&)

INMNTERNATIONAL ATOMIC ENEROY AUENCY "!!l!

UNITEDR NATIONS EDUCATIONAL, BCIENTIFIC AND CULTURAL OROANIZATION

iy,

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (ITALY) - P.O.B. 8868 - MIRAMARE - STRADA COBTIKRA 11 - TELEPHONE : 8240-1

CABLE: CENTRATOM - TELLX 48080% -1

SMR.304/ 6

COLLEGE
ON

GLOBAL GEOMETRIC AND TOPOLOGICAL METHODS 1IN ANALYSIS

(21 November - 16 December 1988)

LIE GROUPS AND LI1E ALGEBRAS.

A. Rigas
Instituto de Matematica, Estatlsiica e Ciencia da Computacao
Universidade Estadual de Campinas
(UNICAMP)
Campinas
Brazil

These are preliminary lecture notes, intended only for distribution te participants.

These notes are meant as a supplement to the four lec
tures on Lie groups and Lie algebras mini-course. No attempt
of originality has been made. The basic reference is |[Adams].
The subject of representations hasn't been touched except for
the adjoint and the low dimensional identifications in Chap

ter I.

I am sure these notes are full of mistakes and mis
prints, which the reader is kindly asked to forgive and try

to correct.

Campinas, November 19, 1988



1.

4.

GENERALITIES, DEFINITIONS AND EXAMPLES

A real Lie group G is a real C™ manifold

with a group structure, such that the map (x,y} - xy'l

from GxG+ G is C*.

Exercige: (1) It follows then that both maps x =+ x-1

and (x,y) + xy are C".

{2) The connected component of the identity
element of G is also a Lie group and all components are

mutually diffeomorphic.

Definition: Two Lie groups are isomorphic iff there

exists a C® group isomorphism between them.

Examples: (i) (&", +)
{(ii) € - {0} wunder multiplication.

(iii) Let sl = {z in € with |z| = 1 }. Then S'is
a subgroup of (ii).

(iv) The algebra of quaternions #H is isomorphic
to € 8 € as a vector space and is given
the following associative, non-commutative
product: (z,w) = z + jw with wj = jW,

jz = «1,

S0 (z + jw) (zy + jw )= {22) = ww )+ ] (2w)+ wz).

We can also consider it as a product in R#%

with basis 1, i, j and ij = k and the follow

(v}
(vi)

(vii)

{vi i)

(ix)

{x)

ing multiplication table: 1 commutes with everything,
12 = j2 w k2 w -1, ij =-ji « k, jk ==kj = i and
ki = -ik =3,

The conjugate of x @ x, + x3i + %33 + %3k is

X = Xg = X3i ~ x3) - x3k and it is easy to see that
x® = |x|?
-1

x ¢ for all x in H - {0} ,® -1{0}is

[x
a Lie group and s3 , the unit quaternions, is a
compact subgroup.
Show that |xy| = |x]]y].

Gl (n,R}) ={A real nxn matrix .with det({(A) # 0}
All upper - triangular, non-singular, matrices.

0 (n) ={A in Gl(n,R) | AT = a~l}, AT means the
trangpose of the matrix A.

Show that 0(n) is a compact lie group with 2 connected
components.

S0 (n) = {A in 0 (n) with det(A) =1} is the component
of I in 0(n).

Gl(n, €) = (B complex nxn matrix with det (B) #0}

Un) = {B in Gl(n, ¢} | B* = 871 )

Where B* = BY, ie, the entries of B* are the conju
gates of the entries of the transpose matrix of B.
Suin) = (B in u(n) | det (B) = 1}

Show that U(n) is diffeomorphic as a manifold with
slx su(n). We will see later that they are not iso
morphic as Lie groups).

Let scalars act on the right on column vectors in ®I
nows

Sp(n) = (C in Gl{n, M) | CC* = C*¢ = I}



{Exercise: Show that s} above is isomorphic to SU(2) and to Sp(l))

5.

6.

(xi) Given two Lie groups G; and Gythe product G x G,
can be given the product structure (xy, x;) (ypyy) =
(x3y1,%,¥,) and this turns G x G, into a Lie
group.

There are, however, other possible Lie group strug

tures on a product manifold:

Exercise: Define the Lie group of affine motions of R".

Definition: A Lie subgroup H of G is a subgroup which is

also a submanifold of G. Let now € be included in M(®R),
the algebra of real 2 x 2 matrices, and H in M, (€)

as follows: [Curtis]

(%, +x il v (;:2 -:1), Xo s X1 in R
o

and R z -W
(z 4 Jwhe— (), z,w inC

Exercise:

1) Show that these are ring inclusions and use them to define
o By (R) omd of M, (M) inke M, &}
ring inclusions ¢ of M,,{C}Y, where Mp (K) denotes the
nxn matrices with entries in K. Show that ¢ restricts to
the respective 61 (n, K) ' s,
Show ¢ (A*) = d»{(A)* and that ¢{uin)) & S0(2n),

$(8p(n)) € ul2n).

=

2} Show that sl is Lie group isomorphic to 50(2).

An example of an infinite dimensional Lie group is the
following:

Let G be a {finite dimensional) Lie group and consider
the set of all C® functions £: 51 + G that satisfy f{lke
the unit element of G. Introduce the obvious product of two
such functions: f.q (x} = f(x)lgix) where we consider the pro
duct of G on the right. This group is usually denoted by Q(G)
and is called the "loop group of G" ([Bott], [Pressler +
Segal), |Eells-Lemaire]).

on K" (K being R, € or #) we define the following scalar
product:

<K > i1= Z;— in K.
¥ R

Than we Observe that <,> is bi-additive with <xi,y> =
T <x,y>, <X, yA = <x,y>2 and <x,y> =<y, x> ,
for all x,y in K% and all X in K.

Conjugation here is the usual (anti) automorphism of

K : the identity for reals and X, ¥x)1F¥,]+ x3k =

Xo=xp i =25~ %3k for € and H.

Observe that the above product is non degenerate and that

it defines a norm on K"

1
by Ix] = <x, x> h.

For A, B in M_ (K), (AB}* = B*A%
<AR,Yy> = <x,A*y> and A in M (K} preserves
the scalar product in K" in the sense <Ax, Ay> =<¥x,¥?>
for all x,y in KM iff A*A = 1I.
In the case K = f, using the inclusion of Glin, H} in
Gl (2n, €) we see that A*A = I implies AA* = I too. For K =¢

or R this is immediate.
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The above identifies 0{n), U(n) and Sp(n) with the
groups of (invertible) linear operators which preserve the

respective scalar products on R", ¢™and €".

Exercise: i. A in 0{n), U(n) or Spin) 1iff the columns

{and rows) of A form an orthonormal basis of the respec

tive KU, iff |Ax| = |x] for all x in K9,

ii. Show that A in 0(n} is the product of, at

most, n reflections (Hint: Use induction).

