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Hodge theory

The Yang-Mills equations are a nonlinear generalization of Hodge theory, and in fact reduce to Hodge
theory in the special case of a circle bundle. We begin, then, with a quick review. Let M be a compact
criented n-manifold. The smooth difierential p-forms, 0F, are defined, and these fit together to form the de

Rham complex

d d d
(1) elo Sl Lo

where d is the exterior differentiation of E. Cartan. The de Rham cohomology groups are the cohomology

groups of this complex:
_ Kerd: Qpr — Qpt!
A7 Imd: Q-1 = Qr

H}

Suppose M is endowed with a Riemannian structure. Then we can define the energy of & form

(2) £(e) = jM lof2e 1,
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where *1 is the volume form (the notation will be explained later). If we restrict £ to a given cohomology
class {a 4+ df}, we can compute the equations for a critical point:
d

d
0= — tdf) = —
a|,_ et =g

/ (e +tdB,a+tdf)+1
t=0JM

:=2.[u(a,dﬂ)t1
=2'/‘M(d‘a,ﬂ)tl.

Thus the Euler-Lagrange equation is:

(3) dea=0.

Of course, a is also closed,

(4) da =0,

and we can combine (3) and (4) to obtain the single second order linear elliptic equation
(5) Aa = (dd" 4+ d"d)a= 0.

Since £ is a convex functional, any critical point is a minimum.

HoDGE THEOREM. In each cohomology class there is a unique form satisfying (5).

Principal Bundles

The Yang-Mills Lagrangian, which generalizes (2) in a nonlinear framework, arises most naturally in the
geometry of principal bundles. Let G be a compact Lie group, and P a principal G-bundle over a manifold
M. This means that P is a locally trivial smooth fiber bundle with fiber G, and G acts on P via a right
action P x G — P. All geometric objects associated to P must respect this group action in some fashion.
The simplest example of a principal bundle is the product bundle Py = M x G. A principal bundle has no

global sections unless it is a product; Pp clearly has the global section
(6) ig : m e (m,e)

where e € G is the identity element. Twisted G-bundles are locally isomorphic to products.
Any time G acts on another space F on the left, we can form a new bundle by replacing the fiber G

of P with F'. This is the associated bundle construction which we now recall. Let p : G — Aut(F) be the

2



action of G on F. Here “Aut(F)” is used loosely to describe the automorphisms of the structure of F. So if
F is a vector space, then Aut{F) is the group of linear automorphisms of that space; if F is a Lie algebra,
then Aut(F) is the group of Lie algebra automorphisms; if F is a differentiable manifold, then Aut(F) is
the group of diffeomorphisms of F'; etc. To form the associated bundle, first stick a copy of F over every
point of P, i.e., form P x F, and then identify (p,z) € P x F with {pg, p(g7)x}. This collapses the fiber of

P x F — X down to F, and so the associated bundle is

PxgF=PxF[(p,g)~(p-9,0(s"")z).

EXAMPLES:
1. F =G and p(g)g’ = g¢’¢g™"! is conjugation. The associated bundle is denoted Aut G, and now there is
a group structure in each fiber.
2. F = g the Lie algebra of G, and p(9)Z = Ad(g)Z. The associated bundle of Lie algebras is denoted
ad G.

3. p: G - Aut(V) is a linear representation. The associated bundle £ is a vector bundle.

Finally, it is clear that a section of P xg F can be realized by a map s : P — F satisfying

(7 s{p-g) = ple™") - s(p).

The basic geometric ingredient in the Yang-Mills Lagrangian is a connection in P, or, in the physicists’
terminology, a vector poteniial. In P the vertical tangent space VT, P is well-defined, and via the infinitesimal
action of G it can be canonically identified with the Lie algebra g. A horizontal compiement- H, at each
point comprises a connection. As stated above, there must be respect for the group action, which in this

case means
(8) Hp.g = (Rg)e Hy,

where R, : P — P is right multiplication by ¢ € G. Alternatively, we can define the connection by the

projection w, onto the vertical VT, P with kernel Hy. Then since VT, P 2 g, w is a g-valued 1-form on P:
w:TpP - g.

Furthermore, w satisfies

wlyrp = id

(9) (R,)‘w - Adg'l )
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The second property follows from (8). In the product situation Py, we can pull w down to the base via the

section {6). Hence a connection in this case is described by

(10) A=ijweQ(s) =g,

a Lie-algebra valued 1-form on M. If Z, is a basis of g and z* are coordinate on M, then
A= A?Z, ®dz'

carries two sets of indices. Notice that on Py there is a canonical product connection (for which A = 0). The
description (10) of a connection holds locally for twisted bundles.

