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ALGeBRAIC ToPOLOGY

§1. Introduction.

In topology, one is interested in topological spaces and continuous maps.
Algebraic topology is the study of topological invariants of a space. By this
we mean that for any space X, we associate an invariant I{X) which can be &
set, a group or other structure and it is an invariant if whenever X and Y are
homeomorphic, I{X) and /(Y') are isomotphic.

It has turned out that the best way to describe invariants is via functors. A
functor M associates to every space X a set (a group, etc.) M{(X) and to every
map f: X — Y amap of sets (groups, ete.) M(f) : M{X) — M(Y) so that

(1) If f: X = X is the identity
then M(f): M(X) — M(X) is the identity
(2) If xLlyLz
then M{go [} = M(g) o M(f)

M is a functor, then M(X) is a topological invariant, for if X and Y are
homeomorphic, then there exist X ER Y,Y 4 X withgof=1x,fog=1y
and hence M(X) 20 M(Y) M(Y) YD M(X) satisfy M(g) o M(f) = M(g o
f) = M(1x) = Imxy, M(f) o M{g) = M(fog) = M(ly) = Im(y) and
thus M(f) and M{g) are inverses of each other, establishing an isomorphism
M(F) : M(X) = M(Y).

Recall that if A, B and C are sets and BA = {f : A - B} we have the
exponential taw:

(B.‘I)C = BAxC

as sets,



One defines ¢ : (B4)C — BAXC by

#(f)a,c) = f(c)a) .
and & : BAXC o (BAYC
by  ¥g)c)a)=g(ac)

then ¢ and ¥ are inverses of each other.

We denote by Map(X,Y) the set of maps f : X — Y with the compact open
topology: A subbasis consists of the subseta {C,U} of Map(X,Y’), where C is
compact in X and U open in Y and {C, U} = {(f: X 2 Y|F(C) C U}, The
exponential law now says:

I Y is locally compact Hausdorff, X Hauedorff, then
Map(X x Y, Z) s: Map(X,Map(Y, Z))
(homeomorphism).

We now define the most important topological invariant; the set of path
components Tlg X in a space X. Let I denote the closed interval {0,1). Then
a path in X is a map a : I —+ X, with a{0) = initial point, o(1) = end point.
We define an equivalence relation in X, z ~ y iff there exists » path & with initial
point z and end point y. The equivalence classes are called path coniponents in
X. If z € X,[z] will denote its path-componeat, and Iy(X) will denote the set
of path components in X,

If X and Y are spaces, we can also look st Ho(Map(X,Y)). i X is locally
compact and Hausdorff, Ily(Map(X,Y)} is called the set of homotopy clasees
of maps from X to Y, also denoted by [X,Y]. In this case, f and g are in
the same path component means that there exists @ : [ — Map(X,Y) witk
a(0) = f, a(1) = g. By the exponential law, a corresponds to F': I x X —
Y, where F(0,2) = f(z), F(1,z)} = g(z). This is known as a homotopy from f
to g. If 2o € X, a loop on X based st zy is a path in X starting and ending
at 7g. We denote by (X, z,) or 1X the gpace of loops on X based at zy, or
simply loopspace of X. We now give [Tg(£2.X) a structure of a group, as follows.
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First we define a composition in {1X. If a, are loops

a(2t) ogt<!

“‘ﬂ“)={ﬂ(2t—1) l<i<l

defines a loop, called the product of a and 8.

Exercise. Show that [a] - [8] = [af] is & composition in o(2X). Now ag
the constant loop at zo acts like the identity in this composition. Also defining
a~'(t) = a(l — t), the “inverse loop", we have aa~! is homotopic to ao. Here

is the diagram, o o

rs
,/'/
dD
define
a(0) 0<s<i
2 - 1<s<l
H(s,t) = a(2t - 2) A
a(2-2t—a) J<s<l-;
«(0) 1-{<s21

~ [T g T LT~ Y



The group Ip(Q X, o)) is also known as the fundamental group of X based at
xp and denoted also by H;(X,ze). Again IIj{X,z0}is a topological invariant,

which is now a group.

More generally, one can take 2°(X,z0) = Q(Q*—1(X, zo), To} where xy denote
the constant loop and To(f1%(X,70)) = Ma{X,xs) is called the n** homotopy
group of X. It turns out that II,(X, o) is abelian for n > 2.

The set Tlg(X) has the property that if £ : X — ¥ then f induces £, : MeX —
M,Y. If f is homotopic to g then f, = g, : [l X — Y.

What we are saying is that [I;X is & homotopy invariant. Wesay X and YV
are homotopy equivalent if there exists maps X LyYandY A Xsothatgof
homotopic to 1x and f o g homotopic to 1y. Then if X and ¥ are hometopy
equivalent, IloX and IyY are isomorphic, for o X 1, Y MY 5 X
are inverses of each other. It is easy to see that if X and ¥ are homotopy
equivalent, then so are "X and (I”Y, if we are careful about base points. The
group I1j(X,zq) is not easy to compute. However, if X is contractible, i.e. if
there exists a homotopy F : X x I — X with F(z,0} = r, F(z,1} = 1o all
xz, then I1,(X,zy) = 1. (Prove that in this case X is homotopy equivalent to the
space consisting of & single point.) In particular, II;(R", 7o) = II;(I%, 29) = 1,

where R" is euclidean n-space and I™ is the n-cube.

We now try to establish some means of computing I, X.

§2. Covering spaces and the fundamental group.

A map p: E — X is called a covering space if every point x € X has an open
neighborhood U so that p~!(U) = || W., disjoint union of onen sets, and

p:Wa2U

Then W, are called the sheets, U is said to be evenly covered. It follows that
p~(z) is a discrete space, that p is a local homeomorphiam, p is onto and X has
the quotient topology.