Recall that the vector space X(M) of C” vector fields
X on a manifold M {derivations of the ring of C*® functions

on M) under the bracket operation { x,¥] (f}:=x(yf)-y(xf)

satisfies:

(i) [x,y) = - [y,x] {anticommutativity)

fiiy (Ix,yl,z] + [[y,z},x) + ([2Z,x),y] =0

({ Jacobi identity)

Definition: An algebra over R or € is a "Lie algebra® iff

it satisfies (i) and {ii)} above. Observe that (ii) measures
in a way, the deviation of a Lie algebra from being asso
ciative. The example above 1s an infinite dimensional

Lie algebra, Here are some more

10. Examples:

i. Let V be a real , resp. complex, vector space
with the trivial bracket: [x,y]} = 0, for all x,y

in V. Such a V is called a commutative Lie Alge

bra.

ii. R3 with the vector product: [X . ¥]1= xxY.

iii. The algebra of real or complex nxn matrices
gives rise to a Lie algebra with bracket
[A,Bli= AB -~ BA where AB is the usual product

of matrices.

iv. Given any associate algebra fl over R on C we
can form a Lie algebra by defining [x,y] =

xy - yx for all x, ¥y in Q.

v. Exercise: A derivation of an algebra R over R

or €, is a linear map

D: R+ 0 gatisfying
P {xy} = (Dx)y + x{Dy).

Show that the set of all derivations of .,
Der(R) , is a Lie algebra ;with . product

(p,D}] = DD - DD.

11. Definition: A morphismof Lie algebras is a linear map

that commutes with the bracket.

12. Exercise: Show that for a Lie algebra f# we have a linear
map ad: 2 + Hom (9, Der Q}
defined by x ~ {ty » [x.¥}},
i.e., adg, ly):= [x,¥],
where the vector space on the right ccnsists of all Lie

algebra morphisms.

Some notable subalgebras of the above are:



i.

ii.

iii.

iv.

12.

13.

Definition:

Exercise:

{ii)
The skew symmetric matrices A in M (R) with A+atr =g,
This subalgebra is denoted by 50{n).
Uin) = {B in M, (€) | B + B* = 0}
(iii)
su{n)= {B in uWn) | tr (B) = 0}, where
(triB) is the trace of the matrix BL
Spin) = {C in Mp(H) | Cc + Cc* = 0} {iv)
An example of an infinite dimensional Lie algebra is the
following: Let G be any finite dimensional Lie algebra
(over R or €) and consider all smooth (C®) maps
N
f: 8§+ G with £(1) = 0.
Define (£, gl (x) := [£(x), g(x}] for all x in 8"
where the bracket on the right is the one in G.
This Lie algebra is denoted by Q(G).
Back to Lie groups now: If G is a Lie group for any ¢ 14. Exercioce:
in G we define bra L(G)

"left translation by g" to be the diffeo

morphism of G

L_{h) :=

q gh,

Similarly, right translation Rq(h):= hg.

A vector field X in G is called "left

Show that Ci'+ C,.

invariant® iff dLg(xhl = xgh  for short, dL(X) =X.

We define "right invariant" vector fields, similarly. §

(i) A left invariant vector field X is always

smooth,

ii.

The set of all left invariant vector fields on G
form a vector space with dimension equal todim G.

Call this space LI(G).

L{G) in 28{G) is closed under the bracket of vector
fields, forming a Lie subalgebra of the algebra

x{G).

L(G) can be identified with TeG' the tangent
space of G at the identity, and it provides a
global section of the tangent bundle TG, im
plying that G is parallielizable. Sometimes we
denote T,G by &.

(Note: The connected, simply connected finite
dimensional Lie groups are determined, up to

isomorphism, by their Lie algebras. We . will

comment more on this theorem of E. Cartan later).

i, Let { Ky voons X } be a basis for the Lie alge

k
and let the constants Cij be defined by

k L= 0, corresponding to anticommuta

bl J1

tivity of the bracket, and find the relation imposed on

Cf-'S by'the Jacobi identity.

The ij's are called the structural constants of G.

A form w in A (G) is called "Left invariant

iff 6 Lg(wl = w for all ¢ in G.
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lé. Proposition:
de¢ :

Definition:

Show that left invariant forms are C™and that they
form a subspace of A {G), which is a real subalgebra.

Calculate

All'l

dim  Ayofe inv. (O

all m.

Is this a differential subalgebra, i.e., closed under

. ¥4
1
If w in Al-%inv. {G) , x, ¥y in L(G},
17.
Show that dwix,y) = ~wx,y].
Show that 6§ is a contravariant functor on left
invariant forms.
1f {wl, ..., w"} is the dual basis of {K),eeas Xy}
18,
above, then show that
awl o 1 b Wk. W3
i<k 5k

(Maurer - Cartan equationas).

A homomorphism ¢ : G + Aut{V), where V is a
vector space and Aut(V) is the space of the automorphisms

of V, is called a "representation of G on V", 1In particular
Aut{V) may be Glin, €) or Gli{n, R).

A Lie algebra morphism v:G+ i is called a Lie algebra
representation iff H = End {V): The Lie algebra of endo

morphisms of the vector space V.

If ¢: G+ H is a Liegroup morphism, then

L{G) » L(H) is a Lie algebra morphism.

Proof: since 4(gg') = 4{g) ¢(g') implies dL¢(g)0«i¢(x)-

=dge dLg (x) for g,g* in G, X inX(G), one has

10.

that to each (left invariant}) X in L(G) corresponds a
X= d¢ () defined only on Im (G) C H and extendable on
the whole of H by left invariance.
Now X and X are$ - related , i.e. Ad{X) = i. and since
the brackets of ¢ - related vector fields are ¢- related
we get

x,¥y1" = [x,¥] Q.E.D.

Definition: A one-parameter subgroup of G is the image

of a C® homomorphism

¢$: (R, +) » G.

Example: Let M be a C™® manifold and D(M) the group

of diffeomorphisms of M under composition. To each one
parameter subgroup F of D(M) associate a C” vector field
X in 2€{M) by

xe) = 4

(£{F (m)) - £(m})/¢
dt lt=0

for any real smooth function f on M. We say that X gene
rates F.

Conversely, if X in 22(M} vanishes outside a compact set
in M, then it generates a unique one parameter subgroup

of D(M), by
Fy (m) = X(Peim)
Fo (lm) = m.

The restriction on X is imposed to gquarantee that F is
defined on the whole real line. We can define local one

parameter subgroups of D(M) as well.
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19,

11

An interesting fact is the following: If XjpX%(M) ge

nerates F and if ¥ is in X (M), then

[ P8 PR

(dF_y) (Y(Fy(m)).
at [t=o0

Exercise: Express the one parameter subgroup of D(G)

generated by a left invariant vector field X in terms of

translations.