Let A be the space of all connections on P, and suppose w,w’ € A. Then by (9) the difference n = ' —w

satisfies

ﬂ'vrp =0,
(Ry)’n=Adg™! g

The first condition implies that n descends to the base, and the second implies that g takes values in the
* bundle ad P (cf. (7). So n € 2'(ad P), and A is an affine space whose space of directions is Q'(ad P). In the
product situation, ad P is trivial, so that {2'(ad P) = Q'(g), and our description (10) of connections reflects
the existence of a distinguished origin in A, the product connection.

Let p : G — Aut(V) be a linear representation of G, and £ the associated vector bundle. A connection

on P induces a connection on £ which can also be described by the associated covariant derivative
(11) D : () — 0'(6).

In the product situation, we write

(12) D=d+ A,

which means

(13) Df = df + A2p(Z.)f ® d=,

where f € Q°(¢) is a section of £ (a map M — V in this product case), and p : @ — End(V) is the
representation of g induced by p. The d in (12) can be thought of as the canonical product connection. In

fact, in the twisted situation if we fix a base connection Dy, any other connection can be written

D=Dy+ A
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Note that on ad P (13) is the equation
Df =df +14,].

The covariant derivative (11) can be extended to
D: Q" (€) - *71(¢)
by
D(f®a)=DfAa+ fQda

for f € Q°(€), @ € QP. Then (1) generalizes to the elliptic complex
D D D D
(14) Q°(€) — Q1) — Q*(§) — -+ — ()

Strictly speaking, (14) is not a complex—it is no longer true that D? = 0. In fact, D? is multiplication by
the curvature, a notion we now define.
In the context of connections on principal bundles, the curvature {2 of a connection w measures the

failure of { H,} to be an integrable distribution of n-planes. Think about the Frobenius Theorem to see that
(15) X, Y) = -w(X, 7))

measures this failure; here X is the horizontal part of X € TP, and X,Y are extended to local vector fields
50 that the bracket is defined. The right hand side of (15) is independent of the extensions. It can also be
checked that

(16) Q= du-i--;-iwl\w].
The g-valued 2-form {2 satisfies

X1 =0 for X € VTP,
(R0 =Adg™! -9,

which implies that § is the pullback of a 2-form on the base with value in ad P, i.e., { is a section of
Q2(ad P). Here ¢(X) is contraction with X. In the product case Po = M x G we can apply the section i to
(16) to obtain

F=iQ=dA+ %[AAA].
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This can be made more explicit. Let

F= Eﬂjdti Adl = %F,'jd.‘ti/\dl“f;
i<j

Then
8A4; BA;
Fyj = 5t — 5a7 + i A,
where
A = ZA?ZQ.
o

As mentioned above, D? in (14) also gives the curvature. For f € Q°%(€), in the product case we compute

D*f = D(df + H(A)S)
= d(p(A)f) + P(A) Adf + p(4) A H(A)]
(7) = B(AAVS — B(A) A df + (A) Adf + SH(IAN ADS
= pdA+ %[A T

= p(F)f.

The curvature of € is p(F) € Q*(End £).

We will need to know how the curvature changes with the connection. Thus for n € 2!(ad P), thinking
of 7 as a g-valued 1-form on P,

Qutn = dw+ m)+ 3K + 1) A0+ 7))
(18) =du+dr,'+%[w/\w]+[w/\1)]+-;-[qf\q]

1
=+ Dn+ 5[71'\'1]-

Here, as in (12),

Dn=dn+[wA1).

A computation similar to (17) gives an alternative derivation of (18); there the result is expressed in the

notation

1
Fpoa=Fp+ DA+ E[A A Al




Gauge Transformations

The group of symmetries of P is the set of maps
¢:P—P

satisfying

(1) ¢(p-9)=¢(p)-9 forg€G;
(2) ¢ covers the identity on M,

i.e., the group of bundle automorphisms of P covering the identity on the base M. We call this the group of

gauge iransformations. Let

$(p) = p- 5(p)

for s(p) € G. Now the G-equivariance becomes

p-9s(p-9)=¢(p-g)
=¢(p)-9
=p-s(p)g

=p- 99~ s(p)g,

so that

s(p-g) = g s(p)g.