Covering spaces have the unigue lifting property (for connected spaces). Namely
suppose Y is connected, ep € p~'(zp) and f: Y — X with f(y) = zy. Then
if there exists a lifting g : Y — E of f, ie., pg = f, and g({yo) = €0, then g is

unique. In diagrams:
(E,leq)

A
(Y,0) -\ (X,z0)

We show uniqueness as follows. Suppose g’ is another such lifting (¢'(ye) = o).
Then decompose ¥ =Y [[ V) by

Yo = {y € Ylg(y) = ¢'(v)}
Y = {y € Yjgl{y) # ¢'(¥)}

vo € Y5. Now we show both Yy and Y; are open. M y € Vi, g{y) = ¢'(¥).
Let £ = f(y). Then z has a neighborhood U so that p : Wy = U, where
9(y) = ¢'(y) € Wa. Then g~'(Wo)Ng'" (W,) is open in ¥ and if y' €
g W) Ng~1(W,), pe'y' = pgy’, but pis 1 — 1 in W,, thus gy = gy’. Hence
Yy is open. Now suppose y € Y1, then g(y) # ¢'(y), yet = = pg(y) = pg'(y).
So again by taking U evenly covered, g(y) € W,, ¢'(y) € Wy and o # B. Take
9~ (Wo) N g!=!(Ws) it is non-empty open in ¥ and inside Y.

We show that for a covering space, we have the unique path lifting property:
5 (Er e(l)
o' l

(1,0f —— (X,20)



i.e. any path o in X starting in 2o lifts to a unique path o' starting at ep. The

uniqueness follows from the above. Now to show existence.

K U ia evenly covered and o : [to,t;] — U is a path o(to) = o and eq covers zo.
Then ¢p lies in a unique sheet W, with po : WazU. Define o' : [to,t:] = E|U
by ¢' = p;! 0 0. Now there is a covering of X by evenly covered sets {Us}.
Then {a-*(Ua)} covers I which is compact, so we can find a finite partition of
I,0<t <tz <+ <ty =1, s0 that [4;, ;4] maps into an evenly covered set
U;. Beginning at [tg,t,], we have a unique path o' : [tg,t1] — E lifting o and
starting at o'(to) = eo. Then o'(t;) is unique, so we can lift o'|[t:,t2] and 80

on, giving a path ¢! in E lifting ¢.

Another important property is the covering homotopy properly. Suppose
given the diagram

., (B
9 G- |

(Y % 0,0 % 0) —2ms (¥ x Lo x I) —— (X, 20)

Here ig is the imbedding at the bottom, and what is asserted is that G exjsts.

To prove its existence, take any y € Y, then one can find & neighborhood N of
yand @ : N x I — E lifting F and extending g, as follows. By compactness of
I and the fact that the evenly covered sets cover X, we can find a partition 0 <
) <+ <ty = 1s50that N;x|[ti, {41} maps into an evenly covered neighborhood
of F{y,t;). Then by taking N = NN;, we get a lifting G : N x I —+ E. Now the
liftings G : N x I — E are uniqu‘e as extensions of g. Then at an intersection,
(N{y) x DN (N') x I) = (N(y) " N(y")) x I; end if y; € N(y) N N(y'), then
G, 0) = Gipry(11,0) 30 Gly) = G(y') at i, x I and the lifting exists.

Note that because g(y) lifts F(y,0), then the lifting G of y x [ is unique and

hence G is unique relative to being an extension of ¢ and lifting of F.

We now study the circle 5'. Think of S! as the complex numbers of norm 1.

We have a homomorphism

¢:R— S
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by ¢(z) = e?** which is open and onto Ker¢ = Z and
0+ZRAL8 S0
is a covering space, where we can take only 2 evenly covered sets, namely
#71(#(1, 1)) and ¢7'(4(0,1)). We want now to see that =y (5',1) = Z. Let
(1,0)
|+
(1,(0.1)) —— (8',1)
Then the path ¢ can be uniquely lifted to o' and ¢'(1) € Z. Moreover if
¢ ~ 7 is a homotopy, with end points fixed, then (1) = o'(1). We define
# : My(5') = Z by 8o] = o'(1). Then @ is a homomorphism because a,7 are
two loops representing [o] and [5], 8] o n] is obtained as follows. If 0,7 lift ¢
and 5 and ¢(1) = m,5(1) = n then putting 9"(s) = n'(s) + m, gives $(n") =5
and o'y" has initial point 0, end point m +n and ¢(o'y") = o on.

0 isonto. Let o' : [0,1] — R, o'(s) = nas, then ¢'(0) = 0, o'(1) = n, let
o = $oo’, then 8af=n.

8ia1—1. Let [¢],9]¢] = 0. Hence o' the lift is » loop at 0. Now R is
contractible, so ¢’ is homotopic to the trivial loop, hence ¢{c’') = ¢ is also
homotopic to the trivial loop.

We have thus

Il.(S';l) =2.

In fact, we have seen basically, suppose that G is a connected topological group,
D & discrete subgroup, then

1-D-2G-G/D=1
and G % /D is a covering space and 11;(G,1) = 1, then II;(G/D) = D.

COROLLARY. Brouwer fixed point theorem. Any map f : D? — D? has a fixed
point, namely z € D? so that f(z) = z.



PROOF: Suppose z did not exist. Let g(z) = point in 5! obtained by extending

h
qONE ™
N

e

the vector from f(z) to z so as to intersect S? at g(z). Note that if z € S,

¢(2) = z. Then g is continuous and we would have

gi(z) = z, hence (gi)e = id in I, §! % I, D? &5 N, S!, but I, D? = 1.

This contradiction gives Brouwer theorem.

§3. Singular Theory Definitions.

We will now construct an ei:nmple of a functor from topological spaces to
abelinn groups, the singular homology groups, and prove they satisfy some prop-
erties (axioms) that makes them accessible for computation in particular cases.
We considered for the homotopy groups, mappings from spheres to spaces, under
homotopy relations. For singular homology, we take ns domain the standard n-
simplex A™.

Let A® C R™! be defined as the set

A" = {(‘0,--.,tn)lﬁsti S 1’Ztl=1}

The n-simplex has (n — 1) faces,

iA1= A™  i=0,...,n
fi(toy- .- tne1) = (B0, ooy lio1, Oty ooy 8y}
Agiggu[gn-simplexinXisama : A" — X. Thefacesof 0,80 : A" 1 o X
are defined by 8,0 = o on;. It is easy to verify that
8,8, =810 fori < j.