Propositicon: There is a 1~ 1 correspondence between one-

parameter subgroups of G and integral curves of left inva

riant vector fields through e.

Proof: Given X in L(G) let Tx(t) g Y(t), ~e<t<t bhe

defined by the solution of the 15% order

D.E. 3 x”y) = 1'.fu;) and y (0) = e.
Observe that _g“| Y(s). vtt) = d yioy = dL (g) Xle)=
dt |[t=0
= X({vy{s)) and also
da =  (y(s+t) = vis} = X{vy{s))
dtlt=0

and that both curves +¥(s). y{t} and yv(s +t) go through
Y{s) for t= 0. This shows they are equal for all s, t, in
(- e, €) and that v is defined for all t in R and is a

one-parameter subgroup.

Given now a one-parameter subgroup yY{s) let

X(y{s)) = v{s) for all s in R, To show that X extends
to a left invariant vector field on G it is enough to show

X(¥{s}y(t}) = 4L

rey  XUEN

But

X(Y(s)Y(t}} = X(y(s+t)) = y(s+t} =

20.

21.

22. Corollary: (1)

12
=d +t+1) =d
3t 1= o y(s 1) rrall IR LY(S) (Y(t+T )=
= dLY(S’ (v(t)) = dLY‘s) (Xtyit))).
QED.

Definition: (The exponential map) Define

exp: TG + G . by

exp (tv) = ¢ (t)

Where 4, is the one-parameter subgroup that corresponds
to the left invariant vector field V defined by v. Equi

vallently we can write e¥ = #,(1).

Theorem: exp is a C® map.

Proof: #&y(t) is the solution to the differential equation

tglt) = v (0, (€] = dL ¢ ¢ (V).

But Lg (vl is €% in g and v and consequently, sc

is the solution .
QED.

dlexply, = id : ToG * ToG,

Which implies that exp is a diffeomorphism from a

neighborhood U, ¢ T,G onto a neighborhood We ¢ G.

(2) If £f:G + H 1is a Lie group morphism
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then, foexp; = expyodf.

{Observe that both 'Netxl ana etd ¢(x) are one-parame

ter subgroups with initial tangent 4 ¢(x).)

23. Examples of exponential maps.

i. R + sl . where RZ Imaginary complex numbers, defined

by e»ez'lie

ii. (®3, vector product]) +S3, the same map as in i:

iii,

Choose cylindrical coordinates in R3 ~{01};(8,J)
with 6 in R and J2 = -1 1in 52, let (0,0)~ 87 :=
i= cos 0+ gin 67,

See what happens along each ray, 8J,, and compare with

example i.

V=@®"' or €7, G = Aut(V) open in Hom (V,V}.
Identify T,G with Hom (V,V} and for A in Hom(V,V) let

ethA » I+th+_t_§,a._2,+...+ nan o
A _.'I'.._A_nl

Observe that this is a C® homomorphism from (R, +}
to Aut(Vv), i.e., a one-parameter subgroup with tan
gent vector at t= 0 equal to A. So in all matrix

n
groups we have eh = E A, where A° =1,
nl

i.e., the usual matrix exponential.(s"\o\ﬂ Convu‘aema.).

Similarly, for any finite dimensional vector space

V, exp : End (V) + Aut (V) is given by the usual expo

nential, where the product in End (V) is composition.

14

24. Exercise:

i.

ii.

iii.

iv.

V.

For matrices A and B in Gl(n,C) = M,(C] we have

[A,B] =0 => eA*B = oheB,

n
1f RM— R“/ln‘ z Th is the covering homomorphism

then show v is the exponential map of the torus T!.

Show that the image of exp "determines® Ggt
The connected component of e in a Lie group G, in
the sense thatw in G, is a product of elements in

exp (Upl.

If G is connected, a homomorphism of Lie groups ¢:G-H

is determined by {d4), -

Show that there is no A in M) (R} with explA) .‘-‘15 _g"

25. Exercisae:;

i.

ii.

iii,

Classify all real two-dimensional Lie algebras. (: The
trivial one and the one with product [e; ,e;] = e for

a basis { e .8 ¥,

What ig thel-connected Lie group that corresponds to the

second Lie algebra?

Let G = ((x,y) in 12 . ¥Y>0 )} and the following composi
tion law (x,y)»g : R *R given by g(t) = yt + x.
Now compose g,* g, as functions 9,° gz(t) =

R 2 (y2t+le + x1.=y1y2t +y1x2+ x .

Show it is a connected simply connected Lie group and

find its Lie algebra.
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26.

27.

28.
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classify all 3-dimensional real Lie algebras and
find their corresponding simply connected Lie groups.

(S¢¢ [Kirillov}).

Remark: A theorem of Elie Cartan asserts that for any

real finite dimensional Lie algebra & there is a simply
connected Lie group G with L(G) isomorphic to @ .

This theorem is no longer true, in this generality, if
we consider infinite dimensional Lie algebras. For a re
latively short proof of Cartan's theorem based on the
vanishing of the first and second de Rham cohomology

groups of a finite dimensional simply connected G, see

[Gorbatsevich].

Theorem: If ¢ is a continuous one-parameter subgroup of

a Lie group G, then ¢ is C .

(For the proof, show that ¢(t) = exp(tX) for some X in

Te 6 and small ¢, Then translate using " @isehomomorphism1

Corollary: (1) A continuous homomorphism between Lie groups

is ¢c® .

{(2) A locally euclidean (locally homeomorphic
to some euclidean space) topological group can have at
most one differential structure, making it into a Lie group.

Hilbert's problem: (Montgomery and Zippin; Gleason 1952}.
Every locally euclidean topological group has a differentji
able structure which makes it into a Lie group.

a0

(Actually, a C structure on a Lie group contains an

analytic structure, a fact which implies uniqueness of

is

the C*® structure). The following two theorems determine
the relations between Lie subgroups of G and subalgebras

of L(G) and their proofs may be found in [Warner].

29, Theorem: Let ¢ :H * G define a Lie subgroup of G, Then

¢ is an embedding (homeomorphism of H with ¢ (H} in the

relative topology) iff ¢ (H) is closed in G.

30. Exercise: Give an example of a non closed subgroup of a

31.

32.

33.

Lie group.

Theorem: Let H be a subalgebra of G : The Lie algebra
of G. Then there exists exactly one connected subgroup

{H, ) of G, such that, d ¢{fi)= A

Corollary: There is a one to one correspondence between
connected Lie subgroups of a Lie group G and subalgebras
of its Lie algebra.

We recall from topology that if é ;[+G is a covering
of a topological group, then G can be given a topologi
cal group structure, so that Y in a group morphism. So, if

G in a Lie group, its fundamental covering space G is

also a Lie group, locally isomorphic to G through Y.