Hence s is a section of Aut P, and the group of gauge transformations can be identified with C*°(Aut P).
Denote this (very large infinite dimensional) group by &. In the product situation Py, gauge transformations
are simply maps s : M — G, and these act by left multiplication on sections of Py. Such global gauge
transformations exist in the twisted case if G has a nontrivial center C. For since G acts trivially on C by

conjugation, the bundle

PxcCCPxgCG

is trivial. Global sections of P xg C define global gauge transformations. If the center is discrete (e.g.,
the center Z/nZ of SU(n)), then these global gauge transformations are constant. When G is abelian (e.g.,
G = U(1)), then Aut P = M x G and all gauge transformations are global. Finally, we remark that C*(ad P)
is the Lie algebra of G.

Gauge transformations act on connections by either pushforward or pullback. We choose pullback since
this gives a right action of G on A, and the fibration G — A — A/G is essentially a principal bundle. (It is

not a principal bundle since the action of G is not effective if G has a center, and is not free on all connections
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in A. So G — A — A/G must be modified slightly to obtain a principal fibration.) Let s € G and define the
bundle automerphism

¢(p) = p - 5(p}.

If w is a connection 1-form, the pullback connection is ¢*w. Now
(19) (*wp)(X) = Wp.(p)(# X) = Ad 5(p) 2w, ((R,(,)-:).¢.X).

Let +; be a curve on P with tangent X. So ¢y = p and t)}o = X. Thus

d
(Rypy-1)e e X = — ] (Ragpy-1 © ¢)(¥)

di 1=
= Z|_ v sy

= X +ds(X)s(p)"L.

Here we have implicitly identified VT, P &2 g. Plugging back into (19),
(8*wp)(X) = Ads(p)™! -wp(X) + Ad 5(p) ™" - ds(X)s(p)™?,
or
(20) ¢*'w=75"1ds + Ads™ w.
We will also denote ¢*w by #*w. In the product case we obtain
(21) s*A=s"'ds+ 51 As.

This can also be derived by thinking of the action of s on some associated vector bundle (the representation
p:G — Aut(V) induces Aut p: Aut G — Aut{Aut V) which allows us to think of s as a section of Aut(£)),
and computing the effect on the covariant derivative D = d+ A. Omitting p from the notation, for f € Q°(£)

we have

(s*D)f = 57 o (d+ A) 0 () = 5~'sdf + s~ ds(f) + s~ As(f).
So
(22) s'D=d+ s 'ds+ 571 As,

and (21) follows. This calculation carries over to the twisted situation where we fix a base connection Do

and write an arbitrary connection as Do + A.



The action of 5 € G on curvature is computed by

(¢‘Qp)(X,Y) = ﬂp--(p)(¢*x1 6.Y)
= Ads(p)~'Q ((R,(,}-.).nﬁ.x, (R,@)-:).qb.Y)
= Ads(p)~1QUX,Y),

since € vanishes on vertical vectors. So

(23) $*Q = Ads 0.
In the product situation,

(24) s*F=35"1Fs.

We can check (24) directly:
Fyep =(s"'Ds)?> = s~ ' D*s = s~ Fps.
In making the computation we have multiplied elements of g by implicitly using a representation p : g —

End(V).

The Yang-Mills Equations

We are finally ready to set up the calculus of variations problem leading to the Yang-Mills equations.
Assume that M is compact oriented and is endowed with a Riemannian structure. Since G is compact, minus
the Killing form is an inner product on g. Then we define a functional ¥ M on the space of connections A
by

(25) YM(w) = '/M 10]2 * 1.

Here = ., € 922(ad P} is the curvature of w € A, and Q] is computed using the Riemannian metric on

the base and minus the Killing from on g. Note immediately that for any gauge transformation s,
[s*Q = jAds—19]
by (23), and since the Killing form is Ad-invariant,

Is*Ql = 10].
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So Y M is G invariant and actually defines a fanction on .A/G. Furthermore, the Euler-Lagrange equations
of YM are G invariant. Before computing these equations, we remark that in the case of Hodge theory we
restricted the functional (2) to a fixed cohomalogy class. In the Yang-Mills setup, the fixed topology of the
bundle P obviate the need to restrict Y M. Now we compute the Euler-Lagrange equations assuming that

M is closed (compact without boundary):

d 1?
0= IMw+tn) = -&—tl jM [Q+tDn+ —2—[nAn]|2¢1
t=0

d
:‘:E =0
(26) =2 fM(ﬂ,Dn) .l

=2/ (D*Q, )1

M

for all n € 2! (ad P). So the equations for a critical point are

(27) D=0,

a second order equation in w called the Yang-Mills equation. The Bianchi identity can be written
(28) DQ =0,

and (27) and (28) together say that Yang-Mills curvatures are the degree two harmonic elements in the

complex
D
(29) Q%(ad P) = 9} (ad P} — 9%(ad P) 2> ... 2 @ (ad P).

