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Introduction to Morse Theory.

Lectures given by Elmer Rees,
pepartment of Mathematics, University of Edinburgh
at Trieste, December 1988.

Morse theory relates the topology of a manifold M to the behaviour of a
function defined on M . As the name implies this was first done by
Marston Morse in the 1920's and his work appears in [Morse|. During the 1950's
there was & resurgence of intereat and several intereating pieces of work were
done, particularly by Samelson and Bott, Thom and Smale. Several expository
booka [Bott 1], [Milnor), [Eells] appeared at uboﬁt this time. The first
lecture will, more or less, follow the first part of Milnor's book. In the
early 1980's Witten found a new approach that relates the behaviour of a
function on M to its topology [Witten]. His idess have been very influential
and their full ramifications are probably still not realised. The second

lecture will discuss Witten's work.

1. Basic Definitions.

M will denote a compact, connhected, smooth n-dimensional manifold
without boundary.

f:M-+R will denote a ymooth function.

A point q ¢ M is acritical point of f if the differential of f
vanishes at q . Since M is compact, if f ia not constant, it will have at
least two critical points, beceuse f wmust attain its maximum and minimum

values,

The Hessian of f at g (relative to a local coordinate system

2
Xps oeen xn) is the nxn symmetric matrix [Eg_gi-] evaluated at q . It

is emsily checked that at a critical point the nonsingularity of the Hessian is

independent of the choice of coordinates.

A critical point of f at which the Hessian is non-singular is called
non-degenerate. It follows from the compactness of M that f cannot have
infinitely many non-degenerate critical peints. The index of the critical point
q s the dimension of a largest linear subspace of TJH on which the quadratic
form defined by the Hessian matrix is negative definite, that is, the index is
the number of negative eigenvalues of the Hessian matrix.

A function all of whose critical points are non-degenerate is called a
Morse function. Morse functions exist on every manifold M , indeed the set of
Morse functions form a dense open subaet of the space of all smooth functions on

M . This fact is a standard consequence of Sard's theorem.

Morse's Lemmn. let f : M+ R have a critical point of index k at q . Then

one can choose a local coordinate system Kys ey X OD SOme neighbourhood
U of q such that f{U is given by .
2 2 2 2
flq) - LTI L S

This means that by suitable choice of coordinates, all the higher terms
in Taylor's expansion of f can be eliminated. This lesma is proved in all the

references.

Examples.
1. Let T = szzz , wherw 22 consiats of all integral muitiples of 2n ,
be a 2-dimensional torus. Let f : Rz - R be f(x,y) = sinx + siny . Prove
that f defines a Morse function on T . (f has exactly 4 critical points,
one (the minimum) of index 0 , one (the maximum) of index 2 and two
{saddlepoints} of index 1.)
2. Let K = nz/r , where I' is the group generated by the two Euclidean
tranaformations

(x,¥) = (x+n, -¥)

and (x,¥) = (x,¥y+2u) .



Prove that K {s the Klein bottle and that f : Rz -+ R defined by

f{x,y) = sinxsiny defines a Morse function on K with exactly 4 critical .

points, with indices as in the previous example.

n—1

3. Let M be RP and A be an n xn symetric matrix. Prove that

the function f : s“'l -+ R defined by f(g) = gtAg defines a function on

n—1

RP Prove that x is a critical point for f if and only if x is an
eigenvector of A, If A has n distinct eigenvelues hl < Az € ... < An
with corresponding critical points k X e an-l prove that § is a

1 "7 =a

Morse function and that the index of x ia k -1 .

k

%2, The Topological Behaviour.

We will now assume that f is a Morse function en M such that the
values of f at its critical points are distinct. An arbitrarily small changa
in f will epsure that the extra condition is satisfied.

Let fﬁ = {x €« M|f(x)}) = «} be a level set of f and let

Ma = {x « M|f{x) § o} .

If a is not a critical valone (i.e. there are no critical points in
f') » then, by the implicit function theorem, f°l is an (n-1)-dimensional
manifold and Mu is an n-dimensional wanifold with boundary fu . (We will
only consider & auch that M¢ is non-empty.)