Exercise:
i, show that the product group R x SU(n) is the fundamental

covering group of U{n) for all n.

ii. Show that the product group slx SU(n) is the n - fold

covering group of U(n).

iii. Is U{n) an (n~-1)-fold covering group of itself?
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35.
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iv. Is the m - fold covering group of U{n) unigue for all

m=2,3, ... ?

Example: llsotnlitzan23

In order to investigate this example and to facilitate our
understanding of the construction of the fundamental co
vering groups {double coverings in this case) of the
50(n)s, we first introduce the concept of group actions

on manifolds;

Definition: A C* map u: Gx M+ M
where G is a Lie group and M is a C* manifeld is called
a left action of G on M, 1iff

{i) it is smooth,
{ii) u(e,x) = x, for all x in M, e the unit of G,

{iii) wh, g,x)) = w(hg,x), for all g, h in G and

x in M.

A C”map v:GxM+M with vie,x) = x
and vi{h,v(g,x)}) = v (gh, x)

is called a right action of G on M.

Observe that a right action becomes a left action by pas
sing to the inverse (: gw g-1) and vice-versa.

An action is called effective iff gx = x for all x in
M implies g = e {Observe that we have simplified u{gx)

to gx and will do so from now on when there is no danger

of confusion},

We can tura non-effective actiors into on effective ones

by dividing G by its normal subgroup that fixes everything.

(ii)

36.
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So we assume all actions effective from now on.
An action is called (i) FREE iff gx = x for some x in

M implies g = e,

TRANSITIVE iff there is %, in M with

{gxg |gamG} = M,

If y is a left action of G on M we have that to each

g in G corresponds a diffeomorfism Lg

Lg(x} = gx. This gives us a group monomorphism

of M defined by

G + Diff (M) provided i is effective.

Let Gx := { gx | g in G} : orbit of x in M.

G ={gingG | gx = x} : Isotropy subgroup of x,

If G/Gy denotes the quotient manifold of ¢ by its sub
group Gx then Gx is diffeomorphic to G/Gy . All
elements of the same orbit have isomorphic isotropy sub
groups.,

If the action is transitive, i.e., there is just one
crbit, them M & G/y » i.e., M is a homogenious space
of the group G, where H is the isotropy subgroup of

some X in M,

Examples:
{i) GxG + G by
{g, h) = gh

This is a free and transitive action.



ii.

iii,

iv.

vi.

vii.

viii.
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G xG + G

(g,h) = ghg'1 : conjugation.

This action is a rich source of examples.

G x G/H + G/H
(g, g H) + gg,H

This is the usual way G acts on anyone of its homo

genious spaces.

Glin, R) x R" + g"
(A, £} » AE Linear action of the ma

trix group.
Restrict the above to 50{n) and find the orbits.

Restrict action v. to $""! and show it is of the

type described in example iii. Find H,

If h is an action of G on M, then it restricts to

each subgroup H of G.

If vis a. € - or R - vector space with dimv = n,
there is no natural action of Gl(n, €) on v {i.e.,
without having to choose a basis). There is, however,

B
an action of Gl (n,”C) on the manifold of bases of ¥

by -+ - -
al,l- s By Vl\ ajvqt...t aln Vi

a’ a' v )_ - T
nl **" “nn \\ n/ Anvite e YAy

This is a free and +transitive action.

37.

38.

20

ix. A principal G - bundle amounts, essentially, to a

free G - action on a manifecld P.

Exercise: Show that in the case of a Lie group actionwith

just one orbit type (i.e., all possible isotropy subgroups
are conjugate in G) the quotient space can be given the
structure of a manifold in a natural way.

We assume principal actions from the right for conve

nience.

Examples: of principal bundles:
(1) Aall H...G + G/y, H subgroup of G.

(ii} 80(n) ... SO{n+1) + SN (special case of (i}).

(1ii) s0(n) ... O{n} = Z,
{iv). 0(n) ... Gl(n) = gn® + n)/
{(v) Gl(n) ... B{(M} > M

Where M is any n - manifold, B(M) is the manifold
of bases of M, i.e., b in B(M) iff b=
= {xl(m), vee s xn (m)) a basis of TXIML the

tangent space of M at m.

{vi) Let cpl be the manifold of complex lines in c?.

In homogenious Coordinates, [Y] belongs to cpl,

y
where (7) in ¢? - (o} and [;15[;;) for any A in
€ - (ol}.
Let SU(2) act on CPl by matrix multiplication from

the left. Show that the action is transitive and



where 5% is diffeomorphic to cpl.
39, Exercise:
() If MxG + M is a right action and G x F + F ie a
left action, then G x (M X F} * M x F
by g, {(m, f) ——y (ng, g-1£)
is a right action which is free if any one of the above
two is free.
Take B{M) in place of M, Gl{(n, R} in place of ¢
and RM in place of F. Now Gl{n, R} x (B(M} x RP) =
+ Bi(M) x R® is a free action with quontient T : the
tangent bundle of M.
I.e., we have:
R
Gl(n, R) ... BiM) xB® — ) B(M) xB® = T
Gl (n,R) 1
M
{(ii) Show that this is a general phenomenon: If P x G—P is
a free action with guontient M, which must, therefore,
be a manifold, and if G x F—F is any action, the
following diagram is commutative
P F
G... P XF o, PXF 40.
l G
G ... P E— M

21

prove that this way we obtain the principal bundle

sl ...8% + 52,

22

With rows principal G - bundles and columns fibre
bundles with group G and fibre F.

This procedure defines the “assoclated bundle with
fibre F" (right column) to the G - principal bundle

defined by the bhottom row.

(iil) If f : G x M .3 M is a {left) action andm, is a

fixed point of M, i.e., am, = m, for all g, then the
map ¥ : G + Aut (Tménl

defined by Y (g} = (dLglmo is a representation of G.

The adjoint repregsentation

Congider the conjugation a: G x G + G (action of G on

itself by inner automorphisms} (g, h) +ghg‘1s ug(h}.

The neutral element is fixed by ¢ and s0 g-vdug

defines a representation G * Aut(Ty G} called the

adioint representation and denoted by ad: G -+ Aut(al.
Ad{g) is usually written as Adg, (where G is identified

with TeGl.
Recall that if ¢ is a Lie group morphism then the

following diagram commutes:

|

G

d4

re—

expg exp,

|

——3 H

$

Corollary: If ad = d(Adle and Exp is the matrix expo

+ B0t 4 ...

ni

nential Expis) = I + 8 +...

then the following is commutative
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~ ad M
G ———3 End {G)
expl 1 Exp
G _ Aut (G) , i.e., Exp(adx)=Adex.

ad

Notation: adix) = adx, for all = in G.
The following diagram also commutes:

—_ G
xp
_——

and this implies et Adg (X getX g1 s for all X
in G, t in R and alloin G. Taking the derivative at
t =0 we get:

Adg(X) = {3tk o, oetX o1

Which is quite useful when operating with the adjeint,
In the case G= Aut(V) then & = End(v) and Exp: G — .G
is the usval "matrix” exp. For B in Aut(V)} and C in

End (V) the formula will become

Ad_ (o) = @ -1
B — BExp{tC)B™" =
dt |t=0 P
=_4d B(I + tc + t2c? + ... )7L
dt jt=0p 1! 21
= d 1
—_ (I+ t BeB~ L1+, ..+tM(BeB" )Ny, ., .=
at t=20 1t

n!

