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CHAPTER II
Integration on Lie groups and applications,

In this chapter we assume some familiarity with inte-
gration of forms on C' manifolds. Our basic references are
[ Adams], [ Serre], [ Swan] and { Warner].

Let {x Ve Xﬂ} be a basig of left invariant vector fields
of the Lie t;roup G and let ;_w“_"lw'ng be the dual basis of
l-forms, which are therefore also left invariant.

Then ... WoAA W is a globally defined left invariant
n-form on & that determines an orientation and we may  so
define integration of n-forms with compact support on (7 :

The space of left invariant n~forms onG is isomorphic
to R and therefore the n-forms that determine the same orl
entation as ) are the positive scalar multiples of Ww.

If G is compact we can always define jw and so, by
choosing the appropriate multiple of W, we (r'l.ave jw =1 .

G

Recall that, in general, we are integrating n-forms w,
not necessarily left invariant, which are therefore \,J,e.w
for some C% function £ on &, The integration is considered
over a domain D in G- , where e has compact support.

Recall that given a triangulation of [, D= %_o‘iaz (-[q).
d-‘_ in R s 1 rung over a finite set , 7 Im' — D are

t
orientation preserving diffeomorphisms into D '

S ( Y 0:) ﬁ w = 5? w
™ I:mm}a-(ol )
plus linearity over linear combinations of chains , defines
the integral J. w or j as it is usually denoted.
Given an},"p inGr, ~ L is an ortentation presexrving dif-

feomorphism since &L (W)=w and therefore, for [ with com

pact support in G,

ffede = S8L(R) - fEL(p) 5L6
= j@.l_a)w = '({"5 .
& G

In other words this integral is left invariant. We would

like to know when is this integral also right invariant, i.e,

under what conditiong is -Le = J;rf.% , Por ol g m G.

As right and left translations commute, 5?(&)) is still

a left invariant n-form and therefore a constant multiple of
b ~

{u, tor each q in3. I.e., S%Cu)) =%}w, where f} is

a C¢® function ; G — R .

Exercise 1, Show that q is a group morphism into the multi-
o
plicative group of non-zero real numbers and that 1(3) >O

iff ? is orientation preserving.

Lgt A (3)‘=ﬁ@” and observe that J:G-. ﬂzt is a group
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morphism, which is called a modular function.

Ohserve now that for each g im (>

o= if "R = [SR(fu) = 2 S8 )58 -0) -

‘(cr)

=1 J(p-R) dg)w
&

with + when Q,a is orientatlon preserving. Using Exercise 1
the last expression is equal to S-c’f Em(a)m . I.e. , the
integral 1is right invariant iff _1@)=m for all g is(r, in

which case G 1is called Unimodular.
¢
COROLLARY 2. All compact Lie groups are unfiodular,
PROOF: Im()) is a compact subgroup of W', so it is {1}. Qb

From now on we conaider this bi-invariant integral on
compact Lie groups,

COROLLARY 3, A compact Lie group (r has a left and right

e

invariant metric, usually called bi-invariant.

PROOF: Fix a left invariant metric <,> on G by
<), wigy:= =< dL 'VE} c“ wﬂ}) where ¢ » 1s any scalar product

on TG Define «v, w», J (dP.(U) dr (w\)wwhere
'e(ﬂ] (Jf U’ AE > isac?® real function on &. The metric

4

& , Wis obviously left invariant, since L P ]2 o L

Observe now that (f P (3) e(gl, (d?a U' J%w«‘)-(de JJQ(YJQ{EW)

which together with the bi-invariance of the integral

LT, W) :AAJE'\o—,dEhw>>. QED.

DEFINITION 4: If V <,, is a real (resp. complex) inner product
space and g;G —vAuE(V) is a representation of G then we
say that § is orthogonal (resp. unitary) iff <S°(3) v, P@)w) =

=L v, wy for allg in G, Vv, W in

COROLLARY S. Given a representation § of a compact G eon
a real (resp., complex) vector space V there is always an inner
product on V with respect to which j° is orthogonal (resp.

unitary).

PROOF: Let ¢,)> bae any inner product on V and define

K w,u)y:= f<f(g)u POy O = c{f(g)w =
J(f~12)(g)m - J <plHa, phiv> 0 =
5 <p(s) ghw, pE)phio>w =gplu, phod,

having used the invariance of the integral. QED.

Exercise 6. Consider the Adjoint representation of (r in its
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Lie algebra and show that Cbrollary 3 can be Proved as a con-~
sequence of Corollary 5.

More generally, show that a Lie group ( has a bi-invariant
metric iff the closure of Ad(G) in Aut(8) is compact.

By declaring the integral linear, i.e., commuting with
linear maps, we can define integration of vector space valued
functions on G-. For example, if f is a representation

£:G — Aut(V) then we can define I? ={e in  Aut (V) ,
[
| Adams] .

PROPOSITION 7: If is an idempotent, i.e., I;: If , whose
image is VG- , the subspace of elements that are left fixed
by f . L.e., 1 isa projection operator.

F

PROOF: First observe that for a fixed v in V

1 = (sl = | @,
f G 9eG
since the evaluaticon of an automorphism on a fixed v is linear

in the space of automorphisms, For v 1in V., this 1s equal

G
to S;;G"g‘kﬁ’ v, i.e., I is the identity when restricted
(3
on V. On che other hand, f)(h) 1f(y) fﬂ\)JP@) ) = (since
the integral commutes with linear maps) ﬂuféi;) = (since

¢l
the integral is left invariant) J"f(a)(U' 1%@], which implies

f.-wu(I ) V . QED.

EXERCISE 8: The trace of [ equails dim{v.).

6

DEFINITION 9: A representation §>: (t - hi-ﬁ]}is called simple
or irreducible iff there are no nontrivial r ~invariant sub-
spaces of V.

For example, all l-dimensional representations are ir-

reducible, as is the Ad-representation of 53 on Ra.

EXERCISE 10. Investigate the irreducibility of the

representations of the classical groups.