Let R be o commutative ring. We let A,{X) be the free R-module generated by
the singular n-simplexes of X. It is called the R-module of n-chains in X. Then
we define n
B =Y (~1)dio
=0
on generators and extend by R linearity to 8: An(X) — 1A4-1(X). The above
relations give 83 = 0. We define submodules

Bu(X) C Za(X) C Au(X)
Za(X)={z€An]|82=0}:n—cycles
Ba(X) = {z € Aa(X) | £ = 8y) : n — boundaries

then 89 = 0 gives in fact that B,(X) C Z.(X)
and Hp(X) = 2n{(X)/Ba(X) : n - homology

- P e



We have now defined for any X, H,(X) an R-module. If f: X — Y is a map, o
is & singular n-simplex in X, fgo : A" = Y given by fygo = oo f is an n-simplex
in Y. Moreover f§8;0 = 8;fgo. Then f induces a commutative diagram:

AnX) 2 ALy)

o L
1
Bpi(X) == Ani(Y)
Hence fy sends cycles to cycles, boundaries to boundaries and homology to
homology.
Jo i Ho(X) = Ho(Y)

Exercise. Verify that f =id: X — X induces f, = id and (fog}. = fu 0 g..
Thus H,(X) is 8 topological invadapt of X.

If we look at the notion of & chain complex, we see that it consists of a sequence

A = {Ar}2, of R-modules, with R-homomorphism 8 : Ax — Ap_) satisfying
88 =0

Then as above, we may define Z,(A) = ker(8 : A, — Ap_y), Ba(A) = Im(d :
Anp1 — Ap) and Ha(4d) = Z,{A)/Ba(A). The R-modules B,(A), Z,(A) and
H,(A) are called the n-boundaries, n-cycles and n-homology of the chain complex
A.

If A,B are chain complexes, a chainmap f : A — B is a family of maps
f:An - By, sothat 3f = fdie.

!

Ay, —— B,

al la

Ay — Bay
commutes. Then f induces maps Z,(A) — Z,(B), B,(A) — B,(B) and
fo: Ha(A) = Ho(B), induced map in homology.

Let0AbBLc 0 be an exact sequence of chain complexes, ie., f,g

are chain maps and for every r, 0 — A, = B, - C,, — 0 is an exact sequence.
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Then f,g induce f, : Hy(A) — H,(B), g, : Ha(B) = Hna(C). We now describe

84 : Hy(C) = Ha-1(B), the connecting homomorphism as follows:
I ]
0 An By, —— C, — 0
l° o o
0 —~+ A,._l ! + Bn—l --—'-—0 Cn—l 0

Given [z] € H.(C), + € €, a cycle representing [z], there exists y €
B, with g(y) = z, then g(8y) = dg(y) = 82 =0, 50 By = f(2), z € Ap—y. Now
8z =0, for f8z = 3fz = &By) = 0, and hence we want to define 8.[z} = [z]. In
order to show it is well defined, we need to know (a) if z = 8z, then d[z] =0,
(b) 8,[z] is independent of y and {c) &, is a homomorphism. The next result is
fundamental.

THEOREM. If0 — A % B % C — 0 is an exact sequence of chain complexes, it
induces a long exact sequence in homelogy,

— Ho(A) 5 Ho(B) 5 HA(C) B Hoy(A) > -

By a pair of spaces (X, A}, we mean a space X and & subspace 4 of X. A map
f:(X,A) - (Y,B)isamap f: X — Y which sends A into B. The inclusion
A — X induces for every n a monomorphism, An{A) ‘s An(X) and iy is a chain
map. Welet A,(X, A) & An(X)/An(A), and we call it the n-chainsin X mod A.
The map A,(X) L] An(X,A) induces a chain map @ : An(X, A) = Ane (X, A}

and we have an exact sequence of chain complexes
0= Al(A) 8 AL(X) = AX,4)—~ 0
which from the above induces a long exact sequence:
— Hp(A) = Ha(X) = Ho(X,A) — Hyey — -
called the exact sequence of the pair (X, A)

If £ : (X, 4) = (Y, B), f induces fo : Ha(X) = Ho(Y), fo : Ha(A) ~ Hu(B)
and T.  Hof{ X, A) = H,(Y, B).



Exercise. Show that we have commutative diagram:
Ha(X, A) —— Hys(A)

|7 |~
Ha(Y,B) —— Hama(B)

Thus we have

THEOREM. For every pair (X, A) we have a “natural™exact sequence:
oo Ha(A) 5 HA(X) 5 HA (X, A) 2 Haly(A) = -
so that if f: (X, A) — (Y, B) is & map of pairs, we have commutative squares
C s Ha(A) — Ha(X) —+ Ho(X,A) —+ Hy 1(4) — -
I |~ I |~

s Ho(B) — Ho(Y) — Hu(Y,B) — Har(B) — -+
Another important concept in the notion of chain homotopy:

Two chain maps f,¢: A — B are chain homotopic if there exists a map

D: A, - Bpyy
s0 that D3+D3d=f~-g

PROPOSITION. Chain homotopic maps induce the same map in homology.

ProoF: If [z] € Hu{A), z cycle representing (z], then f(z)}-g(z) = D3z +8D =
8D, i.e., they differ by a boundary, thus [f(z)] = [¢(<)].

Two chain complexes A and B are called {chain) homotopically equivalent if
there exist chainmaps f: A = B, g: B — A so that fog and g o f are chain
homotopic to the identity maps of B and A respectively. Wesay f: A — B or
¢: B = A i3 a chain equivalence.

PROPOSITION. If f: A — B is & chain equivalence, then f, : H,(A) = H.(B).

§4. Singular homology — Homotopy invariance.

In this section we will see that H,(X) is a homotopy invariant. To do this it
suffices to see that if f and ¢ are homotopic maps from X to ¥, then the induced

map f, and g, in homology are the same.

Suppose F is a homotopy of f and g, then we have

where i;(z} = (z,§) j = 0,1 are the inclusions at the hottom and top. Hence
f=Foip, 9= Foi. Clearly, ip and iy are homotopic (id: X xI = X x [ is
the homotopy!) Thus if we can prove iy, =iy, : Ho{X) — Hu.(X »x I), then

fo = F-‘.Oa = F-il- = G-

It is easy to see from the definition of H,{X) that if X is a one-point space,
then Ho(X) =0 for n > 0, Hy(X) = R. A space X is called contractible if it is
of the same homotopy type as a one-point space. We begin by showing

THEOREM. If X is contractible, then Ho{X) = 0,n >0, Hy(X) =R

The space X is contractible if there exists
F:XxJ-=X
with F(z,0) = z,F(z,1) = ze.

