oy,
INMNTERENATIONA AL ATOMIC ENERAGY AGENC Y
UNITED NATIONS EODUCATIONAL, RCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (TALY) + P.O.B. 686 - MIRAMARE - STRADA COSTIEHA 11 - TELEPHONKE: 33401
CABLE| CENTRATOM - TELEX 400803 - [

SMR.304/ 22

COLLEGE
ON

GLOBAL GEOMETRIC AND TOPOLOGICAL METHODS IN AMALYS1S

(21 November - 16 December 1988)

HOMOI.OGICAL ALGEBRA.

L. Lomonaco
Dipart imento di Matematica
Universita di Napoli
Napoli
Italy

These are preliminary lecture notes, intended only for distribut {on Lo participantis.



1f A is & submodule of B, then

13
0—>Ac<—»B N B/a — 0
Let R be a conmutative ring with unit, and let 4,B,C be R-modules,
ie a short exact sequence, Here y indicates the canonical epimorphiem,
If
If 1 B —»C , then
f1A-~~+»D , g B—C c -

O ——aker¥ &3 B —HNC—>0

are R-homomorphisms, we say that the sequence

) i, N ie & short exact sequence,
1 A B ¢

If A,C are two arbitrary R-modules, then
is half-axact at B if ImfSkerg, If we have Imf = kerg , we say that (1)

i L9
0 —2A»2) ABC SHC —s 0
is exact at B,

is a short exact sequence, Here i

, 1 % are defined by setting iy(x} = (x)0),

Remark. The sequence (1) is half-exact if and only if gf « O (the zero-
Wc (xly) =Y.

homnmorphiam).

A sequence -(ii) Consider the sequence

@) ...—-’cmfl'—‘, o 3o, .-?:: (4) 0—azrtsz Yez/2—50

of R-modules and R-homomorphisms is & chain complex if it is half-exact at where y is the canonical spimorphisa and T is defined by setting f(x) = 2kx,
G» for each k&% (i.e. Imkmé.kcrtkak or equivalently 4’.,%" 0 ¥k). The sequence (4} i5 & chain complex ¥ k ¢ 2 and it is a short exact sequence
Sometimes we write 2, = kerd , B, = Im¢, . The eleaents of 2, are called Af and only if k =9,

n-cycles; the elements of B, are called n~boundaries, {i1i ) The sequence

We will say that the sequence (2) is exact if it is exact at Cy Vk. —94 zfiez—c’—a % f-v 2, z-‘je

Examples, (i) The sequence is axact,

{3) 00— A -F—a B -1'-’ ¢c—0

(iv) The sequence
is exact if f is 1-1 (exsotness at i), Inf = kerg {exactness at B) and g 0—s & L)B 0

is onto (exactnees at C), We say thet (1) is a short exact sequence. 16 & chain complex. It is 4 if and only if ¥ is an isomorphisa
Not .
Notation. If A 1o & subdodule of By we write i3 A€~y B for the inclusien We end this section with the following technical lemma which is used in the
of A in B; we write f: A>—» B if f is a monomorphism and g3 B—#C if g proof of aeversl theorems in algebraic topalogy

.
is an epimorphism,
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The five lemma, Suppose we have a commtative diagram of R-modules and R-

homomorphisms

t .4 N2

A— B——>C-—>»D——E

l’« ‘-:lb lc “-:ld I.l
Aci_, Bt Yage b _!_'_’E'

where the rows are exact, If b and d are isomorphisms, & is an epimorphism
and e is a monomorphism, then ¢ is an isomorphism,

Proof, Thie proof is a typical example of diagram chasing.

(i) c is onto. Let z'¢Ct, As d is an isomorphism, 1\ weD z,t. d(w) = ht(zr).

We have
ef(w) = Pra{w) =» e (zr) = 0

a8 e ip 1-1, w)=0, So wekerf = Imh, i.0, 3 2¢C B.t, h(z)ww, Now
he{zt - c(2z)) = n'(z*) ~ hte(z) = n*(21) = dnfz) = he(z*} - a(w) = 0
So 2' - c{z) € kerh' = Img* and 3 y'eB' a.t, g'(y') = &' ~ o(z).