The following basic results describe the topelogy of M in terms of the

critical pointa of f .

Theores (i) If there are no critical values of T in the interval [B,v]

(where B ¢ y) then Mﬂ and MY are diffeomorphic.

(ii) If there ia exactly one critical value, say &« , of f in the
interval {8,y] (where B ¢ @ ¢+y) then MY is diffeomorphic to the manifold
My UH . The ‘handle’ H is diffeomorphic to the unit cube 1 a [¥ x [P

k In—k

glued onto MB by an inclusion mapping aI" x < fB y where k is the

index of the critical paint 4 such that f{q) = a« .

Proof (i) Introduce a Riemannian metric on M and consider the vector field

grad f ipduced by £ on M . It is orthogonal to the level sets f“ .
Consider the flow induced by grad f, it maps f“ diffeomorphically to f¢+‘
as long as there is no critical point in the region [fu'fa+:] and can be used

to induce & diffeomorphisas of M¢ with M¢+: + The result follows.




(ii) Let g be the unique eritical point in MY\MB , 80 fiq) = &« .
Choose coordinates in a neighbourhood U of g using Morse's lemma. We
conasider what happens to UnN Mw_‘ as & incresses through the value 0 , by
the argument of (i), up to diffeomorphisam, M does not change outside U . It

ia enough to consider ®" with the function

2 2 2 2 2
q{x) = Ky T Eg T TR P Ky e g
. (L7R)
% (

Y /

Changing up to diffeoworphisms one has the following diagram

Unlgs)

Uf\(c\,i\

from which one can see the result.

Corollary Let f : M+ R be n Morse function with critical points Kys weey X

all at different levels oy Gy s Co and indices .

kl =0, I(2. . kr xn ., Then M is homotopically equivalent to a cell

complex K with r cells of disensions k‘, kz. veey kr .
Note that it is not strictly necessary to assume that the critical levels

are distinct. If there are ¢ critical points at level « then Mcn is

obtained from M“_' by attaching ¢ handles simultenecusly. The ¢ cells of

the cell complex K nare also attached simultanecusly.



Examples. . “, The Morse inequalities.
1. Follow the proof of the sbove theorem to describe the topology of the These now follow easily because of the following mlgebraic result.

torus, Klein bottle and real projective spaces using the functions defined

previously. Lemima Let {cr} be a finite dimensional chain complex over a field, with
2. Suppose « is a critical level of f : M+ R and that the interval L dincr and Br = dim Hr the Betti numbers. Let +y(t) = zyrtr and
(a,octe] hes no critical values. Show that Hmﬂ is howmotopy equivalent to H' p{t) = Eﬂrtr be the corresponding polynomials, then there ism a polynomial
(although "u is not a manifold). «(t) with non-negative (integer) coefficients such that

¥(t) = B(t) + (1+t)a(t)

13. The homology of a cell complex.

A good reference for the details of this material is [Cooks snd Finney]. Proof As usual, let Br = Image 4 : crﬂ. - Cr

Let K be a finite cell complex obteined inductively (on n) by Zr = Kernel 4 : (:r -+ cr—l .
attaching an r-cell (Dr.sr-l) - (Kn"n-l) so that ln = ‘n-l. uf Dr where Since dz =0 one has Br < Zr and I-Ir = Zr/Br hence Zr = Br [ ] Hr H
f: s,"‘l - Kn—l is the attaching map. also cr & zr - Br—! , 8o cr a nr [ ] Hr [ ] Br-l + Under these iscmorphisms d

Define a chain complex {Cr] for K (over a field) by letting Cr be is zero on Br [ ] Hr and is the identity on Br-l .
the vector space whose basis is the set of r-cells of K. The differential Let . = dim Br , then
d: cr - (!r__-1 is defined on an r-cell as the sum of the incidence numbers of Y T+ Br + oy
its boundary sr—l with each (r-1)-cell. which, when put into polynomial form, is the stated result.