K X is a space, the cone of X, CX is the quotient space of X x I, where we
identify X x 0 to a point. '

The cone of X is contractible, for

F:CXxI-CX
F((zl 5);‘) = (33"‘)



gives the required contraction.

Also, it is clear that there is a homeomorphism AY =%+ C(BdyAf). Choose
one which fixes Bdy{At).

Given o : A" — X, we construct by induction a simplex D{o) : A%+ —
X as follows . D{¢) : (BdyA'™! — X is described by

8iD(o) = D(B,~10) for i21
&D(o)=0

then we extend D{g) to BdyAtt! x I = X by Fo (D{s) x I) which factors
through C(BdyAtt!'). Use p,41 to define D{a) : A**! — X, Check that (a)
this is well-defined and (b) that we can start in ¢ = 1, the induction.

We have thus extending linearly

D M A'(X) -t A'+l(x)

g+l .
with dD(e) = iEﬂ(—l)'a.»D(t:r)
=g— ED('_EJ“(—I)"B.-U)
= o ~ D{00)
hence oD+ Dd=id

Thus if z is a cycle, 8Dz + D@z = z, but §z = 0, hence

&Dz) = z.

Now we will construct inductively a “natural” chain homotopy
D:AAXY~AX xT)

which satisfies 8D + DO = i)y — oy and if f: X = Y, then fuD = Dfy. We
do it on the singular simplices of X, Assume defined for ¢ < n. Consider the
canonical n-simplex £, : A™ — A", the identity map. Then D%, is defined and
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is an element of An(A™). Moreover the chain hy = —D8¢y, + (f1gn — fopéa) is
a cycle, for

Bhy = —BDIQ+0{ly g ba—togba) = + DOOEn~ (i1 g —iog )I(En)+Hi1 g —top Héa) = 0

Now A™ is contractible, so h, must be a boundary of some chain w, dw = k,.
Define Dh, = w. Then 8Dw = k,,, ie.

(8D + DA¥n = (14 — S0 )n

For any n-simplex & : A® — X, define Do = o4 D(£,) Then D will be natural
and a chein homotopy between igy and i14. Finally to start the induction if
og : A? = X is a o-simplex with og(1) = z¢ then D{og) : A! — X x I is given
by D(ao)(t} = (ze,t).

We thus have:

THEOREM. If f and g are homotopic maps from X to Y, then f, = g, : Ha X —
H,Y for all n.

Corollary, H.(X) is a homotopy invariant of X.

If f,9: (X,A) — (Y, B) are two maps, we say they are homotopic if there
exists ' : X x I = Y a homotopy from f to g that sends A x I to B. We define
the notion of homotopically equivalent pairs analogously.

THEOREM. H,(X,A) is a homotopy invariant of the pair (X, A).



§5. Singular Homology: Mayer-Vietoris Sequences.
Let A = {A,} be a family of subspaces of X so that
X =uUlnt 4,.

We say that U is a cover of X. We let A,(?A) denote the submodule of A,(X})
generated by those simplices ¢ : A" — X so that o(A™) C A, for some a. Then
{A.(2)} is a subchain complex of {A,(X)}. We will prove:

THEOREM. KA = {A,} is a cover of X, the inclusion A.(%) SR AJX)isa
chain equivalence. In particular ia : Ho (%) 2 H,(X) for all n.

This theorem has as consequence the

THEOREM (MAYER-VIETORIS). If {A, B} is a cover of X, we have an exact

scquence:
oo Ho(AN B) 2% H(A) @ Ha(B) 25 Ho(X) 24 Hoei(AN D). .

where j, = (f14, —j24} 8nd k, &re induced by the inclusions ANB C A, ANB C B,
A C X, B C X respectively,

Piroor: Consider the sequence:
0 = Al(ANB) 24 A (A)® An(B) 22 AL({4,B}) — 0

where jy(c} = (fige, ~jage), kgla,f) = kyge + k248. Then it is an exact

sequence and defines an exact sequence of chain complexes;
02 A,(ANB) = AJA)B AAB) - A, ({A, B =0

which induces a Jong exact sequence, in which we may replace Ho({A, B}) by

Ha(X) using the isomorphism i,, giving the above exact sequence.

The Mayer-Vietoris sequence gives the excision property of singular homology.

THEOREM {EXCISION). If U is & subspace of X so that U C Int A then the
inclusion (X — U, A—U) — (X, A) induces isomorphisms Ho(X —U,A-U) =5
Hu(X,A) for ali n,

PrOOF: We look at the pair {A,X -~ U}. It is a cover of X. Then
An([A,X ~ U} = An(A) + Ap(X ~ U) and

An(A) + An(X - U)/An(A) = An(X — U)/An(A) N An(X —U)
~ An(X - U)/On(A = U)

Thus we have A(X — U, A-U) = A ({4,X - U)}/A.(A). Now from

0 — AJ4) — a.(X) — AJX, A) — 0

I I [

0 — AJA) — A{(AXU)) — AJ{AX -U})/A(A)— 0

we obtain exact sequences

— Hu(A) — Ha(X) — Ha(X, A) — Haa(A) — Hao(X)

P ] T

— Ha(A) — Ha({A,X ~U}} ~— Ha(A{A, X - U})/A(A) — Huor(A) — Haoa(X)

and from the “five lemma,” # is an isomorphism. Thus H.(X — U, 4 -~ U) ~
H(A({A X - )]}/ AA)) = H(X, A) gives the result.

We make some applications.

Given spaces X and Y, f : X — Y a map, then we can form C; the cone of

f, obtained by glueing CX with ¥ via f,ie. CX = X x I/{(z,0) ~ +}. Then

2
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Cr = CXUY/{(2,1) ~ f()) .
¢
%

b4

Recall that C'X is contractible, so H(CX)=0if¢> 0. Welet Oy =C, X U
Yy, where C4(X) = X x[0,3/4]/(x,0) ~ » and Y} = YU(X x[1/2,1) /{(=,1) ~
f(2)} then {C, X,Y,} is a cover of Cy, C4+ X NY, = X x [1/2, 4] is of the same
homotopy type as X. C; X is contractible and Y, is of the same homotopy type
as Y (prove it!)