As b is an isomorphiem, ' y ¢ B s.t, b{y) = y'. Now we claim that

c{eg(y) + z) = 27, In fact

cle(y) + z) = caly) + o(z) = '(y) + o(z) = £*(3*) + c(z) = z'—o(z)sc(z)me:
(ii} ¢ is 1-1, Suppose o(z) = 0, for some £ £ C, Wo have dh(z)s=htc(z)=0
and therefore h(z)=0 as d is un isomorphism, S0 % € kerhsImg and 3 y ¢ B =s,t.
g(y) = s. Now g'b(y) = cg(y) = c(2) = 0 , hence b{y) € kerg' = Imf? and
3 xtE€arat, £0(x*) «b(y). As = iz onto, I x ¢ A a.t. a(x) » xt, How
bf(x) « f'a{x) = £*(x?) = b(y)} and b is an isomorphism, Thus f(x) = y and
z = g(y) = ef(y) = 0.

2. Chain complexes, chain maps and chain homotopies.

Let E - {c,,r“.& be the sequence
Yoot

Ta
see —»C, —>C, ——rc T e

of R-modules and R-homomorphisme. Suppose ¥ is a chain complex (i,e. T_t‘ﬂgo) .

1rda [D..-U; ie another chain complex, a chain map from € to ﬁ is a

$ = {4’“}":1

where & :C, —» D, is an R-homomorphism and the diagram

$.

Ch— D,
3,
Ry

1

sequence

commutes Vn. In this case we write (171 € - 3 .

ir ¥ {E,‘ ,E,‘} is yet another chain complex and Y/: ﬂ—?\g iz a

chain map, the composite w:f-)'g is defined in the obvious way :

(‘?4’ )n - \rn ¢n M

HWe write id: t’ —» ¥ for the Bequence {mc“} .

Suppose now that 47 N \r : f—* w are two chain maps, A chain homotopy

h batween ¢ and \'/ is a sequence h = {h‘} of R=homomorphisme h'z Ca=> Doy

puch that 5,,“_ h,+h, 1“\ =y - ¢,
).

ase =—P C ——’C“-‘—"P e

*ml*/ e

e P D‘ﬂ' ity D —%D -4 —— e
dny | Ou

If such h exists we say that (P is chain homotopic o 4 (d=v)

Proposition, & is an equivalence relation in the set of chain maps of f

into w ]



3. Homology groups of a chain_complex .
Let 8 bs a chain complex,

pefinition, The k-th howology group of L , H, (¥) is defined by setting

B ()= ker (f, )/ Im(g, ) -

Remaric, The complez { is an ezact sequance if and omly if H () =0 Vk
{i.s. the homology groups measurs the failure of 8 to be exact).

An element o €H () im & class [3] where sé€ker(fi)}, i.6. 5 ie & k-cyole.
{8] = [5t] if and only if [5 = 5'] = O L40s if and only if = -~ 2' ina
k-boundary, i.s. if and only if 3 % €Cy,, sot. ¥, (E) = s - 1%,

Lot now ¢ : C— D ve a chain map. ¥ k we define a hemomorphism

b+ HE) > 1(D)

called the induced homomorphism in homology, as follows. Let « ¢ H (P).
Then ¢ = [s5] wkere the representative s of X is a k-cycle in E.
ve have 3 ¢, (s) = &, Yiu(3) =0 (se s 15 a cycle and 4:’ is a chain map).
Rence ¢, (z) ie & k-oycle in 9D ana defines a homology class [ (s)len( .
ve sot ¢, [s] = [4.(s)).
4, 1s well dofined, In fact, if [s*] = (s], we have [s - 5'] = 0 1n H (¥)
i.e, %= -2'E 1-(3;“) and 3 iac‘ﬂ s.t. Tm“) w s = 8¢, Thua we have

i (5) =P (31) = (e - 57) o ¢ Oy, (BN " Sy P fB) €Tm(3, )
1.0 [§,(2)] = [, (3% ],

dJ* is clearly a group homomorphism (s ¢, i# & homomorphism),
Proposition. (1) (idp) = Wy () Vx.
(1) = Wi Dy -

( In other words the construction of the induced homomorphism is functorial).
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Proposition. Let ¢,¥s £ = be-two chain maps. 1t =y, then
b= Yy 1 B(E) = B(D) V.
proof. Let [s]&H,(£). If h is & chain homotopy between ¢ andqy , we have
B (2) = Yie(s) = Spghi(3) ¢ By g, (8) = Sy (8,08)) ETn(ders)

{as s eker(YK)).
Kence [d)(2)] = [y, (s)] t.e. ¢ 2] =y, [s].
pefinition. i chain map 4): € — D ie a chain equivalence if 3 s j)—)f
at. YP rid, by iy .
Propositign. It § 1 £—> D 1s a chain equivalence, then the induced homo
morphism

¢, * B (€) — E(D)
is an imoworphism V k.

