compule

‘4,, = p'l odyop,

(222) . .
=d4y ' oAcpteTdp,

where the gauge transformation y acts on g P via the adjoint representation (cf. (2.6)). Hence
(2.23) A-p=yplAptydp,
which ran be derived directly from (2.9). The infinitesimal version of (2.23) is & vector field v on Ap for

each infinilesimal gauge transformation € € 1% (). Set p = €% in (2.2), differentinte in 1, and uee (2.14}
lo compute

(2.24) ve(A) = daf.

The behavior of curvatute under gauge transformations can be deduced from (2.18) or more casily from the
first line of {2.22) and the fact that Fy = d}. In any case

{2.25) Fapmy  Fap.
We want o study gauge invarisnt concepls, i.e., concepts amociated to Cx. For example, Lbe equation

(2.26) Fa=0

12
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s gauge invatiant, 5o that the solutions form & subset of Cx. These are Lhe {gauge equivalence clavses
of) flai connections. Qur man object of study i the space of hall-Aat or anti-sell-dusl connections on s
Riemannisn 4-manifold. Another way Lo get gauge invariant expressions out of curvature is by taking »
teace. For G = SUy we have the Chern-Weil formula

(2.2m) k= i% L U(Fa A Fa).

Locally, Fy is & 2 x 2 mairix of 2-forme, 8o the matrix product Fu A F, is & 2 x 2 matrix of 4-forms. Taking
the trace gives an ordinary 4-form. It is invariant under gauge transformations, since a gauge transformation
conjugates Fy by (2.25), and the trace is conjugation invariant. Equation (2.27) s a topological comstraint
un the possible curvaiures of a conneciion on P. Similar formules can be written foe other groups.

Now let p: G — Aul{V) be & representation of G and Vp the mssociated vector bundle. Then we define
s complex

(228) % (Ve) = Ok (Ve) = Q4 {V) 2 03 (Ve) 2 % (V)

analogous to (2.16) by the formula

(2.29) da = df + YA

analogous to (2.14). Here £ € 1% (Vp) is & G-equivariant V-valued k-form on P which annihilates vectors
in kerx.. Also, p: g — End(V) ia the induced representation of the Lie ajgebra. The operator d, is

the covarisnt dervative. s square in multiplication by #(Fy}, the curvature of Vp, which is sn clement
of 1} (End Vp).

The spaca Cx

in this scclion we begia Lo study the basic configuration space
(2.30) Cx = Ap/Gy.

Our fest goal i i0 understand sts singutarities. To this end we introduce an auxiliary space Cy. Fix a

basepoinl z4 € X and iet G be the subgroup of Gp consisting of gauge Lransformations which are the
idenlity on P,,. There is an exact sequence

{231) 1_.c;._.g,1'_'..a,_ -,

13
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where ev,, i evaluation at Lhe basepoint. Define

(232) Cx = Ap/Gh. .
Then
(2.33) Cx = C';IG..

Our justification for introducing Cy is the following
Lemma 2.34. Cp acts freely on Ap if X is conmected.

PRrooF: Suppose ¢ € Gp, A € Ap, and A -p = A. Then from (2.23) we deduce
(2.35) pldp=A-p  Ap.

Consider (2.35) as a first order dillerential equation for y. The right haad side is 0 ai 2o, since p(xy) = M.
So w(z) = id is a solution of (2.35) which is correct st one point, hence by general properties of Krst order
differential equations is correct everywhess. (This uses the conmactivity of X.) Hence p{r) £ id and () acts
freeiy.

We will not worry about the Lechnicalities of amooth struclures on infinite dimensiooal manifolds in Lhese
lectures. Suffice it 1o say that the spaces we deal with may be treated as finite dimensional manifolds. Proper
treatmient is given in any standard reference, e.g. (FU§3]. There 8 more precise statement is proved.

PROPOSITION 2.36. Cy is a smooth manifold.

This does nol follow from Lemma 2.34 since G is nol compact. Rather, a slice theorem must be proved.
We defer Lo [FU§3] for detaile.
For each A € Ap lel [y C Gp ba the inotropy group of the Gp action on Ap at A:

(2.37) Ta={p€ECr: A p=4).
It is wnmediate that
(2.38) Tap=vlay~"

Lemma 2.34 implies that T4 projects isomorphically oato a subgroup of G,, wnder the sequence (2.31).* We
record the following general fact sboul these stabilizers.