We have the Mayer-Vietoris sequence:

— Ha(C4X NYy) — Ha(CoX)@ Ha(Yy) — HalCp) — -

II Il |

C— Hyx) L Ho(Y) — H(Cp) — -

If we take ¥ = CX and X -L+ CX the inclusion, C t i8 called the suspension of
X, denoted by EX and the above sequence reduces to

— Ho(X) 20 HACX) — HaEX) 24 Hor(X) — Hams(CX)
| ,
i zz
and we obtain: there exists an isomorphism 8, : H,(ZX) = H,.i(X) forn > 1
and for n = 1, Hi(EX) =~ Hy(X), where Ho{X) is the reduced homology
of X, obtained by considering An(X) = An(X) for n > 0 and Ay(X) =
ker{Ao(X) = R}, ag(o) =1 for O-simplices o.

3

The spheres S* are related to each other by suspension, T5™ =z §"t!, Now
5° consiet of two points. Thus Hy(5%) = R+ R, H,(5°) = 0 ¢ > 0. Hence

Fo(S5%) = R, and H(S!) = { ; :’:

THEOREM. The sphere S* has homology given by

R ¢=0,n

H,(.S"‘)={0 ¢#0,n.

CoOROLLARY {BROUWER). Every map f: D"*! — D"*¥! hag a fixed point.

Let us see how to prove that C,(?) is chain equivalent to C,(X). We use
the notion of subdivision. We say that a simplex ¢ : AY — A" is linear if
o(Zt;Vi) = Stio(V;). Here we are using the fact that if v; = (0,...,1,...,0),
the points of Af are uniquely expressible na Lt;v;, 0 < 1; < 1, E, = 1. o
is linear it only depends on {o(v;)}. We will denote it by (=q,...,7,) where
o(v;) = z;. Clearly if ¢ = (2q,...,2,), 8i¢ = (Z0,..-,%i,..., %) and thus the
linear simplexes generate a subchain complex of A, (A"} {L,(A")} 7, Let by be
the barycenter of A", i.e., by = Lot} 5. We use by to describe a contraction
of L,(A"). Define

Bn i Ly(A™) — Lena(A7)
by  Aa{ze,.--,%4) = (bn,To.. ., 2y)
then 88,(z0,...,2¢) = (Zoy.- -1 Zg) + B(~1)H (b, 2os. -y Fir .oy Z4)
while  Ba(%0,--., %)) = T(=1)"(bn, T0s+ ooy Fiyr ooy Fy)
hence 98, + B0 =1d.

for L.(A™).
We use f, to construct a natural chain map

5d: AJX) — AdX)

4
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and a natural chain homotopy
D: AfX) = Apa(X)
with 8D + D8 = §d — id by induction, we use again £, € L,{A") and set

Sdés = fn(SdBE)

Then one verifiea 85d¢, = SdO¢,. Also one sets
Dfn = ﬂn(Dafu - Sdfn + fn)

then one verifies (8D + D3)(£n) = Sdfn — €n s0 if 0 : A" — X is an n-simplex,
defining

Sdo = ox(Sdfs)
Do = oy(DEs)

one obtains Sd and D satisfying the above conditions. The importance of 5d on
a metric space is that it reduces the diameter of the simplices. Mote precisely if
X is a metric space ¢ ie » singular n-chain in X, let mesh (¢) = max(diam o;|c =

La,0;,a; # 0}. If we take X = A", we obtain for ¢ & g-chain in A",
a
& —
mesh (Sdc) < o mesh (c).

We are now ready to prove the main theorem of this section. Let A = {A,} be
a cover of X and o : A* — X be a g-simplex, ¢ 7% = {0~74,} is a cover of
Af, Let A be the Lebesgue number of this cover. Then there exists an m so that
5d™¢, € A.(c~12) namely so that (;gq) m < A. Then Sd™s € AJ(%).

For any ¢ € A' —+ X let m(o) be the minimal m so that sd™o € A,(2).

Define
m{s)-1

fo = 2 Sd'c.

5

'z

Define
D: AfX) - Aga(X)
by
Do = Do .
Now
Do) =0iff lo € A(N).
Now
8Dg = 8D(#s) = -~D(0c) + Sdbo — o
m(e)—1 ] mie) ]
=-Ddo+ Y, Sdtlo- Y Sdic
=0 =0
= —Dobo + Sd™elg ~ o
m(o)-1
=-D} ¥ (-1Y5d'9;0 ) + $d™) —a,
Now

Doo = DO(T(-1)/d;0)

m(8; e}~1
=D( Y (-1):'54‘3,-0)

i=0

800 + Do = (Sd™Vs - S LR (-1)iSddj0) ~o.

imm(8; )

Notice that the chain inside ( ) is already in A,(%). Define

mie)=1
ro =5d"g -L Y (-1YS5d3;0.

imm(8; o)
Then
D=D8=1-id
and clearly if & € A.(%), (ri)(¢) = 0. Thus D is & homotopy between i - 7 and
id of Au(X) and 7i = id on A,(A). Hence ix : H,{A) 2 H,(X) for ali n.



§6. CW-complexes.

We say that X is obtained from Y by attaching an n-cell if there exists a map
f:8"! 2 Ysothat X =Cy = Ylfe". More generally X is said to be obtained
from Y by attaching n-cells if

(a) X = YU(Ue) where 2 are subsets of X. If ¢ = e NY, then

(b) X -V =]]es —é2

(c) For every a, there exists a map

fa (D", 5"7") - 1eg,€3)

so that f,(D") = e, fo : D® = 8™~! — €2 —¢é" i3 u homeomorphism and
(d} The topology of €2 is coinduced from fo and the inclusion £5 i3 €l ie.,
f: et — Z continuous iff ff;! and fi, continuous
(e} The topology of X is coherent with the subspaces {Y,e3}, i.e. W is closed
in X iff WnY and WnNe? closed for all a.
Notice that fo. : Hg{D™, 5™ !) 2 Hy(en,¢2) and excision, gives Hy(X,Y) =~
@H,(eh,én) hence
Hy(X, V) = { ¢R 9=n
0 otherwise
A CW-complex X is a space that has a sequence of closed subspaces

XocXyC - XqC-oe

80 that

{a) Xq¢ is a discrete set of points
(b) X, is obtained from X,_; by attaching n-cells
(c) X =uX,
(d) The topology of X is coherent with the {X,}.
W 3 ag R g=n
e have from the above that Hy(X,. 1y, Xs) = 0 - Hence

otherwise .
Hy(Xn-1) = Hy(Xa) is an isomorphism for ¢ # n, n + 1 and

0~ Hug1(Xas1) = Hag1(Xas1, Xn} = Ho(X,) = Ho( X)) = 0
[t thus follows that

Ha(Xn) "2 Ha(Xn41) D Ha(Xns1 3 o S Ho(Xnp) 3 -

12

Now given an n-simplex ¢ : A® —+ X, a(A™) is compact and the open cells
{e? — éT}a,n cover X. If o(A™) were not contained in X for some m, we
would contradict the compactness of 6{A"). Hence any chain ¢ € A,(X) and
any homology class z € Hu(X) Lies in the image of a class in Hy(Xm). Alsoif
¥ € Ha(Xm) goes to zero in Ha(X) it goes to zero in Hy(X ), for some m'.
But then we obtain Hn(Xn41) 2 Ha(X).