This is the analogy to Hodge theory (cf. (1)-(4)). In fact, if G = U(1) we recover the de Rham complex
form (29), and (27) and (28) reduce to (3) and (4). We discuss this in greater detail later. Notice, however,
that Y M is not a convex functional, and not all critical points are guaranteed to be minima.

If M is a manifold with boundary, then there is an extra term from the integration by parts in (26).
Let j : 8M < M denote the inclusion of the boundary, and assurne that M is oriented, so that there is a
global section » of the normal bundle to M in M. Then the boundary term in (26) appears in

(30) ‘% - IMw+inp = jM(D‘Q,q) 13 LM(L(u)j"Q,j‘n) x1

B3| -

where ¢(-) is contraction of a vector field with a form. This boundary term is most easily computed using
the star operator, as discussed in the next section. There are two cases which arise frequently for which this

boundary term disappears.
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1. We restrict to connections fixed on 8M. Then j*n = 0 for all variations considered.
2. A connection w on P with curvature  restricts to a connection j*w on j* P with curvature 7* Q2. If we
restrict to connections w for which the restricted connection is flat, 7 = 0, then again the boundary

term vanishes.

In both cases we obtain the Yang-Mills equation {27), but now over a restricted set of connections.

Finally, in the product situation D = d + A, we write (27) as
(31) drdA + %d‘[AAA]+[A..dA]+ %[AJ[A AAL} = 0.

(Here . denotes inner product on forms.) In this form the cubic nonlinearity is apparent. Also the gauge
symmetry manifests itself in that (31) is not elliptic; tangents to the orbits of G on A provide a kernel for
the symbol of (31). To compensate one often restricts to connections {A : d* A = 0} perpendicular to the

orbit. Then a solution A satisfies the elliptic equation

AA + lower order = 0.

The Star Operator

Let V® be an oriented inner product space. The volume form vol is a distinguished element of A™V.
We define

» APV = APTRY

by

(32) aAxf=(a,pB)vol

for all a, 8 € APV. In terms of an oriented orthonormal basis e, -+ , e,

(33) *(eg, ArooAe,) =€, A Ae,

where {i1, - ,ip,J1,"** ,Jn—p} is an even permutation of {1,2,--,n}. It is easy to check that
(34) #? = (=1)P(*~P)  on APV.

Note that %1 = vol, explaining our notation for the volume form in integrals.
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ExaMpLE: In the four dimensions, writing e;,..;, = €;, A---Aeg;,,

*e12 = €34,
€33 = —€24,
*€14 = €23.

We can also define the = operator for oriented vector spaces whose inner product is not positive definite.

If e;,-+-,en is an oriented orthonormal basis, where now (e;,e;) = x1, then denoting #(e;,,...,e,) =
number of e;; with (e;;,¢;;) = —1, and # = #{e1,...,es), we have

(35) *{eg, Ao Aei )= (m1)#Eatide; A A €ineps

and

(36) #2 = (=1)P(n-PiH#

ExAMPLE: In the Lorentz metric —(f1, f2) = (f2, o) ={fa, o) ={fs. Ja) = 1,

+f12 = —f34
*f13 = f2a
*fla=—fs
*fs4 = fr2
#f2a = —f1s
*f23 = fia.

Also, #2 = —1on APV ...

Suppose M is an oriented Riemannian manifold. Then * can be used to express the L? inner product:

(37) (a,ﬁ);::]M(a,ﬁ)*lzﬂloA*ﬁ for a, B € OF.

Then
122+ 1 = 2 A#Q,

so (25) can be written

(38) IMW) = ./1:! ., A Q.

The * operator can also be used to express the adjoint of d.
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LEMMA. d* = (~1)"?*"+ xdx onQP,

Proor: Fora € Q?, B € QF-1,

jM(a,dﬁ) o1= jM dB A xa.
But

d(BAsa)=dfAsa+ (1P~ 1fAd*a

integrates to zero if M = 0. So

](a,dﬁ)u:(—l)rf BAdra
M M
=(-1)P/M(ﬁ,*-1dm)u

= (—1)”(—1)(”")(""""1)] {B,sdxa)#1.
M

Hence

d*a = (1)l s dxa.

Note that if n is even,

d* = —xd»

for forms of all degrees. The formula for d* extends to D* trivially, so the Yang-Mills equation (27) can be

written
DsQ=0.
Also, the formula
(39) dnAQ)=DnAsQ—nAD=Q

holds, and we leave it to the reader to derive (30} from (39).