Sln fact, the unage in Gy, s the Jiser of the hob ¥ subgroup al £y,
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LeMMa 2.30. Let Z be the center of G. Then Z C Gp and ZC Ty forall A.

Proor: If £ € Z then for any = € X the map p v £t i@ aa nutomotphism of P,, 9o lies in G.. Elements
in the image of the induced inclusion Z «— Gr are called global gange transformations. 1t follows directly
from (2.35) that they lie in every stabifiser I',.?

Now specialise to G = SUy. Then Z = {41}. The pomible 4 are the subgroups of SU; conjugate to
either {£1], T, or SUy, where T ia the tircle group of diagonal matrices in SUy.*® We discuss each case
separately.

Let A C Ap be the subspace of A € Ap with 'y = {£1). These are the irreducible connechions.
The image of I's in G,, is (1), 50 that G,,/{1) & SO, acts freely on €} = Ap/Gp. Hence there is a
principal bundle

(2.40) 503 —C3 —Cx

and C3 is & smooth manifold. 1t is not hard 1o see that Cx is homotopy equivalent Lo Cx, mince the
cornplernent Cx \ Cy of reducible connections has jnfinite codimension. Still, the reducible connections play
an important role in the theory.

IF T4 = SU; then Fy = 0. This follows from (2.25), us the only element of the Lie algebra g = sy
mvariant under conjugstion by SU; is 0. So the subspace of connections with [, = SU; are the flat
connections. The Chern-Weil formula (2.27) implies that these connections only exist if & = 0. ¥Flal
conneclions modulo gauge equivalence are given by representations 1 X — Si/, up to conjugacy. If X is
simply connected then this is a single point: the trivial representation. We denote it by

(241) {#) € Cx(0).

Finally, if [y = T than A reduces to & connection on & T bundie Q@ over X. (This is & general fact:
A reduces 10 a conneclion on & bundle whose structure group is the centralizer of the image of T4 in Gy,

ic., o & bundle whose structure group is the holonomy growp.) A standard computation with characteristic
¢tlasses shows

{242) Q) = —co(P).
in Leris of the intersection pairing, if ¢ = ¢;(Q) then

{243 Ix(e,c) = ~&.

'IIZi-mt&melhthimmmmdwlwhﬂmnuh-dmﬂrhnm-,r-ilhxé X,
However, only the comalants are in Fa (X in conmected).

" Other subgroupe of SU;, euch ae cyelic groups of cven order > 2, camnot occur since T4 ie (isnmarphic to} the centralises of
& subgroup—the holonomy mbgroup—of Si/3,
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Note that if ¢ satisfies (2.43) , then so does ~c. Conversely, any solution ¢ € H?(X;2) to (2.43) determines
& T bundle Q — X, and there is an inclusion

(2.44) Ce=Agllqg —Cx

by extending the siructure group.

We determine the local structure of Cy near these reducible connections. (Recall that Cx is smooth near
irreduicible connections.) Let a € Ag be u connection on the T bundle Q; then any other connection is e + io
for @ € % an ordinary 1-form. The gauge transformation ¢/, f € %, maps s +ia to¢+|'(n+4f).. So(f, is
an affine space with amociasted vector space 1) /1% . Now extend a 1o an SU; connection A = (0 e )
Under the action of the diagonal matrices T C SUs there is & decomposition
(2.45) =M Xh@m,

where ) consista of diagonal matsices {the Lie algebraof T) and m = {(-i 0

)} b maarst compin

A0
structure {which identifics the matrix above with b € C). The element (o .l") €T actaon m as

mubiplication by A?. There is & corresponding decompasition
{2.48) or hpmp

of the adjoint bundle.!! Since T ncts trivially on §, the bundle hp is trivisl. Thus the tangent space
Tadp =11} {(gr) decomposes as

(247) i} (sr) > N & N} (mp).