Define

Cn(X) = Hn(Xn,Xn-1)  and
d: Ca(X) = Cas(X)
by  Ha(Xe:Xao1) 3 Haoy(Xaot) 5 Haoy(Xacy, Xaoz)
then &?=0

and we can define Ho(X) to be the n** homology group of C, with respect to d.
. .
THEOREM. We have isomorphisms Ha(X) & Ha{X)

PROOF: To define 8, take £ € Hn(X), there exists z' € Ho(X,) with j,z' = 2.
Take j*z' € Ho(Xn, Xn-1) = Co(X). Then d(j*z') = juOujur' = 0, 50 we
can take [j.z'] € H,(X). If 2" is ancther class, j.2" = z, then there exists
¥ € Hay1(Xns1,Xa) Bu(y) = " — 2', then juz" — juz' = j.du(y) = dy, s0
[Fa2'] = [j+2"] and 8 is well defined. It is additive. It is 1 — 1 for if (X) = 0
then jor' = dw = 3.8,w, w € Hog1(Xn41,Xn) but j, is a momomorphism,
hence ' = §,w and z = j,0,w = 0. It is onto, for given [z] € Ha(X), z 2
representative cycle, dz = j,8z = 0 implies 8,z = 0, 80 there exists u € Ho( Xy},
jott = 2z and we take j,u € Ho{X). Then 6(3,u) = [z]. We want now to describe
d:Co(X) = Cuy(X)

HII(XII|XII-1) —+ Hn——l(xn-—l) —+ Hu—l(xn—lvxn-z)

on & cell e? &€ Ha(Xn,Xn-1). We have
fa

sr-l 1 —_— XpUe"

1 l l
sn=t e Xy /Xnez — Xn1/Xn_gUe®

2



and
Hﬂ(xn.xn--l hund Hy1(Xawt) — Hn-l(Xn—th—i)
= i |
Hao(Xp-1Ue™, Xon1) — He1(Xa1) — Haa(Xnog, Xeo2)

= l —E

&
Hy(Xn-1/Xn-2Ue" Xna1/Xn=2) — Hocit(Xp-1/Xn-2)

IC

Hn-l(sn_l)

All things are commutative. Hence we have

de = Y age;™!, where aj = deg ((/3),)
where f is the composite:

Sn—l !; Xn—l/xn—! o Vsn--l — Sn—l
]

and deg(f3)a is the unique integer k so that

(fale(}=kin Hary (5"} = Huoo(S™ ).

We say X is a finite CW-complex if it has a finite number of cells. If
XIJ =-Xln X3 =X3,"' )-Xu =Xn+l."' then

Ho(X) = Ho(Xn, Xuo1)

Forexample if X = S*Uertd k> 1,

Z ifk=nn+k
0 otherwise )

A0 ={

13

§T Examples.

We begin by showing that we can obtain maps of arbitrary degree k, fi : §* —
S"™. We begin with a map

a:8' 4 8'ys!
{U%Hm) 0<t<y
(![tl =
(ol -1 ezt
where S' = I/{0,1} and I — S' t — [t]. Let p; be the projections onto the

j** factor, j = 1,2. Then p,a and pa are homotopic to the identity. Also if
fo:8'v 8! — 5V is given by

dLlop =14
f { QoL =1

and i; are the inclusion S — §7v §'  j = 1,2, then the fooij are homotopic
to the identity. It follows that if « € H,(S") is a generator, uy = ({))o4, 3 =

(iz).u, then a.(u) = u; + u; and fo,u; = fo,uz = u. Hence
s slvst Bgt
satisfies fo,a,(u) = 2u.

Suppose fx and f; are maps of degree k, £ respectively. Then
st svifigrys g

has the property that: fo.(fi V fi)easu = (k + £)u. This way, from the above,
we get maps of degree k > (). We now construct a map of degree —1. We use the
usual representation of 5. Consider the map 8(zq,...,%0) = {(—20,%1,...,Z0a)
where 5™ = {{2q,...,2za} € R"t} 2l 4+ +23 = 1). For §° = {-1,1},8(-1} =
1,8(1) = —1. Consider the induced map in Hy(5%) Lt Hy(5°). We have
Ao(S°) = Z with generator vy = {1}~{0}. Then 84({1}-{0}) = {0} -{1} = -v
ie, Og(v) = —v. Hence 8,{1) = —1. Now, use the fact that the inclusion
gn Sn+l

{zo,--+ yza) = (T04" -+ ,Tn41)
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commutes with 8, hence using the suspension homorphism
Hi(S" —— Hy(S")
I I ,
— .
He1(S"71) —— Hea(S7)

we obtain:

8, : Ha(5") = Ho(S™)

is of degree —1. In particular for n = 1, we obtain a map of degree f_; : §' — §'.
Its suspension is a map f_; : §® — §" and this way by suspending we get maps
of every degree. The antipodal map a: §® — 5™ is defined by a(z9,--- ,z,) =
{—zo0,—21, - ,—%n). Prove by induction that

CoRoLLARY. The antipodal map a: §* — S has degree (—1)"*!.