DEFINITION 11. A representation £ PG o= Ak (V) dimV <@
is gemi-simple iff every P-invariant subspace WC V has a
complementary P -invariant subspace W& WO W =V,

EXERCISE 12. If G 1s compact, every finite dimensional

representation of G is semi-simple.

REMARK 13, 1If F is an irreducible orthogonal representation
of a compact G in a Hilbert space, then ,o is finite dimen-
sional. This fact is not hard to show {Kirillov]. We will

however restrict ourselves to finite dimensicns in these notes.

PROPOSITION 14: The inner product on a finite dimensional
V, with respect to which a simple representation p,G-»Autun
of the compact Lie group {(r 1is orthogonal, is unique up to

a constant (positive) factor.

PROOF: Let ¢,> and ( , } be two such scalar products.
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It is an easy exercise of linear algebra to show that there

is a basis ¢,.e, Of V with (xyy= Talyl, Goy)= Jq 2

for all = 5 e, and vy - ¢ . Consider the
a0 fo 2 x¢ J=2Z 5%,

symmetric, bilinear map

f(x,g) P = 4'\7(,:1} - a_i'i('xhy) .

we have f(e;‘ e‘)=o for all .f"’,---,"l wich implies

fxav | ey -0 vy} 7 §of-

This subspace of V is also G-invariant by f(ﬂ"h:j) - f("-gﬂ-'y)

and simplicity implies it is the whole Vv, i.e., f_;:o and

a‘<x,3>=(x,3) for all x,y 4in V. QED.

REMARK 15: In general every finite dimensional representation
P of a compact G is semisimple and V gplits into

\:&1--@‘{1 , which is a sum of irreducibles, orthogonal with
respect to any P =invarjiant scalar product on V. (Exercise
12). So, given any two much scalar products <, > and { , )
we have from the above A :(%‘(({.“{) for all {'WC in
V‘.' and for a positive c,. Let h‘(i;)':\fc"'h v for all v,

in V,. This way we get a ?-invariant h in Aut(v) with

ywy = Chy, hw) .

DEFINITION 16: A Lie group G is called simple iff its Lie
algebra & is simple, i.e., it has no non-trivial ideals and

it 18 non-abelian,

PROPOSITION 17: If G is simple and compact then the bi-

invariant metric on G is unique up to a constant factor.

PROOF: Enough to show that Ad: G - Au)c(a) 18 a simple repre-
sentation: Let Vf{ﬂjbe an Ad-invariant subspace of &.
I.e., M@) in Vv forall g in G and all v in V. Tak-
ing g= * now we have Ade&x(v) = Exp Qrdtx(V)-‘E'i’m'fs a curve
in Vv whose tangent at t = 0 is [X,v]. AsX is arbitrary
in &, this shows V is an ideal of & and it must be {0}

or G by simplicity. QED.

EXERCISE 18: 3f G is a Lie group with a bi-invariant metric

then the inversion xpP % 'is an isometry of G.

THEOREM 19: If { is as above then every geodesic is the

left translate of a l-parameter subgroup.

PROOF. [Swan] Step 1. It is sufficient to show it far "short”
geodeslics (within the ball where the exponential is a diffeo-
morphism); If ¢ is a "long" geodesic it breaks into "small"
arcs ci each of which is the left translate of a one pa-
rameter subgroup., If =z in c, nc_;ﬂ , translate the picture to
the identity by the isometry L:.-' ; where ‘;‘;C.’) and Lx...(c('ﬂ)
are l-parameter aubgroups that form the same geodesic: they
must have the same tangent at e , so theu form the same l-pa-

rameter subgroup.



Step II: If ¢€: H —»H is an isometric involution of a rieman-
nian manifold M with an isolated fixed point 4 in MY, then
if x 1is "very near" A the (unique)} geodesic from x to @)
goes through A . This is because %x) is also near } and
there is one short geodesic J from x to g(x) . Since tm is
also , geodesic from 24y to x it must be the same J’, which

has therefore a fixed point, namely A .

Step III: Let B be a point near 1 and xft} be the l-parameter
subgroup from 1 to B with )l.(il‘:'f, . Define ¢:(¢—G by tfﬁ-“lﬂ
for A~ ! . an isometric involution on G. Then 'Q‘:b) =7y
iff ‘N-JA:J: i.e, iff A;j"=-(43")-‘ or @;"Ja=f. One fixed
point of T is obtained by Ay'={ or y=4 . Let da"’: e,.E now
with ég-')a‘{,i.e., %=1 . This 3 must be fairly large now
if it has to be ¥0 , so0 that we don't get the same point
Aa"’ =| fixed, since exp is a diffeomorphism near l.In other
words 3=A is an isolated fixed point and so ’2{%}-‘-4 is the
geodesic are joining 1 to B. So is ’l(é) . x=$ and ‘Z(f:)
for a dense set of points. Therefore, the geodesic r contains
a l-parameter subgroup and is egual toc it by its minimality.
As CLX has tangent of constant length, the parametrization is
also right, QED.
Recall that for every complete riemannian manifold }Y

each espr is ontoﬂ -

COROLLARY 20: Every compact G 1s "covered by" l-parameter

subgroups. (See also chapter 1, Exer.)
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LEMMA 21: If P 3 is a bi-invariant metric on the Lie group
L)
G .+ we have for all XY,Z in G :

CLXY1,2) 1 <(x21v) =0

PROOF: Observe <Adeu 7, Z) :<'X A%_“Z) for all real € and
take the derivative at {0 . QED.

LEMMA 22: If

fal

in & there exists a g wG with (X Mﬂ Y] =0.
hd -]

PROOF: The adjojint orbit (y) is compact in & and there

is a minimum Y : M&.Y of the function 9i,<X, ,q‘% ol

where <’> is bi-invariant. Now for all Z in é we have

adi,L,o <x' Metl- ’:}"'O (since <x;){,) is minimum along the

orbit). But this equals (X qd!);), tee, (X, (2, Y.
[a
By Lemma 21, {[X,Y],2):0f0r all Z.im G. QED.