Dy {2.24) the subspace of (2.47) corresponding to the action of infinitesimal gauge transformations i the
image of

Mier) ——  0kgr)

(248) l l

0% 0 0% (mpe) 22, 0} @0} (mp)

The constants in (1 are in the kernel of d,, cosresponding 1o the stabilizer [y = T. Therefore, the tangent
space T4Cx in the space of connections modulo gaege equivalence is the quotient of

Y o Dyime)
d} " d My {mp)

1 This can be stated in Lering of vector busidies. U E is the rank 3 bundie associated to P, then the reducible commaction A
gives n decompusition E @ L. @ L= Then b is the trivial bundle, whereas e = LY a complen lime bundies,

(2.49) = lig® He

16
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A0
by the ['4 action. Now (0 At € T's acts trivially on the real Hilbert space Hg, and as multiplication

by A? on the complex Hiibert space He. Hence
(2.50) TiCx = Ha x {Hc[Ta),

and the second faclor is a cone on the infinite projective space CP™. Finally, a slice Ltheorem asserts that a
neighborhood of A in Cx is modeled on (2.50).}3

Our final observation is that under (2.44) the image of C; ia the same aa the image of C_.. In other
words, connections of Chern class ¢ are SU; gauge equivalent Lo connections of Chern class —c. This is most

easily seen in terms of vector bundlea. W ES L@ L™!, then
{2.51) VL@ UL = =y Dy

a 0 —-a 0
defines & gauge transformation of £ which maps the connection 0 ) to ( 0
-a a

The thieory with & = 503 is slightly simpler, since SOy has trivial center so that ['y = (£1} cannot
occur. However, the singularities are more intricate for more complicated groups G since there are more

possibilities for the stabilizer subgroups T 4.

12Here we aunit the analysis referred Lo afier the statement of Proposition 2.36.

17
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§3 THE MoDuLl SPACE OF INSTANTONS

For the rest of our work we take G = SU;.'? In the sequel X is a connected, simply comected, closed

oriented, smooth 4-manifoid.

The anti-self-dual equations

Congider Euclidean 4-space V = E*. Il ¢y,¢3,¢3,¢4 is Lhe standard oriented orthonormal basis, witl

dual basis ¢!, ¢?, 6 ¢*, then Lhe volume form is

(3.1) vol=ef AelAedAct e AV,
and the » operator

(3.2) ATV — AV k=00, 04,
is defined by the equation

(3.3) (@, f)vol=arneg, a,fepV".
An casy computation shows

(34) = lon A'V,

80 we can decompose

(35) AV = AUV B AL(VY)

into self-dusl and enti-self-dual forms. If X is an oriented Riemannian 4-manifold there is a correspondin

decomposition on 2-forms:
(36) 2% = (0%)+ 0 (0)-.
This extends to forms witli values in a veclor bundle. Let

31 Py = %(l +0): Q% — (%)

3 With bittle change there is an analogous theory for G = S0y

18
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be orthogonal projection onto the sell-dual forms.
Now let P — X be a principal SU; bundle, A a connection on P, and F € (¥} (gp) its curvature. The
anti-self-dual equation ia
(3.8) PyFy =0,
of equivaleatly
{3.9) eFa=—Fy.
Solutions to (3.8) are connections whose curvature is anti-seli-dual. We term these solutions instantons.
There are several elementary observations. First, from (2.18) we see that (3.8) is & nonlinear fiest order

differential equation for A. Then from (2.25) we see that the set of solutions is preserved by gauge transfor-
mations. Finally, if A is a solution to (3.8), then from (2.27)

_ 1 _ 1 _ 1 2
(310) k—Eﬁ./xll'(’?‘ﬂp‘)—a?]x“"(F‘A‘F‘)—;E‘/xIFAI VOIZD.
Here we use (3.3) and the fact that (&;,£) = ~ tr(£1£3) is a positive definite inner product on suy. It follows

from {3.10) that if k = 0 the inatantons are precisely the flat connections (2.26).

Therefore, for each & > 0 and each Riemannian metric g on X there is a moduli space
(3.11) Mx(k,g) C Cx(k).
If X is simply connected, as we are assuming, then
(3.12) Mx{0,9) = (8)
is the (equivalence claas of the) trivial connection # (2.41).

We begin our study of these moduli apaces by computing the linearization of (3.8) for a fixed metric g.
Suppose A is anti-sell-dual and o € 2% (gp). Then from (2.18) and (2.14) we compute

1

(3]3) P.,.F‘.H. = P...d,[ll + EP{,[G,C'].

So the linearization of (3.8) is the equation

(3.14) Pydsa = 0.