= Bee!

24

which shows that, in the case of matrices, conjugation ig

precicely the adjoint.

Proposition: For a Lie group G and X,Y in G

adx{Y) = [X,Y}.

Proof: ad, (¥} = _4a ad ' (¥Y) =
dt |t=¢0 e
= a a
. _— tX sY =~tX
at |t=0 das |s=0 {e e e 7).

This means the following: For a fixed t, et¥ e5Y e~tX

is a curve in G, going through e for s=0, Its tangent
at ¢ =0 is an element Y, of G.
Varying t now, we get a curve Y, in E;, passing through Y
at t=0. Its tangent vector at t=0 translated to the
origin of &. : T, G is ady x).

Recall now from Example 18 that if F is the one parame

ter group of diffeomorphisms of G generated by X, then

[le]g = __g_

d(F.y ) Y(F (9)).
dt

t=0
As we maw at the beginning of the preof

ady (v = _d_

| dRe_tx (Y et'x ) -
at |[t=0

But the integral curve of a left invariant vector field X

through g in G is

get¥ = Retx (g).
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25
Sa, Et gy = Re-tx {g), which implies As s} is simply connected, my50(3) 42, from the
theory of covering spaces (or from the homotopy sequence
a 4 of the above fibration).
- aRopx (Lox ) = Py (Ly )=
de | t=0 dt |t=0
42. Exercise: Consider the map 2 + 3, induced by the inclusion
= [ X, Y]. 80{(2) ~ S0{(3} on the %) - level. Exhibit a homotopy, in
§0(3), between the image of
Q ED.
1 0. 0
cos§ =giné -
Clifford algebras and Spin " ° cos 28 -sin2e
sin® cos® g gin 26 cos 20
We go back now to 80(n) and its double covering for
n z3. and the identity map.
Observe that the conjugate action of s3 on itself i
(Hint: Consider the map « *B where B : s> +» s3 1is the
a:s3xs?sgl by
restrition of the inclusion ¢ € H.)
efa)(x) 1= q r g Now the homotopy sequence of the principal bundle
is not effective and 3, = {1, -1} is the normal sub s0(n) ... S0(n + 1) + 8" implies that the inclusion
group of S3 that fixes everything, The corresponding S0 (n) € SO0 (n + 1) induces isomorphisms of " S50{n)s
effective action is then 3 3 3
N at 8y, * 8+ 5 a %, 50(n+1) for all n23, so that ¥) SO(n)¥ I, for
which extends to an actlon of 53I32 on RY = 4, by all ne3.
isometries of the usual euclidean metric. We have, there 431. Exercise: Show that
fore the representation a:83 -+ 0(4) which is given by i. The Euclidean scalar product in g'= 8 is given in
a{x) {y) = xyX, when x in 83 and y in RY. since terms of conjugation by 2 <u, v >=uvé vi
e{x)l=1, a(s}H ¢ 0(3) the isometries of R =Im (H).
As c©3 1is a connected 3 - dimensional manifold, image of ii. Im © consists of all u in € with u?= _|u|2
a is S50(3), the identity component of 0(3) and we have
iii., Ifv, uw in Im# then <u,v>= 0
the double covering
iff uv = -yu., In this case uv is in ImH.
a
Z, - s3 —— 50(3).
iv. If q i Im {(H), -0g) = Rq s the reflection of
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R3 = ImH, in the hyperplane perpendicular to gq. I.e.,

a(g) is the reflection in the straight line defined

by 4q.

v. For each A in §0(3) there exist v, v; in g = S%ﬁlmﬁh

with A = ¢ R .
R"l V2

vi. Give a direct proof that a : 8 + S0(3) is surjective.

The universal covering group of S0{n} is denoted
by Spin(n) for n3 and the above shows that Spin (3) = g3,
The construction of Spin (n) , n>3, is basically an imita
tion of the process described in the above example [Atiyah,
Bott and Shapirol: To construct Spin (n), we include ®" in
an associative algebra with unit, denoted by C,, which is
the analog of H in the case n =3  so that for all v in

R" ¢ cp we have vi= - |v|2. This implies

2¢X,¥> =<K, K>+ <Y, ¥> = <Xy, X-¥>* -xz —yz- {x-y)2 =
= —(xy + ¥x). S0, xy = =yx for x and y mutually orthogonal
in ®/? . This property guarantees that the reflection
xR, (x) is given by x +vxv, The algebra C, should not
be "too small®™ in order tc cover all of S¢(n) or "too large"
so that it doesn't contain too many elements,

To define Cp, let [el, A }be the "standard®

basis of R" (or any orthonormal basis for that matter) and

let

{1, €9r «cxs ©ns ] €3¢ ceny en_len,.."...,...,el..,en}
be the "standard” basis for C,, so dim C, = 2",
The regquirements above impose

f = -1, eiej= -ej e i#73

e

28

which in turn give us a multiplication table for C,.

44, Exercise: Cp is “"universal®" in the following sense: If
j o ®" + A is a linear map, A any associative algebra with
unit 1, , satisfying j(x)2 = - |x] 2. 1y , then there exists

exactly one algebra morphism 3j: Cp~A with jai =7 :

iR ;)Cn
i\ ;9
A

{The inclusion i is given by the fact that €re--,e are

basis elements of Cu).

i

1f 910

o

span {1, e,—_l ...e_-lk tt_il<...<ik‘:" k even}

span [ei1 ee ®y i <., < i k odd }

then €, = Cr? ® Cnl where CI? is a subalgebra of

[ and the above direct sum provides a 3, - graduation

i cli+d)
n n

n

of ¢,. Il.e., for x in C y in c% . Xy in where

[i+3j] is considered module 2,

45, Examples: [Curtis] {i}) C; = € with basis {1, e; } and

1
= R, C‘ F ImC .