Note that for f : M+ R, the chain complex of the cell complex obtained
using f can be obtained by taking C,. to bs the vector space whose besis is Setting t = -1 gives
the set of critical points on index r . The differential can be computed Corollary (i) z(‘l)rvr = E(—I)rﬂr
directly from the gradient flow of f , this is outlined in {Witten], although I k r k r

(1) S0, 2 (DB, foresch k2 0.
know of no detailed references. r
i=0 i=0
The homology nt(c) of this chain complex gives the homology of M . In the special case where {C:J is the chain complex obtained from a Morse
function one obtains inequalities between the Betti numbers of M and the

Example Calculate the chain complex mssociated to the cell complexes obtained numbers of critical points of f of variocus indices B, = et Betti nusber of
for the three examples slready considered and hence calculate their howmology. M, Y, = number of critical points of f of index r) . These are the Morse

inequalities.




5. de Rham and Hodge Theory.

Let a*(M) be the de Rham complex of the smooth manifold M, R"(M)

1

is the space of smooth differential r-forms on M and d: ar(M) - a” (M) is

the exterior differential, defined in local coordinates xl, ceer X by

d(fdxi A...Adxi)=dedxi “"'“d"i

1 r 1 r
n
=§9'—dx.p\dx Aol AdX, .
X . J ll i
= :

The de Rham cohomology of M is defined to be the homology of the

de Rham complex. It is a theorem [de Rhem] that this is isomorphic to the
singular cohomology of M with real coefficients and hence to the cellular
cohouolo(y. of M with real coefficients.

Now consider a compact Riemannian manifold M with metric <, >
defined in each tangent space Tx“ . This defimes sn inner product, also
denoted < , > on each exterior product A"'r:n and hence, by integration over
M, on T (M) ; making each nr(H) into a pre-Hilbert space.

By conjugating with the Hodge star operator

£:0°(M) » 0™ ()
and introducing appropriate aigns one defines an operator

a* ;™) <2t

such that ddw, n» = <u, d*n) for all weq' , N E ﬂrﬂ .

Define L = dd’ + d'd : a" (M) - a"(M) the Hodge Laplacian. Then one can
show that Ker L = Kerd N ker tlt the space of harmonic forms; it is Hodge's
theorew [Hodge] that Eer L in diwmension r is isomorphic to the de Rham
cohomology H'(M) .

A good reference for all this material is [Warner].

10.

6. Witten's differential,

If £ : M= R is smooth, Witten defined a modified exterior differential

which depends on f and on & parameter Lt « R .

-tf (44 tf

(M) whers e is the operator

obtained by multiplying a form by the function etf '

; ar(m - ar+1

Definition dt. = e °odea

Since dt is conjugate to d , it satisfies df = 0 and the homology of
the chain complex (n‘(M),dt) is isomorphic to the de Rham cohomology of M .

One can alag define a Laplacian

L, = d,d} + dyd,
whoas kernel ias isomorphic to de Rham cohomology as ia t_he case for the Hodge
Laplacian.

In the case where f is a Morse function on M , one can consider the
"low lying eigenvalues" of the operator l‘t , that ia those eigenvalues A
satisfying A/t =0 ea t o o« . The corresponding eigenforms apan a finite
dimensional subcomplex ¢’ of the de Rbam complex such that the dimension of
¢* is equal to the number of critical points of index r and whose homology is
isomorphic to the apace of harmopic forms. The algsbraic lemma of %4 then gives
the Morse inequalities directly, This is the argument of (Witten] and the
following sections will slaborate some of the details.

First, we will give an alterpative description of Witten's operator and
study the Laplacian l‘t . If w is a k-form on M then one can define an
operator
k

E : a"(M) g™

. ™)

by Eu(n) swAn. Then dt =d + thf because
et odoatf(m) = ot o (tetfaran+ etfdn) =tdf An+dy.

To study the Laplacian we need a simple fact from linear algebra. Let V

be an inner product space, then each Ak

wda AIV we have Eu : ATY - Arﬂ

¥ has an induced inner product. For

V and let I : A" 4 ATV be ita adjoint.
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Lemma BH[T‘I + I“Eu z {w,7p for all w, na AIV . points. To understand the local behaviour {(csrried out in 8) one must study

the harmonic oscillator equation.