19
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Now P.d, fits into the elliptic complex
F Pyd .
(3.15) 0 — 0% (ep) — Ok (op) — N (gp)s — 0.

Ellipticity means that there is a finite dimensional linear space H'(A) of solutions a € N1l (gp) to the

equalions
(3.16) Pydaa =0,
3.17) daa =10

Note that H'(A) = H'(A,g) depends on the metric g. To see the geometric meaning of equation (3.17) we
recall formula (2.24). It states that dy in (3.15) is the infinitesimal action of gauge transformations Gp on
connections Ap. Put dilferently, the image of 44 is the tangent to the orbit of A under Gp. Now solutions
to {3.17} form the orthogonal complement Lo the image of d, 80 are perpendicular to the gauge orbit. This
is a local slice of the gauge action if A is irreducible [FU,Theorem 3.2]; it projects 1:1 onto the tangent
space T;Cx under the projection Ap -+ Cx. (The irreducibility of A means that Cx s smooth at the
image A.) So H'(A) projects 1:1 onto a linear subspace of T;Cx (k) if A is irreducible. We will see that if
Mx(k.g) is smooth, then this is its tangent space at A.
Let H%(A) be the space of solutions to

(3.18) dat =0, €€0%(or)
and H?(A) the space of solutions to
(3.19) (Pyda)'r =0, refi}(or)s-

Ellipticity of (3.15) implies that these are finite dimensional. Also, H%(A) is independent of g, whereas
HYA) = H3(A,g) depends on g. Set

{3.20) M(A) = dim H'(A).
Then the Atiyah-Singer index theorem calculates
3.21) dx (k) = h'(A) — K°(A) = N {A) = Bk ~ 3(1 + 83 (X)).

This formula is purcly topological. The right hand side is independent of A; it depends only on the second
Chern class k and on 83 {.X). We will interpret H%(A) in the next section and H 3{A) in the following section.

The basic result is that if the moduli space Mx(g, k) is smooth, then its dimension is dx (k).

20
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The most basic example is the & = 1 moduli space Mg+(1) on the round sphere $*. According to (3.21)
it is a 5 dimensional manifold. In fact, it is an open 5-ball. It has been described in detail in many sources.
([AHS] scems to be the original, ¢f. [FU§6].) Let 2 be a quaternionic coordinate on R = H, which we
identify with §*\ {pt}. The Lie algebra su; can be identified with Lhe Lie algebra of imaginary quaternions.
That understood, there is a family of instantons on RY,

idr
{3.22) Ay =1Im (W) . AE(0,00),
with curvature
. M iz Adr
(323] = mﬁ;

These extend easily to k = 1 instantons on §*. Note that as A =+ 0 the curvatlure F, concentrates near z = 0.
{As A — co the curvature concentrales near oo.) By translation we obtain families centered at any pair of

antipodal points. Therefore, Lthe 5 parameters of Mg«(1) are the centers and the scale A,

Reducible connections

At A € Ap the infinitesimal action of gauge transformalions is
; o da 0
(3.24) Ox{sr) — Ox(ap)

Nence Lhe kernel of d 4, which we denote H'(A) (cf. (3.18)), iv the Lie algebra of the stabilizer group T'y. We
classified these stabilizers in §2. Il A is irreducible then 'y = {£1}, s0 that H'(A) = 0. I A is the trivial
connection @, then 'y = SUy, and #'(A} is & 3 dimensional space. (Recail that Lhis only occurs il & = 0.)
Fhe remaining case is I'y = T, then H'(A) is | dimensional.

Suppose that 4 is an instanton with I'y = T. Then A is the SU; extension of a connection a on a
T bundle Q whose Chern class ¢ satisfies (2.43). Since T ia abelian, its curvature w = F, is an ordinary
2-form on X, and (3.8) asserts that w is anti-self-dual. Furthermore, dw = 0 by differentiating (2.18). Hence
dsw = 0 also, and w is harmonic. Hodge theory asserts that w is the unique harmonic form in ity cchomalogy
class. So the set of instanlons or. @ is the set of connections a on § whose curvature is w. Now if a is an
ingtanton on §Q and a € ﬂ'= , then the curvature of the connection a+ a is w + da. So the space of instantons
on ¢} can be idenLified with the space of closed 1-forms on X. But since X is simiply connected, a = df for
some function f. Then s 18 gauge equivalent to g + & via the T gauge tranaformation €'/ € Gg. Thus there
is a single gauge equivalence class of instanton in Ag. Finally, the SU; gauge trausformation (2.51) maps
instantons with Chern class ¢ to instanions with Chern clags —c.