2 _ o
e = -1, C1

(ii) ¢; = span {1, e1, e;, eje; } with
Cg = gpan (1, %82}3 C;

{iii) Let ¢ = C,_; ~» € be defined by gle;) = & e . 1=

= 1, +.., k-1.



kY]
Show that ¢ extends to a well defined algebra isomor 0 i o 1
io L |
phism of C_ . on to G - . e, , e and
0 0 ~i -1 o 4
-i 0 -1
(iv) Consider (i, i) e; ¢t (j,3) ey, and (k, -k)=e; in
H ® M, observe that these are anticommuting complex
structures, i.e., (1,1)2 = = (1,1), etc., such that i
]
their products {1, €1, €3¢ €3 4 €18, €185, €8 5, i
we induces an isomorphism
eje,e, } are a basis of H @H over the reals. So, i 5 P
i 0

C; = HPH,
/ -
¥ H‘ {C) = CS .
(v} Consider the following elements of M; (H):

: We proceed now with the comstruction of Spin {n) .

i 0N, E 0 k 0\ E a/jo k
h 1 ; . =E2, )5 3 o Eg+ Let C* be the group of all invertible elements of C.
0 i 0 j 0 -k x o n

We may consider it as a subgroup of G1(2", R) by: xin Cn’

Show that they are anticommuting complex structures, sends y in C to xy Define
n .

i.e,., Ey Ej + Ej E;= -24!1:.| and that the set
Pin(n) ={viv,...vy | v;in s771¢ /7, k =1,2,...

{1, E I E1Byy sver sesr Biuus E, )} 18 a

i R A A ! " 4 and ohserve that since vf = -1, Pin(n) iz a closed
basis of My (H) over the reala. Conclude that Y:M{#)5= * ., o
subgroup of C . Define also Spin(n) = Pin{n)NcC,,

¥ C b E, * e,;. -
¢ Y i i i.e., Spin(n) is composed of all Vyeer Vogu V§ in " 1.

Observe now that the identifjcations in Examples (i) (ii)

n n-1
and (iii) can be obtained by successive inclusions 46. Claim: For x in R° and u in § the assignement

n
CCHEcH@H C M, (4. X -+ uxu is the reflection, in R® , in the hyperplane

perpendicular to u.
{vi) Working the same way as in (iv)} show that the assigne

ment Proof: Let u, Uy ... U, ; oOrthonormal basis of R"
i . o) 0 -1 and observe that u * uuu =-u while uj~*uugu =
i Pel' 1o " e = =g uu = u N
o 0 -1 i i
-1 © 1 0 Q E D.



47.

48.

Proof: Let u,u

corollary: For uj... 4 in Pin(n) and x in R” the
assignment X+ Uy oo XUp... Uy defines a repre
sentation of Pini(n) onto 0(n), which restricts to a
representation of Spin(n) onto 806(n}. Letw:Pinin)* 0{n)
denot:hgpimurphism.

Proof: Recall from Exercise B8ii that each A in

0(n) is a product of reflections and that the determi

nant of a reflection is -1.
Q E D.

Proposition: The kernel of v is {-1, 1}.
= 0 1 o 1
1 Uzeee Yy X + x* in cn + Cn be in

ker (7). I.e., for each y in &%,

a(x® + x} ) y(x°+x1)- = y

where a:; G — G is the automorphism extending

n
x —+-X for x in R .

k
Ob P = (= P
serve that a{ul uk) (=1) ul uk and

(u Lo 1k
1" u ) = (-1) LR ul.

so, x° + x! is in ker (m) iff alx® + xlyy = v 1x% x1)
for each y in ®". But ax® = x° and ax! =-x1 and the

condition above is equivalent to both

x%y = yx9 and xly = -yxl

] 1

o .
Let now x- = a" + e b where a® inc?, bl in CJ

and neither a® nor bl contain a summand with the

factor ey . Apply the first of the above relations

toy = e and obtain

32

ao + e b1 = -ellao + e

1 blje + Wwhere

1 1

. . o
each monomial in a® is in C, and contains no factor

of e, , s0 a® commutes with e,

1 1

Similarly, elb = =-b el . The last condition

therefore becomes: a® + elb1 = a% elbl, i.e., bl= 0: x°

contains no monomial with the arbitrarily chosen e and

therefore x° in R - Let now x! = al + e1b° where
al and b° are sums of monomials with no e, factor.

A similar argument' implies b%= 0 and x! does not
involve el(or T en). But x! is in C;',
so x' =10 and up eeeny = x° in R - {0} since it is
invertible. From (u;... uk)-l = (—1)k uk... “1 =

k
(-1) transpose (ul... uk) .
where “transpose® is a canonical antiautomorphism

tr : Cn-_a Ch defined by ¢tri{x) = x, x in g" and

-1 k
tr (uv)= tr(v).tr(u), Therefore (x%) = (=-1) tr (x°) =

But x ° = ~|x,| . 1, therefore x5, =1 or -1.

Q E D.
We have therefore the double coverings
12 12

Spinin) € Pin(n)

L "
~

50 (n) & o(n).
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50.

33

To show that w |: Spin(n)— §0(n} is non-trivial it is
enough to show that ker(r|) = {1, -1} can be connected
by a path in Spin{n), for nz 2.

A convenient path is

Y(t) = (cos{t)e, + sin{tle ){sin(tle +cos{tie )~ Dseg -
1 2 1 2 4 4

Corollary: Spin{n) is connected for ni&2 and simply

connected for n& 3. Moreover,

Spin{l) = 12 and Pin{l) & 14.

The proof follows -from the homotopy sequence of

71_2...Spin(n) + S0(n). Compare with Exercise 42 also.

We have seen, at the beginning of this section, that

s3 is isomorphic to Spin(3)}. There are a few more

interesting identifications of Spin{k)’s with classical

groups:
Exercise:
i. show that the assignement
- 4 _
(%, 9) —+ (1 —xgY) , EinR 2 H
3 3
from S x 8§  to SO0(4), where the products are guaternionic,

provides an isomorphism 53 x 33 ¥ Spin{4).

ii. Show that Spl(2) ® Spin(5) as follows:
s5p(2)

£ S

§ ——————— 5

34

where = (f §) = () and h{p)= (aa - bb, 2ab)

Show that p is the projection

Spin(4) ... spin(s) 2 54
and use this to write down explicity the projection

sp{2) — s0(5).

iii, From exercises 7 and 8 we see that Sp(2)E SU{4}.
Show that Sp(2) ... SU(4) —+ 85

implies SU(4) +Spin(6) and write down
explicity the projection SuU{4) ~+ $0(6).

iv. Include your findings in the diagram

SU(2}) . . . SU(3)— 8>

sp(2) - . SU} —— §°
57 51
v. Show that Pin(n) = ker(N), where WN: Cy-e-(0}

is defined by MN(x) = x. oftr(x)) Zxx* and is a group

morphism.

vi. Show that an element u1 1.1k in Pin(n},

with u, in S"-1 ;, is equal to v ... Vv

1 L in Pintn},

n-1

vj ins and L gn. So, each x in Spin(n) is a

linear combination of basis elements in cr.° with xx*=1,
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J.
vii .. Show that ¢ : Ck—l Ck

property ¢(x*) = ¢ (x)*, and the isomorphisms ¥ of

of example 45(iii), has the

examples 45 iv, v and vi have the property VY({A*)=

. =tr
= Y{A)*, where for a matrix A, A*=A .

vitd | [Curtis}. Show that the compositions

4 5

¥
Sp(2) L M (H) ——C —2* el
1 1

¥ ¢
and sU(4)C— M, (€) _»cs__)c:

= 3

provide isomorphisms Spi(2) = Spin(5) and SU(4)eS5pin(6).