A A
DEFINETION 23; Defing fml-(G—) as the Lie subgroup of M &)

whose Lie algebra is ad(é—] in Em& (GAJ . I.e., It (GAJ =£"P 03(6)

S Auk (a) ana Ad(G) 21:\&(61

Exercigse 24: Let & be a connected Lie group with a bi-

invariant metric < ,). Show that

(1} Ay : G —> Int (aj has kernel E(G) + the center of the
sl

group G, whose Lie algebra Z is ker (ad), an ideal in

A
G

is a compact Lie group then for every pqir Y‘Y
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.Y ~ A
Let now G be the orthogonal complement of Z in G

A A A
with respect to , 2 G=E G .
X 4 A
{ii) Show that & is a subalgebra of & with center (.
Af
(1i1) Any abelian ideal in G is central.

A
(iv) If o(‘_ is an A%_ -invariant subspace of (, then o("L also
is Ad-invariant
G
and a. splits into Adc-imrariant, mutually orthogonal , ir-

A
reducible subspaces G 2ot B - P
1 e

(v) Each ¢ is a subalgebra.
i

(vi) [“.'. .“;l‘]‘-'o which implies that each « is an ideal, 1.e”
L
~

C is the direct sum of ideals(which are simple by the
A A,
next item, in the case GG ).

A
{vii) If & has no center then « 1is simple.

COROLLARY 25: Let G be a connected Lie group with a bi-

invariant metric.

A A A Ay
(1} G =2 ®@ & where G has center zero and is semisimple,

(11} If G is compact and semisimple (i.e. if a is semisimple)
then 2 (;) is finite and conversely (: a compact Lie Growp G
is semisimple iff Z-(G) is finitae.)

DEFINITION 26: (1) A real Lie algebra e is compact if
A A
M(G) is compact in GQ(G).

(11) Define the killing form on a real or complex Lie algebra

{d

by B(X,Y) = & a%goac!y

EXERCISE 27: (1) If o= is an automorphism of @ then for all X Y

A
in &

BEX, ¢Y) = B(X,¥/) .

A
{11) For all X, )’)Z in & we have B(X ,[)’) Z_]):

By, [2,x3) = B(Z,Ix,7]).

A
{itl) Let ( be a semi simple real Lie algebra. Then G s
compact 1ff  is negative definite.

A A A oA A
{iv) Every compact Lie algebra is G =2 t+[G G ] where Z is
N A A
the center of G and the ideallG, G] is semi simple and com-

pact.

A
{(vl] 1If( is a compact Lie algebra, there is a compact Lie

A
Group & whose Lie algebra is isomorphic to Gt .

REMARK 28; Let (+ be a simply connected Lie group with bi-

invariant metric < ,>. We saw in Exercise 24 and Corollary

A A A
25 that ( = Z® G-’ direct sum of Lie algebras. The simply

A
connected abelian Lie group whose algebra is Z 18 Ek for

2y
some k;o and G 1is the Lie algebra of a compact , simply
connected Lie group, as can be seen alsoc by Hyers' theorem :

Al 7
As G has no center} the Ricci curvature of G is strictly
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positive and bounded away from zero, by the compactress of
the unit sphere in Cg’.

To show this ([Milnor]} we must first obsexrve that the
integral curves of left invariant vector fields are geodesics,
which implies Dx X =0 for a left invariant X , where ] is
the Levi-Civita connection associated to the bi-invariant <,>.
Using this we can easily show that for )g Y,Z W left invariant

vector fields on G we have:

= 4
w DY o= 2{x)Y]

(i) <[x)y_]’;> = <X, Ly, 215
win P(x,y) 2 - 2:—[[7(,7],2]

where E is the curvature tensor, (This tells us .that the
right hand side must also be a tensor). Now it is immediate

that

(iv) <R(X)Y)Z , W) = ;’! < (xa 7};[2,“J}>

and the sectional curvature of such a metric is always non-
negative: k(x,. Y);oand is equal to zero iff Ex})j =(). This
implies that the sectioml curvature of Sg and SO(S) as Lie
groups with bi-invariant metric is strictly positive. These

are the only ones with this property.

We now want to investigate abelian subgroups of compact

————r e b A W AN w e e L - b

1

Lie groups. First observe that if H is a connected abelian
Lie group then its Lie algebra n is trivial and the universal
cover ﬁ of H must be mm.: the exp: ﬁ?.m—b l‘:l’ is 4 group
morphism which is a global diffecmorphism. So Hgﬂ”é where

D 1is a discrete subgroup of Q’n—, i.e., alattice Z e f...r?q‘
amd  Ho TR . @776 where TH g5%.05", IR Hiscompack, connected

and abelian then T"‘!H + 1f we drop connectedness then H% T

where A is a finite abelian group.

Suppose now that T is a maximal connected abelian sub-

group of the compact Lie group G . 1If :F is the closure of
T then T:.T by maximality. So T is comapct and thefore

a torus, called a paximal torus in &,

THEOREM 29 (E, ¢artan) Let & be a compact Lie growp and T
a maximal connected abelian subgroup. Then (i) | is a torus
(i1) all maximal tori are conjugate in G and (iii} every 9.
in - is contained in a maximal torus of Gr.

The proof is divided into a series of Lemmas.

LEMMA 30: A torus | is monothetic or moncgenic, i.e., there
exists  in | with {xm'l’n 20} is dense in T . Such X is

called a generator of | ., (For the proof see [Adams]).

‘ k
EXERCISE 31; (Kroneckar} Let q,=(q“...‘qk) in T be such

that {"ﬂ.wu";] are linearly independent over the rationals.

k
Then a is a generator of .

LEMMA 32: 1If G is abelian with connected component T , a

L P . T L e
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torus, and G—/r'; Z; , then & is monothetic.

PROOF: Let . generate T. 1f g in G be such that 3 + T

generates 2k . then J“ in T and choose 2 in Tby ’z"d".:'z.'_

ZJ generates Or.

LEMMA 33: Let T be a maximal torus in G—and ‘x_:é(agene.r-
F2
ator of T . 1f (X, Z]%0then e“e T.

¢ a
PROOF : aA!Z):O implies € “ (2) r(l t éac)J‘ +5"0.<{Lf... ).f

1.e.., AAQLQ)T-Z for all 'E in R/ .