Proof Choose an orthonormal basis LIS EERRTIL for V then fe. Av..A @, )}

.7, Eigenvalues of the harmonic oscillator.

is an orthonormal basis for ATV . By linearity, it is enough to check the

formula for w = e, and m = "J . The one diwensional harmonic oscillator operator is

2
Now H= -.9.2.4 t2x2 = —Dz + tzxz .
. dx .
I!ei(eil'«""\ eil_) Te A ei.l A A ‘ir =0 if iaels= hl""'ir} " It is o standard problem studied in texts on quantum machanics to consider the
Hence eigenvalue problem for H ., (Ses [Miller] for exampls.)
I (e. A...A &, Y=0 if iel Let ¥ =4 - tx be the "raizing” and "lowering® operators
® N lret
=te AL Ae  with e omitted if i«1. (with t > 0) . Then
1 r+i -+ + +

: IV zf+t, 'V 8-t sa JI' -1 = 2
So by a straightforward calculation

and wt = oty = e2est
(Be Ie+Iage )(ei A...Aei) =0 if (= j
Jodi 1 r If », ¢ are functions such that they and their derivatives vanish as
=eilA...Aoir ir 1=3j. X + t® then
Similarly, if e, n are 1-forms one has that (J+9,t) = <9, T W
BI ¢+ 1B, = <um and CHe,¥> = <o, Hp>
as mappings of RT(M) . where < , > is the usual inner product.
Witten's Laplacian L, equals If ¢ is an eigenfunction for H such that nen = 1 so that He = Ay ,
4
(dee8, ) (@¥etr ) + (d‘+t1df)(d+tsdf) the relations sbove show that
R x ] * 2 SR _ 3
=dd +dd+ t(E, d +d1df+d gdr”dfd) +t (ndfxdfﬂdfsdf) R(JT9) = JT(He2t)e = (A22t)179
=L+ ta + t2udent and e, o> = T, @
where, in local coordinates Kys Xgr ovus X i A is the operstor = <Hy, 9> + t(y, »
2
' § . =A+t.
o (P, Tax, Ta Bax ) o
nzf Also <J @9, T > =A -t 30 A$t. Therefore there is & 'ladder' of
and =———- in th d i i i .
Dxinﬁj ® the second covariant derivative of f In Ruclidean eigenvelues A + 2kt , k«M. For A =t one has the aingle eigenfunction
2 2 .
coordinates this is just —_— - Near points where df w 0 the term t2““.“2 exp(-tx~/2) and one now essily deduces that the only eigenfunctions are
1%
’. tk(x) = (J+)kaxp(-tx2/2) with eigenvalues t{2k+1) for k &« N
dominates the behaviour of I.t for large t . Hence for large t the
eigenforms of Lt zust be small near points where df # 0 . In this case

everything is dominated by the behaviour of the e¢igenforme nesr the critical
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8. The local model for Witten's Laplacian.

We consider the operator I‘t in the situation where f : R+ R s
given by
.1, 2 1 2 2
f(xl,....xn) = 2(—:11 R + Xpel ...+ xn)

" has its standard metric.

2f {0 it i#)

and R

Then

)
dx_ 9x

iJd 1 if i=j
2 _ .2 2 2
and ndfn -x1+x2+ el v X

S0 Lt:zLi+t§tiKi-‘-L+tK
2
where Li= -2 +t2!I§ '
¥
1
ti=-l for £t €if%k
=+41 for k+1$1%n,
and K. =E, 1 -1, E .
i clxi'd.ui dxid:n:.1

Conaider the behaviour of Lt on an r~form

e(x)dx, A ... Adx,
1 r

I..1 acts as the identity on dxi AL A r.b(1 and I(1 acts as the identity on
1 r

¢(x) . Hence, it follows that all the Ki and I‘i commute. Now the

. r
eigenfunctions for I.1 are 'r (x.l) = (J;) i'e:q:u(--t.x?/Z) with eigenvalue
i

t(l*Zri) . 50 the eigenfunctions for L = 2 I.1 are products of the tri(xi)
with eigenvalue the sum of the corresponding eigenvaluea. Hence the operator L
on forma has an [:] dimensional space of eigenforms in nr(M) corresponding
to each eigenfunction trx(xl)trz(xz) .r“(xn) with eigenvalue
(n+2(rl+...+rn))t .