An organized, unified, treatment of all low dimensional identi

fications of spin groups can be found in [Yokota].

A source of low dimensicnal examples of Lie groups
and relations between them is the Cayley algebra [Porteous,
Postnikov, Whitehead, Yokotal. We follow here the exposition

in [Portal].

51. Definition: On H@®H define a product by (a,b) (c,d) :=
:= {ac - Eb. da + bc),
The result is a non-associative algebra with unit (1,0)
and no zero divisors, called the Cayley algebra and denoted

by &. We obtain a basis for K from the usual basis

e,=1 =(1,0), gfii(i,ol e, =j = (3,0} and
ey=k = (k,0) of # together with e, 2 {0,1) and the
duct 1= 1= L=
products e5 e1e4. ee eze4 and 37 8334 .

52. ExXercise:

52

53,

36

(i) Let A be the subalgebra of K generated by x,y inkK.

Show that if x 1lies in the subalgebra (with unit)
of ¥ generated by y then As€ and if not, then A®H.

So any subalgebra of K generated by two elements

is associative.

{ii) e, e, and e, generate K as an algebra.

Definition: The conjugation on K is

(a, b) = (a, ~b)

and satisfies X =x R Xy = ;i

Re K= {x eK| x=Xx} = {(r, o), ree} =z R

Im K= (y K| y==y } = ®’ and

1 - 1 -
K= ReK ® ImK by x= — (x+x) + - (x-x) .
2z

If <, > is the usual euclidean product in Ra.

2 <X, ¥> = Xy + yx

which implies that x is perpendicular to y iff

Xy = -yx and also that

- 2

% = x|, fxy| = x| lyl.
Corollary: The maps A, o=s7————+ s0{8}
with Aéx) = ax and %(y) 1= ya
are well defined and satisfy nmel = id, ™ p =id

7
where 7 :50(8) — S is the 13% column projection,

and m' is the 1St row projection.
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54. Exercise:
{1) show that each x in K satisfies
x2 = 2Re(x).x - |x|
Find the geometric meaning of this formula ard

relate it to the Moivre identitjes of trigoro

metry.

{ii) For all a, x, y in K we have

a{xyla = {ax) {ya)
(axaly = alxiay)]
x (aya) = [ (xa)yla

These are called *"Moufang identities®.

{iii) a(xy) = (axa) {ay)
(xyla = (xa) {aya)
- 2 -
alxy)a = (axa }(a 2yal-

Bl pxp) (pyP)Ip = (x5 ) (P ¥).

tiv)  If (xp)) (Byy) = (xp,) (p,y) for all X,y in K

then P, =iPpy.

55. Automorphisms of K:

A linear isomorphism T: K—K 1is called an

automorphism of K iff

T (xy) = Tix) T(y) for all x,y in K.

The Lie subgroup of Gl(8, R) .composed of automorphisms
of K is denoted by Gz.
If T in Gyr T(x) = T(l.x) = T{l).T{x) and T{l}=1

50 T leaves Re K invariant,

56.

57.

38

Mow T{x) = T(Re(x) - Im(x)) = Re{x) - T(Imx) =

= Re{Tx) - Im(Tx) = Tx and
—_ - - 2
I'l'(xll2 = Tx Tx = T(x) T(X) = T(xx) = T(|x]| )

2
= |x| ., which implies G, €0 (8).

Since x in ImK <=> x° = -l:n:[2 we have that T(ImK)=

= ImK for each T in Gz.

This implies (;2 € o0(7).
From exercise 52(ii) follows that the values T(ell,

T(ez) and Tle‘l determine any T in G,. As e is

perpendicular to e, and e, is perpendicular to ey,

i 4
e, ee, we have that 'r(eli ‘l‘(ezl and '1'(e4) (T(el).

T(ezl P T(ell -'Ne2) .

v unit
Exercise: For x, ¥, 2 in s8¢ ¢ Im(K) with

<X, Y> = <Z,X>=<zZ,y> = <z, Xy> = 0

there is exactly one T in 62 with

‘ralax, Te2-y and 'l‘e‘- Z.

6
As a corollary we see that G2 acts transitively on § ,

since T_..'r(e]_) is onto sr’.

Corollary:

(1) LI where H = {T in G, | Tle,) = ell'

2/y
Show that H is isomorphic to SU(3), which implies

sU(3) --- 6, — 56

{ii) G2 is connected and simply connected, there



(iii})

58.

59,

39

fore G, ¢ 50(7).

Observe that the argument above shows that G2 acts
transitively on the manifold Vz 7 of orthonormal 2-
r

-frames in R7 = Im¥K, by

T(fl, f2) = (Tfl, szl. Show that this implies

3
5 GZ——"——)Vz,? .

Remark: An account of the fibration

€, « . . S0(7) —— P

and its relation to the Veronese embedding of RP7

into Rlﬁs can be found in [Portal].

Triality:

The property of Triality as proved by E. Cartan in

the early 20's [Cartan] is the following:

Theorem: For all A in 50(8) there exists exactly one
pair, up to sign, *(B,C) in 30(8) x S50(8), with

Aixy) = B{x)-C(y), for all x, y in K.

the unik

Proof: For x in &, u in S’ C K the reflection of x
in the hyperplane perpendicular to u is R,(x) =

= -uXu : As both maps are in 0(8) it suffices to check

their equality for x

u and for x perpendicular to u.
In fact, Rylu) = -u=-uuu and for<x,u>=0 , ux =
= - Xu , as a consequence of Definition 52, which

implies Ru(x) =x = (uulx = ulux) (Exer. 52 i) =~-uxu,

Now from Exercise 8ii follows that tor A in 50(8)

40

there are Vl. ceny Vr in ST , reven and r §8, with

Alx) = va @ +us 0 Rv {x)} = vr(...vz (Glxw'r]_)vz...)v

. r

Since the minus sign and conjugation appear an even

number of times,

The first Moufang identity, Exercise 54ii, implies

Alxy) = v, (... (v, h'rlx)) ...)]H...lyGl)vZ)...vr] =

= [J\v.----k‘-, {x,] [Dvo ---cpv (Y'] ’

1 r 1 r

where ) and f, ~are the maps of Corollary 53.
Vi ]
To prove the uniqueness of the pair +(B,C), let Alxy)=
= Bl(xlcl(yl = Bz(x)cziy) for all x,y in K.
-1 -1 .
Let x 551 {x) and y'zcl {y) to obtain (1) xy =

_l _1

= BJ(x) C3(y) + where B3 = le!‘1 and C3 = C2Cl .