The homology of projective spaces. Let F be the field of reals, complexes
or quaternjions. We let F* be the non- zero elements. In F"+! — 0, F* acts

diagonally o ¢ (ag,--- ,a,) = (aag, - ,&a,), and define:
Fp* = F*H /P,

We denote [ag,-:- ,a,] the equivalence class. We have natural embeddings
FPe c Fprtl,

[aﬂr"' aal\] - [aD)"' ;an;ol-

We now show that FP"+! — FP" i5 homeomorphic to F"t! and use this to

describe a cetlular decomposition
*CFP'CFP*c...Cc FP"
where we attach one cell at a time
FP"t! _ FP" = {|ag,- 28ny8n ] With angr # 0},

Dividing by ap4, we get (ﬁ:—u 'u_::—;'l) ia a unique representative of
{26, ** y8n,@n41]. The map

Fn+l — FP'H—I —_ Fpn
is (o, -+ ba) — [bo, -~ ,bs, 1],

2

Define (Dt Gdln+1)) _, (pprtt ppn)
b= (bo, - ,bn) — [0, , Bay 1 — 5]
Nowif F=R,d=1,F=C,d=2F=H,d=4, hence
RP"=85"Uelu.- U
CP"=5uetu...ue™
HPh=8Stuetu...uet?

Immediately, we see that

Z 0<¢g<2n, even
Ho(CP7) = { 0 oth:rwise =
Z 0<g<4n g¢q=14k
H(QP") = { 0 ot—th:ise T
We construct a CW-decomposition of §" which is compatible with the antipodai
map, as follows. Let §* = {(zg,--- ,z4)|Z22 = 1} and C§ = {(zq, - ,Za}|72 =
0}, C¥ = {(z9, - ,zs)|2a < 0} then if 7 : S" — S™ is the antipodal map
7(%0,*+ 1Zn) = (—To,+-+ ,—Zn), we have TCY = C4. Thus we get a cell
decompasition

sceciucicCiuCic..-cciuct=5"

We compute the boundary in the chain complex as follows. We have Ci(5") is

free on two cells, e and re;. Moreover, & commutes with 7. We claim:
der = ery +{—1)*res_; k=1,...,n
and en + (—1)"1ren) = 0.

Verify it by induction. Now IT : §* — RP™ and & = Ile* represents a ceil
decomposition of RP"
fug'u.--ue® = RP*

consequently if 4 represcnts & generator of Cy(RP") corresponding to g%, we
have 0 = &x-1 + (—1)*@—_, which gives

Oex = 2€u-y
and -562*-{.] =0.

3



Thus
Z g=2n+1
B RPN = Z, g= odd& <2n+1
0 otherwise
and

— Z; 0<g<?2n andgodd
2ny _ .

Ho(RPT) = { 0  otherwise

Euler characteristic in a finite CW-complex.

Let X be a finite CW-complex and let ny(X) be the number of k-cells in X.
Suppose dim X = m. Form

x(X) = E(=1)*n(X)

on the other hand H(X) is finitely generated abelinn group. Let b (X} =
number of free cyclic groups in the decomposition of Hy(X}. Let

X'(X) = Z{-1)*b(X)

THEOREM. x(X) = x'(X)

Proor: We have using cellular chains exact sequences of finite abelian groups,
02 Zg(X) = Cp (XY= Bii(X)— ¢

and
0 — Bi(X) = Z{X) = Ha(X) = 0.

The first one is free. Thus rk(Cp"(X)) = rk(Ze(X) + rk(By—1(X)) and from
(2), TR(Z(X)) = re(Be(X)) + rk(Hx(X)). Hence nu(X) = rk(Za(X)} +
rk(Br-1 (X)) b X) = rk(Zx( X)) — rk{ By (X)) and the result follows from

T(~1)*(ne(X) = (X)) = B(= 1) (rk{Be 1 (X) + rk(Bg(X))
=0

ConoLLARY. x(.X) does not depend on the CW -decornposition

x(X®)=1+(-1)"
X(CP")=n+1

0 ifnodd
"
x(RP ){ 1 ifneven

X(X™ x X) = (14 (-1)"x(X} = x($"Ix(X)



§8 Cohomology.

Given a chain complex A = {A,} of R-modules and G another R-module,
we let C™(A;G) = Homp(An,G). Then d : Angy — An induces C"(4;G) 5
C™*1(4;G), with 66 = 0. Again we let Z"(4;G) = Ker & : (C*(4;G) —
C™*1(4; G)) and BY(4;G) = Im §(C*~'(4;G) — C"(A;G). Also

H"(4;G) = Z"(4;G)/B*(4;G)

{C™A; @)} is called a cochain complex, § the coboundary, Z"(4;G) the n-
cocycles of A with coefficient in G, B*(A;G) the n-coboundaries of 4 with
coefficients in G, and H"{A4; ) the n®*-cohomology of A with coefficients in
G. If f: A —> A isa chain map, it induces f* : C*(4G) = C*(4;G)
a cochain map, i.e. 6f# = f#§ and hence an induced map in cohomology
f*: HMA;G) — H"(A;G). In particular, if X is a space, A,(X) its singular
chain complex with coefficients in R, A*(X; G} will be the associated singular
cochain complex of X with coefficients in G, and H™(X;G) will be the n'*
cohomology group of X with coefficients in G.

Again H"(X;G) is a homotopy invariant of X, in fact one may follow the
proofs for homology to obtain:

(1) Naturality: If f: X — Y, it induces
f* H(Y;G) - H*(X;G)
so that
a)if f: X — X is the identity, then f* = identity.
b)If X Lythzis n.composiI:ion, then (go f}* = f* o g".
(2) If (X, A) is & pair, we have a natural long exact sequence

o= HY(X, A) = HY(X) = HYA) L B (X, 4) -

(3) If f and g are homotopic maps from X to Y, then f* = g*

14

(4) i X is a one point space, then

moo-{7 Lo

(5) ¥(X,A)isapairand U C U C Int A, then
HY{X, A)2 H(X -U,A-1).

Again if X is a CW-complex, we can define when G = R, C"(X) =
H*(X",X"*1) and § : C*~1{X) — C*(X) as the composition

Hn—-l{xn—l‘x—i) — Hn—l(xn—l) f. Hn(xn‘xn-l)
and one proves that H™(X) is isomorphic to the cohomology of C*(X).