Proof, Using the functorislity of the induced map we see that

HPe = Pl (ap)y = iy (e

E . is isomorphisa.
(as A= id, ) and sinilarly dove S s ¢, 1s an isomorph
The above result talls us that the homology groups are chain homotopy inva-
riants.
A contrasting homotopy (or contraotion) of the chain coaplex P is & chain
homotopy b betwesn 1d,, ad O (the sero chain-homomorphism), In other words
we have & sequence h = { hu\ of R-homomorphisms

M3 G = Gy

s.t.

Vet Pie ¥ PreaBic * “c,, .
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Proposition. If J a comtracting homotopy of O, then H(P)msoVEk (1.0, €
is an exact sequenca}.

Proof. Let [s]€H, (). So séker(y, ) and we have

= ﬁﬂhk(l) + hk_tx-‘!s) - nﬂ(hk(l))etm(j‘k“).
Therefors [5] « 0 in H(P).

Example, 4 contracting homotopy for the chain complex

0 —»Z ---)Z.Z—.z—ro
““ -

he hy
is definad by setting

hz- LY R hi.." 1y
Remark. It may happen that E is an exact sequence, buit there is no comtracting
homotopy of f.

xl
Exsmple. 0—Z —2—2/2 =0 .,

4, The Fundamental Theorem of Homological Algebre,

1ot 2.0, € ve three chain cowplezes and let
¢nf-—)m ' 4 D—E

be chain maps, We say that the mequence
(1) 0o—C b 2o9e o

ie » short emot sequence of chnin complexes if

kd?n o 5 — 0

0 =—p C
im a short exact sequenoe, Ye, 1t (1) is a short exact sequence of
chain complexes, we have the following commutative diagram, where sach

row is exact and each column is & chain complex,

Lo b
0 —> chlh-"-'-fv I:kuw'“ Im—) o
l‘u{ sut L
°0—> G 2“—-) D, q-'f-'o E - 0
l‘r" *H 15’- Yo li"
— 0

0= ck-l Dk-l—)

=1

..Q_-”Fg

Remark, We got a ;oquonon
by
1 (€) AR n,:m-—» R ()

V k. Wo want to put together all these ssquences and construct a

long exact saquence.



We start by defining & homomorphiom
By 1) —> 5 (¥)
which is called the connecting homomorphism , Let [l]éﬂk(!) « "This weans

thet s¢E, and £ (s) = 0. Aw y, isonto, 3 yeD, s.t. 'Yx(y)’ 5.
We have

Yy S () = E 4 (¥) = £,(s) = 0
1.c.5“.(vjelm-'q;‘_t wInd , ad ] x€C,, a.t, ‘P.L.,(z) - S,‘(y) . X is
a cycle. In fact, in order to prove that Y (x) = 0 it is snough to check
that ¢, 7, () =0, as &, 18 1-1. But

¢K,1‘ﬁv.-;(1) = Sy &,y (2) 'Swi 5. (¥) =0
So it makes sense to set

A1) =[]

A‘ iw well defined (exerciss) and it is clearly & hosomorphisa.

The Fundamental Theorea of Homolopical nﬂE'

The sequence

b

¥ A, ¢ o
ey B @) > () > B, —> @) —> B_ ) —..

is axact.
The above exict sequence is oslled the long exact sequence in homology,
sssociated to the short exact wequence (1).
Proof. We have ito check that
(a) Im(y,) = ker(by) .
(b) In(8,) = knrdy) ©
(c) Ia{d.) = ker(y,) .
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(a) Imfge) S ker{Ax) . Let [s1CIm(y,) . By definition J yéD, s.t.
5{7) =0 ant ¢, (y) = s . By looking at the construction of 4, we ses

that B, (s} = [x] , where &, ,(x) =5, (¥) . But J (y) =0, and s
b, (x) =0, henos x =0 as $., 1011,

In(yp) 2 ker(As) . Let [s}€&lker(Ae) . There sxist yéD,, xel, st
Pra{x) = 0(7) 4 Yues(x) =0 and 4, (7) =5 , snd we have A [x) = [x1=0,
Thie means that x is a boundarv, i.e. 3 TEC, s.t. ‘[u(i) = x , Consider
the element y -~ &, (Z) cDg . Wo have

S lr-4(1)) = 5 (v}~ 4(F) = D(3)-¢ 3¢ (F) = 5 (¥)-4, ,(x)
5 (y)4fy) =0 .