Set y = 1 and obtain
B3(x) = xC3(1) Z xb,
Similarly C3(y) = B3(1l.y ya.

Returning to (1) now we have xy = (xb).{ay}) for all
X,¥ in &, which implies b = a"l, by setting x=y = 1.
Let now x = xa and obtain

{xaly = x{ay) for all x,y in K,
So, a 1is real and therefore a =1 or -1, i.e.,

= ’ ’ = ={B r C .
(Bl,cll (B2 c2) or (B1 Cll {2 2)

Q E D.
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60. Notation:

(1)

{ii)

For A, B and C in 50(8) we write (A, B,C) in @ iff

Alxy) = B(x) C(y) for all x,y inK.

For A in SO(B) let A in S0{8) be A{x) := A(X), x inK.

6l. Corellary:

{i)

(ii)

(iiiy

{iv)

{v)

(vi)

(A,B,C) in e iff (A,B,C) in o6 .

(A, B,C) in @ 4iff (B, A,C) in @ 4ff (C, B, A)in e

iee et ety in e

(A, B, C) in ® and Ii\l, Bl,cl) in & implies

(AAI,BB CCl) in © .

1’
8 is a closed subgroup and therefore a Lie subgroup

of S0(B) x S0(8) x s0(8).

The maps 7 : & ——— 50(8), i = 1, 2,3, with

“1{AIJ 1‘\21 53) = Ai

are smooth group epimorphisms, each with kernel
composed of two elements. They are, therefore,
double coverings of S0(8), which implies that &
is locally isomorphic with S0(8).

The path (At, Bt' Ctl in @ with

AL = R; o R

jedre ¢ Be T A0 A ine

Ce =py Piaint R 0s5ts 1 , joins

(r, -1, -1} to (I, I, I) implying that o is

(vii)

connected and therefore isomorphic to Spin(8).

Recall now from Corollary 47 that the morphism
" : Spin{8) ————— % 50{(8) defined by

- . —_— .
a vy vy nvlc-- onL

7
with v i in s + & even and the product on
the left in C.' s 1is a double covering.

We can define now two more double coverings

A and p ¢+ Spin(B8)— SCG(8)} by

p (Vl...vk} zm l‘i Seaesp Xak and

p (vl “-- vkl = p"]_ ° ....OGk
An aexplicit jisomorphism between © and Spin(8) is
then the following:
Y=(®,2,p) : 8Spin{8) — 8
with y(a) 1= {x{a}, Ala), p(a))

for as= vl... Vi

Moreover, 7 = nlay : A-nzoy andﬂ-laoY R

where the %8 are defined in item iv above,

Proof., Straight forward and left as an exercise.
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To obtain the infinitesimal version of triality we define

for each A in 6\0(8).

at - @i o (dnl () and

AP a @
= P)lo L Y.

We have then



62.

63.

64.
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Theorem: For A in éb(ﬂ) ¢ X, ¥ in K

A(xy) = AA(xly + xaP(y)

Proof: Fix x,y in K and define
f, g : Spin{(8) . K by

fla) = n{a)ixy) and g(a) = [A(a)(x)][p{a){y)].

Since £ = g, (dfh (dg)1 applied to B in '& Spin{(8)

implies (df); (B) (ar), {B) {xy) is equal to
(dglllal = [(dx)lln)(x)]y + x[dqﬁB)(y}l.
Let now A in TI S0(8) be (dwth) = A,
Q E D.

Exercise: Formulate and prove a unigueness theorem for

infinitesimal triality.

Simple applications of triality

Definition: Let Spin(7)* ={B in 50(8)|(A,B,C)in &

r
A in 50(7}}, j.e., A(1)=1.
It is immediate that Spin(7)* is a subgroup of s0(8)

that if B in Spin(7)* above then C = B and

Alx) = B(x) B(l). Consequently («) B(xy) =

= ({Bilx) B(1))Bl(y) for all x, y in K,

This last equation may be taken as the definition of
Spin{7)* as a subgroup of S0(8) and it shows that it
is closed and therefore a compact Lie subgroup of

50(8).

65.

66.

67.
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Definition: Letd : Spin(?)*— S0(7) be

B b———— 3 A

Observe that ¢ is a well defined Liegroup epimorphism,
-1
since -A does not live in S0(7), and that § (A) =
= {B, ~B}. Also & is, locally, nothing else than
-1

O
“1. "2 and so it is C® .

It is also obvious that Spin(7)* = X{( Lsoim)

in 80(8). Now, 1 lso(n) = Spin{(7) in Spin(8), which

is connected and implies that Spin(7)}* is also connected.

Corellary: Spin{7)* is a subgroup of S0(8) isomorphic

to Spin(7) and & above is the universal covering map.

Exercise:

(i) Show that Spin(7)*n S0(7) = G,.

" {il) show that the projection to the first column
restricted to Spin(7)* generates a non-trivial

homogenious fibration

G2 c s0(7)
Spin(7)* € 50 (8)

L

s’ = s’

(iii) Use exercise 54 (iii) to show that for a in 57,

the map Ra* RB that sends x = a x az in an

element of Spin(7}~*.
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(iv) If T:8' ——3850(7) 4is T (a)(x) := axa £ind

the pre-image 1-1(62) g s’.

o
(v) Spin(7}* = {B in S0{B)|B=Ao... e 4 , k even, v, ins }
% %

7

where s € s'n Span{el, cees e_’}

=1
{vi) Let spin(6)* = & {50(6)) £ Spin(7)*,
Show Spin(6)* = {B in SD‘B)' B = Ar.-.cAGk + k even,

5
v, in s }
where 8% = s7n{5pan €y seer e.,}

Similarly with Spin(5)* -sts0(s) ¢ Spin(6)*.

67. Exercise:

(i) If E in S0(8) is the interchanging of the last two
coordinates and if ¢ : U(4) —» SO(8B) is the inclu
sion of Exercise 7, show that Me E.¢ [MME
defines an inclusion ¢ of U(4) into S0(8) with
€{50(4)) = Spin (6)* '

and the following diagram is commutative

SU(3) —e—y £SU(3)

. a
- -
. -

SU(4) —"—5e(SU(4)) = Spin(6)*

pl
L4
s’ —E s’

{ii) There is an analogous to E linear map F in 0(8),

such that Fe¢(Sp(2}) = Spin(5)}*E £(SU(4))

with § =Fe ¢(Sp{l}) € e€(su(3)) and one £finally

hasa the diagram:

zispi{l)) £ e(su(3))

n
in

G, 50(7)

. . - -

[L¢]

wspl(2}) S  e(su(d4l) £ spin(7)* 50(8)

lpl lps o Lp

87 s S7 s

See also [Portal], [Porteous}, [Whitehead] and [Yokeota].
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