Fixing ': ; we see that the l-parameter subgroups S>> € ¢ e

and s+ e>%  coincide. Therefore éx e_si'-___

5% X ¢ s
=€ e for all S,t . Since €  commutes with 3 , it com
z .
mutes with T and therefore T" and {e’ P S‘Mﬂ} generate a
closed, connected abelian subgroup A y which is also a torus,

equal to | by maximality. So €2 gin T .

LEMMA 34: Let T be a maximal torus in & and (j inG-. Then
there is k| in & with 3.}3“ in T .

A
PROOF : G compact implies e)’:J for some )’ in G— .

X
Let & =X generate T « By Lemma 22 there is g 1nG‘

with CX,AJ ﬂ-"ﬂ_ By Lemma 33 e)(PpH Y 1sin [ , t.e.,
833" in a']". §

16

Assume now H is a monothetic subgroup of G— generated
by o¢ and % 1is in gT = for some g‘ in(3 and a maximal
torus T< (7. Then H gg?("ﬁ't 1f H 1is another maximal torus

T then T’_-QTS" +l.e., all maximal tori are conjugate.

DEFINITION 35. If G is a compact Lie group rank (G, is de-
fined to be the dimension of any maximal torus T in (.

LEMMA 36. Let T be any torus in (G- {not necessarily maxi-
mal). If a in G commutes with all £ in ] then there is a
torus T’ in G that contains {q} and T'.

PROOF: Let A be the closed subgroup of (+ generated by{ a.__}
and T, with component of the identity denoted by Af-catpnct,
connected and abelian, i.e., a torus in G—, which may still
not contain 4q. The qguotient AA’ is compact and discrete
(finite) but not necessarily cyclic. Let 4 " be genératadl:y
’ Mow AZns i generated by af "
aadh),’it 18 finite and therefore cyclic. By Lemma 32 A7 18
monothetic and by the above discussion A" is contained in a
maximal torus T'. This completes the proof since a4 and |

live in A ”.

COROLLARY 37: A maximal torus in (+ is also a maximal abelian

subgrouE.

EXERCISE 38: For m»J consider the following subgroup A of
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1! e
so({ﬂ): { (Oi "”1‘) ¢ an even number of-s:l.gnsj . Show that and T;rﬂ be the subgroup of ng" ﬂ) coneisting of all

matrices of the form
,4 is a maximal abelian subgroup of Swy, which is not contained

in any torus.

i

1 \J ' *
NN e I
The exercises that follow illustrate the "standard” max- ¢ -—3“1)9‘ oS 04 .' ,

O ... _.9
, | Cosb  simba
L]
) f‘: %i“?_ﬁr_ @ O
2 i S*, O O 1{

of (J{w)1s a maximal torus of (J(w) so that rank U =m.

imal tori in the classical groups.

EXERCISE 39: (i) Show that the subgroup T = 'qug (2. :"'J'an) 2

’

’
(ii) show that T €T in (i) defined by —'.}.‘:.1:4 is a maximal
"

torus in SU('U’\) . which therefore has rank m-{ .
where s oy er are reals. Show that these are maximal tori.

(1i1) Let € EH define Ofﬂ) < SP('\)and show that the same |

(vi Consider the following linear action of SF(U:“S]{') on
of item (i) is a maximal torug in SF(’“), i.e., fank SPM=m,

H N -
(iv) Let I&r be the subgroup of "consisting of all (E:l ’q‘\. b c= f) lxi'.l .
1 ] O
9
A i

matrices of the form

! CosB -Sf_:nne_' Show that this defines an inclusion of S‘O(q) in G‘L and that
1 [| {
: O &
P the standard in from item (iv}, i8 a maximal
dme,__ Coshl o p Sof). : _
o ! COSGA s-‘ma?:l' 5 torus in T i.ae., rank%:ﬂ . |
f T A beautiful theory for the study of the geometry of Lie
'-S'_'ne_l, f_‘o_t’a?— :
[ T o groups, complementing the classical work of E. Cartan , H.
3 L
,--'(-‘.O'-Sé - - — -—a —i Weyl and others was developped by R. Bott in the 50's | Bot.tJ,
i S
Q r r . An outline of some of the most elementary of
[-sind.  cosd.
- _r 7T these ideas we will try to reproduce here from [ Atiyah, et
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al.,]. To attemptimproving Bott's own exposition would be
absurd.

For the rest of this chapter consider G a compact Lie
group with a fixed bi-invariant riemannian metric dencted by
<7 A A

Let Ad:GXxG— G pthe Adjoint action and observe
that the orbit of Y iné\, denoted by 0(7/, lies 1in the
sphere of radius | Y| in a . since Ad 1is an fscmetric action.
We would like to study the geometry of these orbits.

Observe that the tangent space at Y of O(Y) is T 0(’) =

T, 00,)- fdtl Mew(Y)IZmG-g f[zy]lzma} g

1dent1fied an affine subspace of G with its translation at

the origin. We define therefore

Fal
DEFINITION 40: For X in G- let the image of crd inG be
denoted by G—"‘ , 1.e.,

(1) GAX-‘-‘ {[-X,E]'Zma}
and

(11) GK1={)’in G le,YJ '—"0} )

A A
Observe now that Gx is a subalgebra of G , as follows from

>

the Jacobli identity, which is the Lie algebra of the isotropy

subgroup of X relative b Ad:they are both linear subspaces

20

that coincide in a neighborheod of O.
A A
Considering the inclusion L:G',‘ < Gy and the surjection

A A
G — & with £~ (x,3] , we see, using Lemma 2] that

A A A
COROLLARY 41: The direct sum (& =Gl® G* is orthogonal

relative to {,”.

A
DEFINITION 42: Let X in (z be called regular iff X Llives

A
in precicely one | , the Lie algebra of a maximal torus T

1nG’.