Now we consider I(i acting on dx‘i Ao A de. . It is straightforward
1 r

to check that if ilJ={Jl, ceny ‘jr} then li acts as +1 and if i e J

then it acts as -1 .

14.
Lemma Let K(deJ =anxJ whers de denotes d.xJ Ay Ade. , then
1 r
nJ=2k+2r—n—4a
where 3 is the cardinality of Jn (1, 2, ..., k} .
J. .
Proof Ii(dx)-ﬂ-xi.l
o (K@) s ¢lemied and Ll .., k)
or L«J and i« (1, ..., k}

i.e. K(dx') has r -8+ k-a terms with +1
and n-r -k + 2 teras with -1 .
Hence oy = 2(r+k-23) -~ n as required.
Note that a $ r and s § k =0 ng—n.
Thercem The kernel of l.t : 2°(R®) » a" (®") is one dimensional if r = k and
is zero otherwiae,

Proof The eigenvalues of Lt are A = t(n+2{r1+...+rn)} +n,t with ., a N

J i
and ng 2-n 80 A2 0. Toensure A =0 one must have each LA 0 and
ny =-n so r+k=28 hence k=aw and r =8 i.e. one must have k = r

and J = (1, 2, ..., k} . 80 the only form in the kernel of —Lt is

¢o(xl)¢o(x2) tn(u“)dxl A d.xz Ao A d.xk .

.9, The localisation theorex.

To compare the behaviour of Witten's Laplacian on M with ita behavour
near the critical points of f , one can utilise the fact that the eigenforma of
l't are concentrated near the critical poiants of f . This has been made
precise by B. Simon and others [Simon], [Cycon] and [Helffer]. We state it in

the form given by Simon.
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Theorem Let {qi}‘ 1 €1 $Q be the aet of critical points of the Morse
function £ : M+ R and let l.t be Witten's Laplacian. Let

?\l(t) < Az(t) £ ... % kr(t) $ ... be the eigenvalues of Lt and let

By < L) € ... % By ¢ ... be the eigenvalues of the operator

Q
K= @ Kl(t)
i=1

where K (t) : a*®@") + 2 (’") is Witten's Laplacian on RB" with

_ .2 2.2 2 2
f--xl-... x’ki*"k AARETIR as in 38 (ki is the index of the

i+l
critical point qi) . Then Ar(t)}t +p  as tew,

Since the kernel of each K, {t) is one dimensional and lies in

nki(l!‘") , it follows that the eigenspaces of Lt corresponding to the lowlying
eigenvalues (i.e. those A(t) satisfying A(t)/t - 0) have total dimension Q
and lie in a"(M) for r corresponding to the indicea of the critical points.
The proof of the localisation theorem cean be found in [Cycon] and
veriants in [Helffer] and [Bismut 1]. Another sccount of Witten's work can be

found in (Henniart].

$10.  Further developments.

Finally I mention & few other developments related to the Morse theory.

Morse theory was originally introduced to study the calculus of
variations and to prove the existence of sclutions. The finite dimensional
theory was extended by R, Bott to the case where there ars critical submanifolds
but the function is non-degenerate in the normal directions. In anather
direction R. Thom showed how some theorema about the topology of amooth
algebraic varieties could be proved using Morse theory, see [Milnor] %7. This
has now been extended to the study of singular algebraic varieties
[Goresky-MacPherson]. The study of degenerate critical points is explained well
in [Fomenko] and an application of this to differential geometry is given in
[Duan-Rees ). Thel- results of Morse theory were extanded from gradient flows to

general flows by S. Smale in 1960 [Smale].

16.

Witten's ideas have been used by him and others to give new proof of the
Atiyah-Singer theorem [Witten], [Biamut 2]. The extension of this work to
infinite dimensions has been developed by A. Floer to give intereating new

results about J-dimensional topology [Floer].
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