So y- (%) is s ovcle and 1t represents & class [r-4 (2)] €B.(]) . Clearty

Yy [y -4 ()] = bul¥) -4 (5)] = [1] .
(b) Inffp) S ker(da) . Let XcH, (£) and suppose that o €Im{4,} . Then
] » repressutative T of « s.t. 3 s¢E with £ (s} =0, 3 yeD, =ut.
qu(y) ws and S (y) =, ,(x) . We have

§r () = 41 = [, ()] = [5(¥)) =0 (as 5 (¥) is & boundary)
and inerefors o ¢ ker(d.) .

In{dx) 2 ker{ds} . Lot [x) clmr(d,) . Then [§, (x)]w 0, 1.0, ]
yet nts §  (x) =5 (y) . Set s i (y) . Then £,(s) = £ (% (y)} =
g S (7 =¥ by(z) =0, i & isacyols, Clearly 4 [s] =[x .
(o) In(dx) € ker(¥a) . Obvicuss ,(de[x]) = [(x)] = 0.

Im{$y) 2 ker{¥s) . Let [y]€kerly,) . ¥e have yeD, , §,(y) =0 and
% [v] = D(y)] = 0, Loy (y) i8 & boundary, Fence 3 sy, 8.t
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€rei(8) =y (y) + AB 418 onto, I T D, mats Y (F) =8 . Ve
have (7=, (1)) = Vlr W due(T) = WP Ccriticns(F) =Y (v)- € (3) =
ey ()% (y) = 0 . S0 y-§, (F)ekor{yy) = Inlb) , 4.0. 3 z €0, 0.8,
B(x) = 750y (7) < Vo mave & ¥, (x) = Sdi(z) = S (y-5in(9)) =
= 5 (1) 5 Sxes{7) = 0 . Therefore Y, (x) = 0, as ¢, is 1-1, and tius
2 im & cycle. Now we have
Ox (2} [B(x)] = [y 54y ()] = [¥F (B (3D = 19D .
In other words [y]& Im(d,) .
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5+ Homology and cohomology with coefficients,

Lat G be an abelian group and '€ be a chain complex of abelian groups.
We amet
Cea= (ckea v Vo 7]

where —

Yy = § @41 C.00 — C B0,
Proposition, faa is a chain complex, .
Proof, fu?:u-i = (Y, 0id)}Y, @0id)= LY, ,Bld=0,
Definition, We set H,(¥;0) = R (C®a).
B, (€:0) ie the k-th howology group of [ with cosfficients in G.
Now we ast

o [nu-(c...a) ey
where Ay sao-(c“,,‘.o) > Hom(C,,0)
is defined by setting

{:(¢) - 4’ rn

Proposition, Y;.: ‘[;' =0 .
oot Y B (8) - Vi %) = 4§ Yaer = O -

We say that f: is a cochain complex,

Definition. H'(£;a) = E"(E7) = ker(y, ¥, )/18(}¥) .

H"(¥;G) is the n-th cohomolegy group of € with coefficients in @,

We want to end with the statement of the Universal Cosfficient Thecrem for
homology and cohomology, which explains the relation between the groups H (¥’),
H (¥ 30} , 8Y(C;50).
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We nasd to introduce the notion of Tor(C,N) , Ext(C,N) whers G, N are two
R-modules, We observe that it is possible to find two free modules A, B with
A €B, end an episorphiem 4 : B—HC o1,
) o—sactus Xpo—o
is = short oxmot uq'u-nco'.
Lemna. The ssquence
ieid weoid

A®@N — BN —>» CON — 0

is exact, i

We point out explicitly that in general L @®id 1ms not a monomorphims, and

sot

Tor(z,K) = ker[ L @ id 3 A@N = BN ] .

It can be sapily chacked that Tor{C,M) dges not depend on the choice of 4, B,

Now we start again with (1) and consider the sequence

A ® L* :
(2) 0 «—» Hom(C,M) ——> Hom(B,M) —— Hom{A,N)
Hers Y/* : Hom(€,M) —» Hom(B,X) is defined by metting {(f) = ty

¥ feRom(C,K) and i” 1s defined similarly.
Lemma,The sequence (2) is exact. . -

Again we remark that L° s not omto, We set

Ext(C,#) = coker ¥ = How(d,N)/In(i*} .

The definition of Ext(C,M) is independent of the choice of A,B.

We are ready for the Universal Coefficient Theorem for homology and cohomology,
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Theorem, Let ¥ be & free chain couplex (i.e. C, is free ¥ n).
We have
(1) B,(¢:0) ¥R (¢)ea @ Tor(n,, (€),0)
I either G im finitsly generated or H () is finitely genersted ¥k, then
(11) B F:0) = Hom(H (7),0) @ xt(d, _ (€)0) .

E.H, Spanier, Algetraic topology. Mo Graw Hill (1971) .