We sumimarize in

2t
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ProrosiTioN 3.25. Let A be an instanton on the SU; bundle P — X with Chern class k. If T4 = (%1}
then h'(A) = 0 and A is irreducible. I T5 = SU; then h'(A) = 3, k = 0, and A is gauge equivalent to the

trivial connection @, If Uy = T then h*(A) =1 and F, = , where w is an anti-self-dual 2-form.

-w
There is a finite number of gauge orbits of these reducible imslantions on P, one orbit for each pair +e of

solutions to (2.43) whose harmonic representatives are anti-self-dual.

If Ix is negative definite then every harmonic 2-form is anti-self-dual, 30 we have metely to count pairs of
solutions to (2.43). If Ix is not negative definite, then we will see that for a generic metric there are no

anti-self-dual 2-forms {Propaosition 3.34).

Generic metrics

tix a Chern class & > 0. Let Metx be the space of Riemannian metrica on X. Then for each g € Metx

we have the instanton wmoduli space

(3.26) Mx(g)CCx.

(We omit ‘&’ from the notation here.) The union over g yields a subset
(3.27) Nx CCx x Mety

consisting of pairs (A, g) such that Fy is anti-seM-dual for the metric g. Let A; be the subset where ['y =

{#1}, i.e., the irreducible instantons.
TneokeM 3.28 [FU§3L. Ny & a smooth manifold.

We do not assert that Mx(g)" is snooth for each g. But it will follow from Theorem 3.28 that Mx(g)"* is
smooth for a deuse set of metrics.

We first explain iow smoothness of the moduli space is related 1o H?(A,g), defined ia (3.19). Namely,
suppose A is an instanton for a metric g, and assume that A is irreducible. Thus H%(A) = 0. Then we claim
that Mx(k,g) is smooth at A if H1(A,g) = 0. {Recall that Cx ia smooth at A since A is irreducible.} For

near A the moduli space is the kernel of the operator
(3.29) Sayl0) = da® PrFata, a€y{or)

If a is in the kernel of S, then A + a is an instanton. ilere we use the slice theorem Lo identify Cx near A

with the kernel of df. We scek solutions with o« small. But the lineacization of (3.29),

(3.30) dS{a) = dia @ Pydaa,

2
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s surjective, since the cokernel H®(A)@ H?{A, g) vanishes. Therefore, the implicit function theorem impliea
hat the kernel of § is smooth near o = 0. Also, the tangent space to Mx(k,g) at A is the kernel HY(A,9)
f the linearization (3.30). By (3.21) this has dimension dx (k).

There is no a priori guarantee that H3(A, g) vanishes for any metric g. However, it can be shown that
I 'we let the metric g be a variable in (3.29), then the new operator S4(g,a) has no cokernel anywhere. In
ther words, at any instanton A with respect to the meiric g, the differential of 5 with respect Lo ¢ maps
nto H(A,g). This argument is [FU,Theorem 3.4}, which reliea on G = SU;. Theorem 3.28 then follows
rom the implicit function theorem.

Our main interest is in fixed metrics, and 8o in
JOROLLARY 3.31. There is an open dense set of metrics g for which Mx(k, g)* is smooth for all k.

Ve term this the set of “generic metrics.” To prove Corollary 3.31 we consider the projection
1.32) Ny — Mety.

« short calculation shows that the colernel of » at {A,g) € N} is isomorphic to H2(A,g). The infinite
imensional version of Sard’s theorem, due to Smale, asserts that x has a dense set of regular values. At these
retrics H(A, g) vanishes for all instantons A. Also, h(A,g) = dim H?(A,g) is an upper semicontinuous
inclion, so vanishes on open sets. Thua the set of generic metrica for fixed k is open and dense. Since the
itersection of any countable number of open dense sets is open and dense, we have such a set of generic
retries for all & simultaneously.