A A A
cLaM 42: X in G is regular 1ff diny Gx Zdim Gy for all

Y in a

PROOF: From Theorem 21 each X 1na belongs to some T

where 'e f&nk@ 80 (L'\“G }l Now, X belongs to a dif-

ferent ?L as well Iff there is a basis {Y yoee YLS of T-(—

and an element Y in Tl so that {Y"""}i l are linearly
i

independent and Lx) YL] =0 ‘L-O)...)ﬂ. I.e., iff dim a >£



g

REMARK 43: The isotropy subgroups of G, relative to AJ. are
centralizers of tori in &, these torti being maximal iff (the
orbit is “maximal”, 1.e., it has maximal dimension between

all orbits. We leave it as an exercise to show that for yld\a',
ey-:{%c,[;\ag(ﬂ--\/} i

the centralizer of T)' : the compact abelian subgroup of (G-
generated by §e£YI - real},

Now O’(‘f} is diffeomorphic to G/G-y , which implies

that the orbit of a regular element X is maximal:

GK = C‘Zfﬂi‘m—e\w" (T,qu) T'\N\M
T4y 1 OK/, e, V= Ang(). Flon

G,=96G, 9! % (G.) - “e,
- - /
On the other hand GV = Gnim ﬂAZEJF(Ty) which implies

TY: T/ ¢ 1, \/ is regular.
A

W

Ll

COROLLARY 44: The Acl-orbit of a reqular element is composed
of regular elements.

The relements do not live in the same torus in general,
We will see shortly that each 44 -orbit meets every maximal

torus in a finite set of points.

A
DEFINITION 45: A maximal abelian subalgebra of (G is called

22 '

a Cartan subalgebra.

A

A
THEOREM 46: If X is regular in G, Gx is a Cartan sub-
[~ A
algebra of (; equal to some T + and in this case any

Moy
M—-orbit 0(7) intersects a.x = '? in a finite

non empty set of points,

PROOF: Let -e 0’6’} —> . be the smootn map ‘?(Z) i= QJZ),

defined on a compact manifold and so g has critical points.
We may assume )’:: AAQ&) toc be one such, For any F in

Aae{:E(Y) :I.ada curve in OG} + through Y + which ‘m-
e 0= &, £(4d,0) =<0, v1x]=-

at
== 7, 0%,x1)> .
A " L
T.6., Y 18in G =T , s0 Y commutes with annW in T
fa) A Ay L A
and TSGy{G . In other words T is perpendicular to
the tangent space of O’(? ) at Y. '
We can revert the above argument to show that all points
fa)
of O’GJ(\T are critical points of ? : dm and are
perpendicular to each other at every point of their inter-
section, which consists of all critical points of ﬁ So,
their intersection capnot have positive dimension and it is
a discrete subast of the compact @'(Y) ¢ 1.e,, it i8 a f£fi-
nite set. QED.

A
EXERCISE 47: Show, as a corollary of the above that if -‘;
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A

A
and | are cartan subalgebras of (; there is a g’ in G-

2 A
with Adgﬁ;—J:Tt A
Wey
The discrete :et qyjfl T is an orbit of the ayl
group action on T which we proceed to define.
Recall that the normalizer N of a subset A of G—
is the largest subgroup of Grinulehfis normal, i.e.,
Nf{ﬂﬁcr{ﬂ Ag-' c A 1 . The centralizer ofA is
Ca ‘-'g;CLnG’ caclz=a forall a i Ag
Obviously CA is a normal subgroup of NA and M/CA
is a group, If | is a maximal torus in (7, CT:‘- T and

we may define)

DEFINITION 48;: The Weyl group of G is

?(G—) = NT/T ,

is acts on T by inner automorphisms, effectively and is

independent of the choice of a maximal torus in the sense of

EXERCISE 49: If T; and TL are two maximal tori in

with 3 1;3":1.2.&3" the map m‘l: — 3,713" T&

defines an lsomorphism between N'T and NT / .
1 /T, 2/ T,

PROPOSITION 50: CPG) is a finite group.

A4

PROOF: As NT is compact, so is @ + which acts effectively
on T by inner automorphisms of G- @‘E qutCT'), which
is a group of matrices with integral entries and therefore

discrete.
QED.

We will denote CF@-) simply by ? when (T is under-
stood. Obgerve now that P acts on "?' by Ad where g
is inNTt 3

1t Xto ,x=g¥ tnT then Q&) = gxq'=

So%(eX) = e%Q" = exp @@(}

PROPOSITION $1: If two elements of a maximaf torus | are
conjugate in (5 then they are conjugate in A_, 1.e.,

T

they are in the same ? ~orbit.

PROOF: Let M be any subset of T and g in 3, such that
0%.(%) 18 sn T for all min M, where oc(r('g)‘——a'go'-.l

To prove the proposition it is enough to show that there 4is

an element 7 (w NT with O(c‘“ = OL(T \M )

Observe that | = CT "-'EQT <, , 80 oMe T

and FM¢™ € ¢ To™ imply that both T and ¢~ Tg ™

are subgroups of CU‘HG‘" + which is a compact Lie group.

They must be conjugate in C;'MV -t ag maximal tori of

this group: There exists a P in CO'HU'" with Po Ta’"f"’:
T, Now T"= o belongs to V. and

for each m MM we have tmTli= PCU"WICT'"J P'{ =gmg"!

by the fact that P is in %Ha"" * QED
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The infinitesimal version of Proposition 51 together

with Theorem 46 imply now

A
COROLLARY 523 For each Y in G and for each Cartan subal-
gebra T the intersection O’é’)(\ T is an orbit of the
action of the Weyl group ? on T .

We will show shortly that the set of sinqular elements

of T is a finite union of hyperplanas ‘LL ¢ that compose

the "infinitesimal diagram" of G, ‘ o 1
We have seen that the reqular set is invariant under @ x x
and therefore so is the singular set. In fact we will S;f-‘-' ‘f- N B 0
that @ is generated by reflections in the hyperplanes U‘L ‘ Yy
relative to the Ad ~invariant metric on G‘ and therefore
the LL s are symmetrically situated in T .
For example, the infinitesimal diagram of 30(5)13 '
as we will see, The general AA-orbit in 30(5) has six critical points and

the singular ones have three or one (the trivial orbit of
0.