We have thus a family of groups, H™(X) which is not so different than that
of H,(X). However, we now show that in the cohomology we can introduce
& product, making it into an slgebra. Recall that an n-cochain u € A™(X) is
defined on n-singular simplices ¢ : A" — X. Given A™*™, we define the m-front
face of A™+™ by an : A™ — A™ g, (tg,... tm) = (t9,...,tm,0,...,0) and
by : &A™ = A™+® the n-back face by dn{ta,...,ta) = (0,-++ ,0,4p, -+ , ). Then
for any (n + m)-singular simplex ¢ : A®*™ — X, we have 8.,,0 : A™ — X,
;.0 : A" ~+ X defined by 8,,.0 = v 02, & 0 = 7 0 b,. Now given cochains
u € A"(X), v € A™(X), define u-v € A*T™(X) by

u v(g) = (—-1)""u(d,, o)v(c, o)

With these definitions, one may check

(w)
u-v)=bu-v+(-1)"u-bv

and thus u - v passes to cohomology, giving a product which we denote by
U. Thusif z € H(X), y € H*(X), zUy € H™"(X).

{b) z Uy is bilinear, i.e. (z; +y)Uy = z; Uy + 23 Uy and similarly for
zU (3 V)
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(c) z Uy is graded commutative, i.e. §9. Wang and Gysin sequences.
Uy = (_1)|’||l|y Uz . . We want Lo obtain relations in the homology of a fiber bundle Y when
(d) The U product is associative i.e. if x,p, z are classes (a) XY 5"

(zUy)Uz=zU(yUz2) or

() It is natural, if f: ¥ — X, then f*(zUy) = f*2U f'y.

More generally, if (X, A) is & pair, A™(X, A) are those cochains of X which
vanish in A, Given u € A™(X, A), v € A"(X), then u-v € A™*"(X, A} and
then defines H™(X, A} ® H"{X) —» H™"(X, A).

(b) S"SY X,

In cuse (a)} we obtain the Wang sequence. In case (b) the Gysin sequence. More
generally for (a), suppose
Kwelet X3 x X2 2% X,, i = 1,2. Define X—-Y LB

is a fiber bundle, where LB = C, BUC_B, C4 BNC_B = B and we assume that
Yi=Y|CsPis trivial, ie. Yy = CyB x X. Thenalso Yo=Y, NY_ = Bx X.

) X 42 = pyuy U pJuz

the cross-product, which is then a homomorphism If we look at the eohomology of the pair (Y, X}, we have:
H™(X1)® H™(X2) 5 H™*"(X) x X3) L HINY) — HUYX) 4 HYY,X) — HY(Y) —s HYX) — -
[+ [=
THEOREM. The cross-product map above is a monomorphism. H* B x X) HUY,Y,)

L =
HY(C_.B,B)) ~ HY(Y_, o)
where the top is exact and the diagram commutes. Where y is defined as follows:
let ¢4 : Yo — C1B x X be the homeomorphism, then ¢ _p37! : Bx X -+ Bx X
defines p by w_p3'(b,z) = (b,u(b,z)). Suppose now that EB = S"+1, then
B = §™. Then HY(C_S",5") x X) = H¥=**1(X} and we obtain:

- HI" (X} — HY(Y) = B9V (X) o B (X) = HY(Y) — HY(X) = -

In particular, we obtain if § < m + 1, H%(Y) ;0 H*(X) is an isomorphism.

Let us apply this to describe the cohomology ring of U{n).




Ad

THEOREM. H'(U(l‘l)) = A(z1,23,Z5,..+ y T2n—1)-

PROOF: We have a fiber bundle
Un—1) = U(n) — §*~*.

Assume the theorem true for U{r—1). Then we have H*(U(n)) ~ H%(U(n 1))
for ¢ < 2n — 2. But H*(U(n — 1)} is generated by r,,x3,25,...,320—3 88 an
algebra. Hence H*(U(n}) — H*(U(n — 1)) is onto and we obtain an exact

sequence:
0= B YU(n - 1)) = HY(U(n)) = HY(U(n ~1)) = 0.

Then additively it is true that H*(U(n)) >~ A(z),...,Z2n—1). Now let z3,_; =
P*ian—1. Because of the universal properties of the exterior algebra, we can define
a ring homomorphism, A(zy,Za,...,T2a-1} — H*(U(n)), and with a little bit

of care one shows it is an isomorphism.

Now I want to do the Gysin sequence.

We have already said that if u € H*(D",5""}) is a generator,

ux ; HY(X) ~ H9t"((D", 5" 1) x X).
We assume we are given a bundle pair (D", 5%"!) = (E,Eg} —» X. We say it
is orientable iff there exists a class u € H"(E, Eq) which restricts to a generator
of HY E,,(Eo),) for any z € X.
THEOREM (THoM). If (D™, 5""1) — (E, E;) — X is orientable, then
Uu: HY(E) - HY™(E, Eq)

is an isomorphism.
ProoF: We give the proof only when there is a finite cover of X, ¥},...,V;, so
that (E|V;, Ep|V;) is trivial. We use Mayer-Vietoris.

2

First, let a; = a|(E’, E}), then
HY(V,) 2 HY*"(E', E}).

We assume that we have proved it for unions and intersections of the V; with less
than & factors. We want to prove it for k factors, say on Vi U---UV,. Thenit is
true for U = ViU- - -UViy, V = U, and UNV = (VNV)U---U(Vio NV,) and
we have Mayer-Vietoris sequences for (U U V) and for ((E, Eo)}V U V), linked
together by homomorphism ayy, etc. four of which are isomorphisms, so by

the 5 lemma, the fifth one namely
apyyy t H{U U V) = H"(o(E, E)|V U V)
is also an isomorphism.

If X is 1-connected, every bundle (E, $™!) over X is orientable. In fact there
is a line bundle, the determinant bundle of E, det E which is trivial iff £ is

orientable.
Cysin sequence; If
STV X

is an orientable fiber bundle, we have

— HYX) 25 HOP(X) = HYNY) > HHHY(X)

Example. H*(CP")
Sl — 52n+l — CP"
HY(CP™) = Z{w)/(w™)
Analogously

5% 4 8" - RP"
H*(RP" Z;) = Zo[z]/(z"*")
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One of the most important results in the homology of fibre spaces i3 the
Leray-Hirsh Theorem. Let F — X — Y, is H*(X} —+ H*(F) be onto. Then

HY (X))~ H'(Y)® H*(F)
as H*(Y)-modules.

The above result ati’the Thom isomorphism is an important special case of

tl-;is Leray-Hirsch Theorem.