We need to know the dependence of the moduli space on the metric. Suppose gy and g, are generic
relrics, and g, (0 < t < 1) an arbitrary path of metrica between them. Then a refinement of Sard’s theorem
tates that arbitrarily small perturbations 3, of g, fixing the endpoints have the property that x~1(3,) c & %
i a smooth manifold. Its boundary is the disjoint union Mx(k,g9)° U Mx(k,g1)*. Hence

JOROLLARY 3.33. The moduli spaces Mx(k,g:)* for different generic metrics go,g; are bordan.

We turn how to reducible connections. If k = 0 then the moduli space is Mx(0,g) = {0} for any

retric g by (3.12). The remaining case is [y = T (and k > 0). The case where Iy is rot negative definite

| easieat.

'ROPOSITION 3.34 [FU,COROLLARY 3.21]. l’fb;‘(X) > 0 then for an open dense set of metrics there are
o reducible instantons.

"he curvature of a reducible instanton is an anti-seli-dual 2-form whose cohomology clasa lies in the lattice
xi H}(X:Z) C H¥(X;R). So Proposition 3.34 asserts that there are no such forms for an open dense set of

1etrics. This makes good intuitive sense: A metric determines a decompaosition

3.35) HAX; Ry = Hta -
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by identilying H?(X;R) with harmonic forme and decomposing via the + operator. Now if dimH~ <
dim H*(X;R), then a subspace of dimension dim H~ will not intersect a lattice. Therefore, to prove Propo-
sition 3.34 one has Lo show thal generic perturbations of the metric put the space H- of anti-self-dual forms
into general position. In [FU] Propasition 3.34 is derived from Theorem 3.28.

This leaves the case where Ix is negative definite. Then a reducible instanton A cannot be perturbed
away. But according Lo Proposition 3.25 A is an isolated point of Mx{k,g}. The discussion surrounding (2.50)
asserts that a neighborhood of A in Cx looks like Hy x {H¢/T1). Note that Hy corresponds to directions
in the space of reducible connections, which Mx(k,g) intersecta tranaversely. Now a discussion similar to
the irreducible case shows that H7(A, g) = 0 is the good situation. Then a neighborhood of A in Mx(k,¢)
is modeled on H'(4,¢)/I' 4, which is a cone on a complex projective space of complex dimension h(A, g)/2.

One can prove that this good case is generic.

TheoreM 3.36 [FU §4). If Ix is negative definite, then there is an open dense set of metrics ¢ for which
Mx(k,9) is smooth at irreducible instantons, and is locally a cone on a complex projective space near a

treducible instanton.

We will often implicitly fix a generic “background” metric g and delete ‘9’ from the notation.

Compactness and ends

To carry out intersection theory in Cx, our ultimate goal, we need to know whether or not the moduli
spaces My (k) are compact. In fact, My (k) is usually not compact, but its structure near infinity (the
ends) is well-understood. The basic resulte are due to Uhlenbeck [U2] and require detailed analysis of the
nonlinear anti-self-dual equation (3.8). There are two difficulties: the conformal invariance and the gauge
symmetry. The conformal invatiance necessitates apecial a priori estimates to control the noncompactness.
But the equations are only elliptic modulo the gauge symmetry. Here Uhlenbeck uses novel techniques to
deal with the symmetry. We briefly review some of the major analytic ideas, leaving detailed estimates to
the references. (In this preliminary version we only review the analytic ideas in a simpler situation.)

Consider first a linear elliptic differential equation

(337) Py=0

on a compact manifold X. Ellipticity implies that the space of solutions is finite dimensional. But it is a linear
space, hence never compact (unless trivial). The failure of compactness is due to scaling: If ¥ solves (3.37)
then so does Ay for any A > 0. Another basic property of elliptic equations is the smoothness (regularity)
of distributional solulions. The proofl goes roughly as follows. Introduce Banach spaces H,, & € R, with the

2
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properties:
(3.38) H,CH, ifs2>
(3.39) NH. =c=;
+
(3.40) The inclusion H, — H,. is compact if s > o'

Heuristically, H, is the space of functions with s derivatives {perhaps in some integral sense). Then if P is

elliptic and nonnegalive, the basic elliptic estimate asserts that if 4 > 0, then

(3.41) Pty H, — H,., 5 invertible

for some r and ail 5." Now il y € H, solves (3.37), then by (3.41) we can find ¢ € Hyyr with
(342) (P + p)¥ = py,

and again by (3.41) we deduce ¥ = ¢ in H,. Hence ¥ is an H,,, function, and now iterating we find ¢ € /4,
for all 5, whence by (3.39) ¢ is simooth. This argument is calied elhphic regularity.