. The generaf }u*orhit is (}/r , as we already saw,
and this is called the "flag manifold" of G . In the case
of SU(3) wa have

v UB)
5'0(5)/(;(;) x Ui /&WU(U «UG)

The singular orbits are O{S) = G/Gj
The general (maximal) Cﬁ orbit 1is G fj lﬂd (S) S‘}

and since S is singular %@
mum




JF

In our case (1) @’b) :EO& and G‘o =G

a0 O X3
2y Of oy o) all distinct. Let )= (838) .

0p2

Then AY=YA 1e£ A 18 10 Q@) x VG x UQ)
But A in SUC’)) as well, so G‘y here is isomorphic to
U(” x U and we get the generic case described above.
(3) If =y $%  in (2) we get O & UB)
which is % S%, » CP*,

The case A= ¥ '~f- g , etc., is identical.

Q) <« Uf)

EXERCISE: (1} Show that the flag manifold U(SJ/OFJ"U@" U@
is homotopy equivalent to a CWw -
-complex with one zero-cell, two two-celle, two four-cells

and one six-cell.

{11) Show that CPa is homotopy equivalent to a CW -com-
plex of the form (:30L,.¢5‘,:1 w e(‘ where the aUching nap h__
is the Hopf map h: '33’-__.5 S?“EQ?P’:

The following theorem of Bott implies by Morse theory
that each 44 =orhit in any G compact is homotopy equiva-
lent to a Cw—complex with only even dimensional cells,
whose integral cohomology has no torsion and can be calculated

by loocking at the infinitesimal diagram,

A9

THEOREM 53 (Bott) t The critical points of f are non-degene-
rate and the index of a critical point is equal to twice the
number of hyperplanes crossed by a straight line joining X
to the critical point,

We have indicated the index of each critical point of
'ﬁ- on the diagrams above.

We urge the reader to look into the original paper of
Bott for the proof of this and of other related theorems on
the topology of Lie groups.

The following theorem classifies all real finite dimen-

sional representations of a torus T .

THEOREM 54: Let [ T — G-eﬁ’) be a representation of |

in a real vector space V . Then L
V=Ve.. eov @R
where
' k
1) The \7‘_ S and RS are P -invariant

11} T acts trivially on [Rk
1110 dim Vt =9

iv) T acts on V by rotation (with respect to a basis)
v

f(el{ = [ as 8 ~sin 6 (¢)
Vi Sim ﬂt({;) COSQ (‘9
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l
v} the 6 g are unigue up to order and sign.
t

PROOF: There is a f) ~ipvariant metric on V with respect
to which f(‘-r ) c Sd\]) by connectedness. S0 9(TJ is

a compact abelian subgroup of SO and therefore exists

6-q in SOV with

S“If(b)g in TO the "standard" torus of SO@)

(Exercise 39iv), for each f: in T .

so, V= Vi@ V. @3 Roe o3 .

Summing up all Vi's where | acts trivially we make

up ﬂlk . This proves (1)-(iv).
The general theory of semisimple modules shows that the
V.-"S are unigue up to P -isomorphism and order. The me-
tric on Vl_ is unique up to a constant factor and it does
not interfere with the rotation angle GL . A choice of dif-
ferent orientations on V‘i gives us the change of sign in

0; , which proves (v). QED.

|
The homomorphisms al' : T _ 12/2‘:-:9 determine
P up to equivalence and the differentials dq;.—: 9‘: are Lie

algebra morphisms:

DEFINITION 55: The real {-forms
A

22T — St =¢

L

————— e 0. W G @ s ey e . -

30

are called weights of ‘P .

A
I.e., for ’LE in '\{ e Xin T, ex = ¢_ we have
f’@(”'.) = QQWU; and the matrix of this element rela-

tive to a basis of is

Cos 8.(2) - Sim &(=) v,
SimQ(q) cos B () v,

COROLLARY 56: If f; T — SO(V) is a representation
then for any {: in ' the dimension of the subspace of V
lett fixed by ©() is Lk +QV where Y 1a the number
of 6.; with q-_({-):i m St

Let now T be a maximal torus of G— and f) the A(l ~-repre=
sentation of T in a— .

DEFINITION 57: The non-zero welghts of Ad( are called
the "roots* of G" T '

The roota‘%ot depend on the choice of the maximal torus T
since all such are conjugate, the various AAITIS are equi~

valent representations and their root systems coincide.

OBSERVATION 58: The natural setting for these considerations
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is that of complex Lie algebras. Then Jim V -"-‘{ and for
T L
each £t in T, V- i.l’l\]-L

Ad{(‘v:) = G-L Q’ 'UL t the product by a complex scalar.
1t t=g" then ac*“@e)=a,-,04) U; : We may say that
J is a root of (7 Lf 0 InT* and if there ts a X F0
in é with

[ H,x] = XK for ol H iw T

' A
The \f S are called root spaces and we may consider 'T'
L

itself as a root space for I = O smince 'i& ; in this case,
coincides with the pointwise invariant subspace of Vsa .
The root vectors D:: in a— defined up to a scale factor are
the simultaneocus eigenvectors for all the commuting linear

A
operators RJ“) Hin T .

EXERCISE 59: (i) Furnish the details in observation.

1) dim G~ dim | is even,

(111) 1f M= dim & , L=»romk G and am = number

of roots then

M.:L’f‘Q%

40 3t Upmbkec, ST then Conter(@)= A3 U4,

[

{v) (& is compact semisimple gﬂl It has §- ramk (G-)
linearly independent roots. (use Corollary 25(ii}}.

3&

DEFINITION 60: An element 3 in G— is called regular 1ff 3

lies in exactly one maximal torus.

EXERCISE 61: (1) All generators of maximal tori are regular.

7
(11) Por each =% in (¢ and Nx the identity component of
the normalizer of . we have N;: uT, : the union of all
v ¢

maximal tori [ with 2 in T, .
[

(111)  4is regular in G iff dimy Nx = ramk (G).

(iv) * 'is regular iff it does not helong to any u-,: .

THEOREM 62: (H. Hopf and H. Samelson). Let G bhe a compact
connected Lie group with ram} (G)={ and m = dmG > 1{.
Then dmG =3 ., G = S* or SO@) and the Weyl
group (P(G) 1 21

1 sX . E
PROOF: = - b imal t f
Let T S—g@,sﬁuﬂ e a maximal torus o
G‘ and let S"‘" be the unit sphere in TeGr relative
to a bi-invaraint metric. Observe that f_- G/r—> S™1 with

?61-): Aéﬂ(x) 1s a well defined C* map.