Self-duality and Conformal Invariance

In four dimensions there is an extra feature to the Yang-Mills equation which allows us to obtain

solutions from a first-order equation. First, let V be an oriented four-dimensional inner product space. Then
ATV = A%V

satisfies #2 = +1. So

AV = ALV ALY
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splits into the direct sum of the 41 and ~1 eigenspaces. {This corresponds to the Lie algebra decomposition
s0{4) = 50(3) & 89(3).) Note that {e;z + €34,€13 — €24,€14 + €23} is a basis of A2V, and {e12 — €as, 13 +
€24,€14 — €23} is a basis of A2 V. This decomposition extends to oriented Riemannian 4-manifolds. We

call forms in % self-dual and forms in Q2 anti-self-dual. The curvature Q € 2?(ad P) of a connection

decomposes
= Q+ + Q.
If 9 is self-dual or anti-self-dual,
(40) 2 = 0.
Then since
DQ=0

by Bianchi, we have

D«Q=0,

and  automatically satisfies the Yang-Mills equation. We will see in the next section that (anti-) self-dual
solutions are minima of Y M. Note that (40} is a first order equation.
There is another special feature that the four dimensional equations enjoy: conformal invariance. Sup-

pose g — k?g is a conformal change of metric. Then

vol — x* vol,

and under this change the inner product on 2-forms is multiplied by 4. So the right-hand side of

A+ = {a,f) vol

is conformally invariant. This proves that the * operators on 2-forms is conformally invariant, and it follows

that the full Yang-Mills equation

DxQ=10

as well as the {anti-) self-dual equation

0 =40

are conformally invariant in four dimensions.
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A Topological Invariant

Recall that if P is a G bundle over a compact manifold M, 2 is the curvature of a connection w on P,
and ¢ : g¢ — R is an Ad-invariant polynomial on g, then the cohomology class »(Q2) is a characteristic class
of the bundle P, in particular is a topological invariant of P independent of the choice of connection. The

Killing form

e(X,Y)=tr(ad X 0adY)

is an Ad-invariant polynomial, and so

p(9) = tr(ad 2 A ad )

is a 4-form whose cohomology class is a topological invariant.

Write

Q=0,+0.

as before. Since 2, and Q2_ are perpendicular,

p(R) = tr(ad Q4 Aad ) +tr(adQ — AadQ-) = —1Q 2+ 192- |2

H M is four dimensional, we can integrate to obtain the topological invariant

(41) TI= jM(|n_12 — 12,17 ¢ 1.
But
(42) yME) = [ (9P 410,71
Hence

YM(w) > [T1]

with equality if and only if
*=Q = (sign TI)Q.

For TI > 0 self-dual solutions are minimizing, and for TT < 0 anti-self-dual solutions are minimizing. Note
that there is no guarantee that the topological lower bound [T is attained. The invariant TT is the first

Pontrjagin number of ad P up to a numerical factor.
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Line Bundles

We now come full circle and show that when G = U(1), the Yang-Mills setup reduces to Hodge theory.
For then ad P is trivial and §2°(ad P) & Q”, so that the curvature is an ordinary 2-form on M. Furthermore,
ad P inherits the trivial connection from P no matter what the connection is on P, and so the Yang-Mills

equations reduce to

df =0
&'f=0

for f € §22. We have recovered the equations (3) and (4) for harmonic forms. Note that there are always

solutions to these equations by the Hodge thecrem.

EXAMPLE: Over a Lorentz manifold, choosing an orthonormal local frame for which —{6*|? = |82]2 = |63|° =

|#4]2 = 1, we obtain

0 fiz fia fua 0 E;: E, E
f= 0 fos faa | 0 -B, B
0 fa 0 B.
0 0
0 _f34 .f24 _f23 0 B: By B,
0 fie —N1a 0 E, -E,
xf = =
0 ho 0 E,
0 0
Now df = 0 is the condition
Eg;y Ey;: B,;-'f -_— 0, etc.,
which is
dB -
(43) ek
v-B=0
Similarly, D % f = 0 becomes
dF -
(44) r
v.-E=0

Equations (43) and (44) are Maxwell’s equations, demonstrating that Yang-Mills generalizes Maxwell. A

self-dual solution satisfies * f = if (remember %2 = —1 in the Lorentz metric!) which is

-

E=-iB,
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and an anti-self-dual solution satisfies »f = —if, or

E=iB.
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