Now suppose
(3.43) Q:H, —H,_.

15 a nonlinear (continuous) operator, and sssume that r' < r.!* Then solutions to the nonlinear partial
differential equation

(3.44) (P+Quw=0

are again smooth. For if ¢ € H, is a solution, then we can find ¢ € Hyg(r-r) which solvey

(3.45) (P+ul = —(Q-py,

from which we deduce ¢ = ¢ in ¥, as before. Thia shows ¥ € H,i(s-¢): bootlstrapping this procedure we

conclude ¢ € C*'. Furthermore, if we can show that the space of solutions Lo (3.44) is bounded in some H,

(s sufficiently large), then the space of solutions ia compact. This follows from (3.40). To establish the

4y in the order of P.

I e worsh pointing ond that if P+ @ r:mea from & warislionad probiem,

is “Palace. Sesle " this hypothesis implics that the energy (unctional
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boundedness in H, we must analyze closely the problem at hand, beyond merely demonstrating ellipticity,
to produce good a prior: estimates.

Unfortunately, the anti-sell-dual Yang-Mills equations are not of this type; rather, ¥ = r. Thia reflecta
the fact that the equations are comformally invariant. That is, if f € [} and A is an instanton for the
metric ¢, then A is also an instanton for the metric ¢/g. Furthermore, the equations are elliptic only after
dividing by the gauge symmetry. So our beuristics above do not apply directly. Nonetheless, they give some

flavor of the following regularity theorem.

Tueonem 3.46 (UHLENBECK [FU,§8]). If A is an instanton, then there exists a gauge transformation p

such that A - is stooth.

We emphasize that the techniquea used in the proofl go far beyond the simple analysis when r' < r. Theo
rem 3.46 is proved together wilth estimates from which one deduces compaciness results, 1o which we turn
next.

We have alteady seen thal Ms«(l) is nol compact; it is the open 5-ball. It is easily compactified by
adding the boundary 4-sphere, which we identify with the original space 5*. These boundary instantons
correspond to A = 0 in (3.22), which means that the curvature {3.23} is a §-form supported at the origin.
This is not a rigorous picture, but the intuition is invaluable: The instantons at oo are particles. These are
the true instantons, conpletely localized to in instant in space(time). Nolice that away from the origin these
point instantons are flat.

A similar picture works on arbitrary X. Suppose {A;} C Mx(1) is a sequence of instantons, Then either
a subsequence cotverges, or Lhere ia a point 2 € X such Lhat a subsequence converges o a flat instanton
on X\ {z]} together with a particle at . Furthermore, a particle at z looks the same as & particle on 5*.
That is, if we conlormally rescale X by enlarging a neighborhood of z according Lo the scale of 4;, then the
rescaled Rietnannian manifolds X; converge to 7, X & R* and the rescaled instantons A; converge to the
standard A = ] instanton (3.22). This is the basic result of Uhlenbeck [FU,§8], which extends to higher k

as well.

TheoRem 3.47 (UnLensick). Let A; be a sequence in Mx(k). Then aiter passing to a subsequence we
can find lifis A;, points z,,...,z¢ € X, and weights k; € 2+ such that for some A € Mx(k — ¥ &) we have
Aj — A on compact subsets of X \ {z),...,2¢}.

Informally, A; converges Lo an instanton A of charge & — £ together with £ point particles. Notice Lhat the

total charge is conserved. Put differently, we can compactify My {k) by adjoining these exira limit pointa:
(348) My(E}C Mx(k) U Mx{k—~1)x X U Mx(k~2)x S}X) u---u {8} x 5(X),

where SH{X) is the &8 symunetric product of X.
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This description is slightly deceiving as a parameter count with (3.21) quickly reveals. For example,
consider Mx(2) and suppose b’,*(X) = 0. Then dim Mx{2) = 13, whereas dim 5?(X) = 8. Where are the
extra 5 patameters near instantons which are approximately 2 particles? The scales A of the concentrated
instantons account for 2 of the parameters. The remaining 3 are a relative phase in §O5 = S{/;/center
between the 2 particles. This is an important point: The instantons are nonabelian particles, so feel thin
relative phase belween any pair of particles.