It is readly seen to be f—-{ ¢ 8ince X generates T,
80 it 18 onto and a diffeomorphism.

There is therefore 3 in G with Aj&}‘-'-‘x,
oza(f:]ﬂ:”' foc L timT | e, g da N

and Ac! gives us the only non-trivial automorphism



35

(:t v 1) or T= g
w §G)= My =7

Connected ness of G- implies that Ad is homotopic to

'IAG_ . Consider now {_ 'lT(r)_'Tr(G-)a where TE(TJ =2

sX . =

is generated by - 1= clags of € and U OJ =
S

class of. Gx in G. The element -1 represents the class

o éSX and these two are homotoric in (G by the above dis-

cussion, since @%.L ({) = -f and Ac‘ ~ L(JG

g
o L(1=4 €0 w6  ana Tmage n(T)= OorZ,

m—
The homotopy sequence of the fibration ['—G —> S

- TI'(S'“-)—" v(T) = 1 (G)—

if—s © or [{] m 742

which implies l(QJ(" Lo ‘:‘: 0 always, i.e., 11’3 Sm-—lf-. O

and therefore M =% and W, G 18 O or '7[2'
Classification of the S‘ principal bundles over S" im-

plies that G 15 S3or SO(S) .

EXERCISE 63: Let | be a maximal torus in (z and H a closed

subgroup of T which is normal in G-. show

(1) T/H iy a maximal torus in G/H

(11) The Weyl group ‘iS(G-AJ : 15 (Cr)

>4

(Example (G = Ss , T=s' . H= o
$(s0@) = $(s’) =7 )
Hint for (i1}: show first(NT)/H = N(TAJ) .

Now we want to show that any two distinct roots are
linearly independent as elements of "ﬁ"'. We will show this
by proving that all ’u_‘. = Lec(et) are distinct.

Let u‘;/ be the connected component of u‘f. T

7

THEOREM 643 If i+ . (,L‘.' 4. and the Weyl group

of the centralizer( , 18 2
u;
/ L
PROOF: Observe that U-i is a torus in | . whera -e rornlzé-
/
and let a be a generator of u‘.- . We will show a-% U ,J#
Since a commutes with every t in T TQ N

/
and is a maximal torus in Na. ¢ which ia larger than T

since a 18 a singular element. Also u € Gmier (/U) and

/
therefore C" = o " By conactedness u is a normal
/
subgroup Of N . Apply exercise 63 to u_ eT < N to
a
conclude that "“ is a maximal torus in / —-G_
u

wa e §(a ¥ §) < = 9(c,).

The finite covering implies
chat dim Vu’ =4 ana (‘a\r/n\t(ﬁ- o1 /UcL'm(GJ =4 we

would have N’ T which contradicts the singularity of a.

&umG- > { and by Theorem 62 G s S 3 or dSJ

96)-7Z - ‘
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vov dim N =3 tdim WU, =3+L-1 = L+9 .
If a in ui, ,J-:ff, : then Bc(a):i and GJ(Q).-{
which implies o imn quzf, +9-9 :1{'4 - QED.

oY G * = () @A
. / /= . -
REMARK 65: Observe that w fux; LY CUL ;
relative to the bi-invariant ‘metric. As . is an 1deal
A
in GU Lemma 21 implies that A is a subalgebra iso-
. : A

morphic to S3 . Investigate the relations, if any, of the
integral subgroup of 4 in G and TTS(G-).

EXERCISE 66: (1) If ({ j then dim (Ul,-_(] ULJ) -‘-ﬁ"ﬁ‘z

(11) u;_ is monothetic (Hint: observe Ui/u( is a discrete
'
subgroup of T/uf :SLand use Lemma 32 .
L

Recall now that G s our compact Lie group with q bi-
invariant metric, maximal torus TL and distinct hyperplanes
A A -
U. in TL as kernels of the roots a. , C=4d,.0om
L &

anda m.= L4+8m , where m=dim G.

A
DEFINITI%N 67: The vector space TE’ together with the hyper-

planes u.j is called the Infinitesimal Diagram of (+ . The
A A
open convex regions ’Bt'. that the UJ'S divide T into are

called Weyl Chambers or Fundamental Chambers. I.e., the in-
finitesimal diagram is determined by the set of singular
elements.

As we have seen the infinitesimal diagram is preserved

36

by the Weyl group, since each A-Cl ~orbit 1is composed either
of regular of singular elements. More is true: @@) is

A~
generated by the reflections in the hyperplanes (L -

L

EXERCISE 68: (1) For each in C} show that the represen-

tations Al : T — Aut(é) and Ad o(f;'\ are equivalent.

I.e., there is an automorphism J of (+ with

VA0 = MM oc all X in G, taT.

Conclude that @ permutes the roots 9': of G .

(11) Let Q:. in @(C‘u/:)zza » from the proof of

Theorem 64, be the generator, then ?(x) = b-x_b_’ for
/! L
some b 1in Cu/. Show that (I 1is fixed under ?7, {(not
{ [y t A
just (j{ ). As ? is an orthogonal transformation of TL
¢ A

-
f£ixing the hyperplane U, , (}’ is the reflection in Ui .
(™)

{111) show that no(u_‘) =Z& or (.

The following Theorem is proved in CMams 5.13_]:

THEOREM 69: (i) ? permutes the Weyl chambere simply tran-
sitively. A
(11) The reflections ? in U‘._ generateé .

i

(111) The reflections in the "walls” of any Weyl
Chamber generate (ﬁ . A
{iv) If ? is the isotropy subgroup of P in T then
P
§\° permutes simply transitively the Weyl chambers whose
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closure contains p .
A

(v} §P is generated by reflections in u which con-

L
tain p .

(vi) It is sufficient to consider those planes which
are walls of a fixed Weyl Chamber B such that p 1is in

[
the closure of Bo .