Suppose now 83 (X} = 1. Then dim Mx(2) = 10 and we seem to be short 3 parameters in the moduli
space (near the end where 2 particles are forming). In fact, the nonzero self-dual form is an obstruction lo
the existence of particles, and there is only a 5 dimensional subset of X x X on which 2 particles can fcrm.
This phenomenon was studied in detail by Taubea [T2] (cf. [ID2}), and the resulting picture of the moduli

space near its ends is crucial in applications.

Orientation

We must orient the moduli spaces Mx (k) to carry out oriented intersection theory, and so obtain integer
invariants (rather than Z/2Z invariants). The orientability of Mx(1) is discussed in {D1] and [FU §5}.
Donaldson {D3] deals with the general case, orienting all Mx (k) simultaneousty. Here we review the main
ideas of his construction.

An orientation of a manifold M is a Urivialization of its determinant bundle det TM !¢ This is a real
line bundle over M, which is trivial il and only if ita restriction to every circle in M is trivial.!” If M is
otientable, there are two possible orientations on each component.

More generally, if
(3.49) (| N Y I .
is a complex of vector bundles over a manifold C, then there is a determinant line bundle
(3.50) del B* = (det E®) @ (det £4)™' @ - .- @ (det EX}-1"
defined over C. This bundle is canonically trivial if (3.49) is exact. In general there is & natural isomorplism
(351) det E* & det H*(E"),

where H*(E*) is the (trivial) complex of homology groups. Using (3.51) we extend the determinant eon-

struclion to the case where E/ is infinite dimensional but the homology is still finite dimensional. This

" The determinant of & finite dimersional vector space V is a line—its top exterior power det V. The nonsero ¢lements of aet V
falt into two components. An orientation of V is & choice of one of thete componenta.
1?Formally, the obstruction to orientability is measured by the first Stiefel- Whitney clnes wi (M} € H'(M; 1/2)}.
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applies to elliptic complexes, where the Aiiylh-Singer index theory provides techniques for computing (3.51)
topologically. Finally, since we deal with real vector bundles up Lo topological isomorphiam, we can omit
the inverses in (3.50)—a real line bundie is isomorphic to its dual, ’

We work with the moduli epaces of irreducible instantona.’® W A € Mx{k) is irreducible, then the

tangent space can be identified as
(3.52) TiMx(k) = H'(A)

(cf. (3.18) and (3.17)). On the other hand, recall that at A we have the elliptic complex (3.15) with homology
groups H*(A). At an irreducible connection H%(A) = H?(A) = 0, and so0
det H(A) = det H*(A)
(3.53)
= det H%(A) @ det H'(A) @ det H¥(A).

By the previous discussion, the bundle on the right hand side of (3.53) extends to a real line bundle Lx (&) —
Cx(k), ihe determinant line bundle of {3.15). Since orientations pull back, an orientation of Lx (k) induces
an orientation of My (k). So it suffices to orient Ly (k).

Consider first k = 0. Then gp in (3.15) is the trivial bundle X x su,, and relative to a basis of su; the

complex (3.15) degenerales to 3 copies of the self-dual complex

(3.54) 0— 0% — 0% — (%), —0.

The determinant of the homology of {3.54) is the real line

(3.55) Lx = det HY(X) ® det H'(X) ® det H1(X).
This is independent of the connection A, so Lx(0) ia the trivial bundle
(3.56) Lx(0)=Cx(0) x Lx.

Hence Lo orient Lx{0) we need to fix an orientation of Lx. Donaldson terms this choice s Aomology
orientation of X. Of course, there is & canonical momorphism H°(X) 2 R by constant functions, and if
X is simply connected H'(X) = 0. Hence we have only to orient H3(X). Note that H%(X) and H'(X) are
independent of the metric, wherens H1(X) depends on the metric (cf. (3.35)). But the intersection form Ix
is positive definite on H3(X), and the set of all subspaces on which Iy is positive definite is contractible.
Rence the choice of metric is irrelevant, and a single choice of homology orientation works for all metrics

simultaneously.

1904 discussed previously the reducible i are isolated singwlar points in the moduli space. We will apply intersection
theory to these by “chopping of™ the wmaduli space near these singular points.
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