A
{(vii) Each ? -orbit in | contains pracisely one point

in the closure of each Weyl Chamber.

EXERCISE 70: If ? in é is a reflection in some hyperplane
A -

P in then = for some L .
T . ¢=G for

EXAMPLES 71: (roots and Weyl groups)

(i) U((n) The maximal torus in U(ﬂ) is
. Xyl C
T = {{::dmgond_(e e e*mt) o veal }
with T = P* with the obvious exponential map. Observe
A
that U{m) can be written as

™e "V,

reS5z9 where

V;s has 'g.w. € in the rs -entry , —3 in the sp -entry

and zero everywhere else. I.e., Q—&m\’rs =9‘ and we can

- L ¥ L]
immediately see that Ad "3 = é‘l'ﬂ )L g .
E s rs

8o, the Vl"s are the root spaces and according to our

definition of the roots we have

3 . mm— — TR:

rs
elr?l l Exp
g : T™ s
rs
ith L - -
W ('Z,L;.)...)':tm‘.) —> ?.r '15

! [

t le‘:&vp "'15) L

whre { = diag (e™,..., e™)

The roots ars of U(m) are then
'3‘"5 (xpoenx ) = 1 (2, -7,)

for r¢s = J,..,m . (I.e., there are oy ‘V;'.'»in all
where . satisfies @2 _qm4 2m where M* = dim Ulyana

m=romk O ). .
- The Killing form on Uﬁ\) is the usual scalar product
X, ¥yi= tr X*Y=z-beXYand restricted to T s todaces
the usual euclidean metric

: (2 ok
((‘)‘4" 1y ")Lm")t = rz=; ‘)tr‘ .

Reflections are the usual euclidean ones and for the root
A

—_ - - — X = .

3‘.5 x. ")LS ve have Hrs { s _(x‘,_,._’xm)[ . %.}
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The reflectioﬁgﬁ; this glane simply interchanges the
v and S coordinates. The Weyl group then @( U(’n)) ia
generated by the permutations of ) elements and ig the Bym-
metric group S((n) On the level of ‘[’ the action of @r
is given by conjugation with the matrix :

lad 5
‘\
\‘L
r O - §
o 1
v
' f
s ~1---0
A
y .

(11) S‘Ué’l}. From Exercise 39(1i) we see that the maximal

torus is T'""._,g{-; clha(et‘;" o Q:t“i) [ 'xl_eﬂ, :sf...f);,-'-' Oj’

A
with the obvicus T ™ and exponential map. Just as in (1)

we have that the roots

8r‘s (’II"”’ 'lﬂ) = 1:* —-Qs

40

A
on the hyperplane | "'. E'I.-r---‘f‘ xm = Og . We have
the same number of roots as in (i).

"
As reflections in Uf‘s of C&’n) restrict to reflec-

tions of t?“s of SU(«:) it follows that é(gU(M): St as

well.

i S0 ém) has dimension m(Qm -{) and Toml =m

from exercipe 39 (iv). So the number of root spaces is
m=nn-).

From S‘Ufnj c SO(QN\) we can find the same roots
of example (ii)} which accounts for half of the roots of

ngm) - It is easy to see that we may consider 6(”\’ as
all A in 36@ n) with AJ’.—.—_J"4 ., where

(o -u) o
t o/
° 3) ]
A
so 4 in O(m) SO@m) has the form
TS O x —J'

3=

_'Jc' 3‘ O Q_L
- ~x -
{ 1 qi. o
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where' the maximal torus Tm' of SO(Qﬂ)consists of the 2x2
diagonal squares.,

The roots we mentioned above correapond to the restric-
tion of the AJ to U(m).

Observe now that relative to the [{illing form
<XJ Y} =~ brXx Y which coincides with the euclidean me-

tric of H (f?:)aﬂ?_ml ¢ the orthogonal complement of TR.ZE

X
("J x is y _y.;b and

o =0 6 2 30§ 211

' (x y ) " X 3)
where _ ia the matrix
Y XS -~y %

is the ys -square, the matrix ('1 "3) in the
> -2

S -square and zero everywhere else. We can see now that ACJ

u U ()L 2 )l'.
x Y 1) St
acts on ("d _:L)rs by e y(y)" g ('},‘ 1“)()

where E is from item{i). So we have the following roots

9;5 T8y g:s(l;) = e@'" X)L
O ) = Xt

rs
Finally, all the roots of S ﬂ)are

onr

43
ar.s(21 > “'J1m> = i(xr#‘xs)

Y (%5, %) =1 (2 1)
LS EM

Observe now that reflection in x ~—",‘( 1nterchangen L.
and 7_ s while reflection in 1 +'1 leaves x.

fixed for | ¥ 1,'S  and sends ( (

The Weyl group therefore acts by E x 3 5

30]
E =tl |, P b S

n-
and 8‘ .--a“ = +{ . The order of this group is rn,'S{ .

ff“l)):

(11i) Show that SO(Qm 'H) has all the roots of
sﬁ'ﬂ) and also the following ones:

ar((zq)“‘lflm) = j(xr 3 r\":"-w,’n—
Its Weyl group has order m, am'

(iv) 'I‘o find the roots of SP (m) we may write

SrP(le) x u,) (J+€L Q,nj+g{<
® +c1)s ® '(ci+fk)s

where " (C ‘fdt) is the matrix with <4+d(l in the rs -
~position and cﬂ:j., in the Sr-position while '(CJ *FL)
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is the matrix with e._l ‘f'g[( in the rS -position, —f’d'—- PL

in the Sr -position and zeros everywhere else.
Show that each of these subspaces 1s invariant under
Adt and that the roots of 5'p(m) are

£9% , t(%-%) omd T (x 47,)

L€r¢s em
The Weyl group acts by sending (%,,..., 'x,n) to

(E.L 19(‘) Y, Emz":(m)) wth €. = + i an;l JQ
LT =

in ﬂ’ﬂ) : The game Weyl group as SO@“.H).
A

(v) Find the roots and the Weyl group of GZ . Draw
) L
CES infinitesimal diagram.

EXERCISE 72: Find the centers of the groups in the above Ex-

ample (Compare with Exercise 59).







