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1. The equalions in general form.

Let us begin by writing the equations which describe the motion of & fluid in Eulerian
coordinates (see for instance Serrin [32), pag.135, 132, 177)

(L1) plvi+ (vViv-flmdiv T {conservation of momentum),
(1.2) pr+ div(pv) =0 {conservation of mass),
(1.3) pleg+vVe-rl=T:D-divg (conservation of energy),
where

(div D= E DiTji,

i
T:D= % Tij Dy,
iJ

p is the density of the fluid, v the veloclty and ¢ the intemal energy per unit mass; T
is the stress tensor and D is the deformation tensor

Dj; m (12)(Djvi + Dyvj) ;
g is the heat flux; £ and 1 are the (assigned) external force field per unit mass and the

(assigned) heat supply per unit mass per unit ime, respectively.
Moreover, the following constitutive equations arc assumed:

(*) Lectures held st EVEQ 88 in Sioky (Czechoslovakia), May 16-20, 1988,
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(1.4) Ty = [- p +(§-2w3) div v] 5+ 2uDy;
(Swkesian fluid linearly dependent on Dy,
(1.5 q=-xVeo (Fourier's law),

where p is the pressure, i and { are the shear and bulk viscosity coefficients,
respectively, © is the (absolute) temperature and x is heat conductivity coefficicar

LA. Compressible fluids.
Choosing as thermodynamic unknowns the density p and the temperature 8, we
must add the following constitutive &quations

(1.6) p=PFp.0),
(L7 c=E(p9),
(18) p=pep8), {=0sp.0), x=x*p0),

where P, E, p*, {» and x* are known funclions subjected to the thermodynamic
restrictions (Clausius-Duberm inequalities)

(L9 pr20, 220, 3+20.

Moreover, from the well-known relation

(1.10) dE = 84§ - Pd{p-!), S specific cntropy,
E and P must satisfy the compatibility condition

(L.11) Ep = p"}(P - 6Pg).

Hence we can rewrite the equations for the unknowns p,v,0:

(1.12) plvi+ (vV)v-f}=-VP+ ,j?, Dyj(uoDyv + peVvp +

+ V[(§+-2u0/3) div v],
(1.13) p+divipy) =0,
(1.14) pEq(8; + v-V0) = - 8Py div v + pr + div(x*V0) +

+ 01*&)% (Divj+Djvi)2 + ({e-2p/3)(div v)2
]



It must be noticed that if P, i+ and {* do not depend on 6, then equation (1.14)
can be separated from (1.12), (1.13}.

1.B. Incompressible fluids.
In this case pressurc (and density) no longeris a thermodynamical variable (see Serrin
[32], pag. 177 and 234). Hence one has to assume

{1.15) e = E(8)
instead of (1.7), and moreover
{1.16) divv=0

instcad of (1.6). (The constitutive equations = p*(p,0) and x = x*(p,0) are also
supposed 10 hold, of course: remark on the contrary that { no more appears in the
equations).

This last equation {1.16) describes the incompressibility of the fluid, i.e. the
assumption that any given amount of fluid does not change its volume during the
motion. (Hence it would be better to write incompressible flow instead of
incompressible fluid).

Finally, the specific entropy S isrelatedto E and 8 by

(1.17) dE = 8dS,

which substitules equation (1.10).
One obtains in this way the following equations for the unknowns p, v, @, p:

(1.18) pini+(vV)v-{]=-Vp+ szj(}l-'Dj\" +peVyj,

(1.19) divvs=0,

(1.20) p+vVp=g,

(1.21) PEa(@+ v-V0) = pr + div(xsV6) + (u'ﬂ)% (Dyv) + Djvi)?.
by,
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It must be noticed that if yt* does not depend on 0, then cquation (1.21) can be

separated from (1.18)-(1.20).
Moreover, if y* is a constant, (1.18) takes the well-known form

(1.22) pivi+ (vVv-f] =. Vp + pusAv,

1.C. Boundary conditions.
Several boundary conditions could be considered with respect to different physical
situations. Here we want to present the most frequently used, describing the motion of
a fluid in a rigid container £, a bounded connected domain of R™, m21,
One has to distinguish between viscous and inviscid fluids.

W Case p* >0, {*20 (viscous fluids).
The no-slip condition

(1.23) v=0 onodf2
is assumed,
(i) Case p*=0, [*>0 (bulk-viscous fluids).

The slip boundary coudition
L]

(L2 va=0 ondfl

is assumed (here and in the sequel n = n{x) denotes the unit outward normal vector to
Q).
It must be noticed that this case has a meaning only for compressible fluids.

(i) Case p*=0, L+ =0 (inviscid fuids).
Condition (1.24) is assumed.

The boundary condition for the absolute temperature is different in the two cases x>0
and x* = Q.

(iv) Case y*>0 (conductive fluids).
One tan impose

(1.29) 0=0* on 05} (Dirichlet)



or
(1.26) x* g%- q° on 9§ (Ncumann)
or
(1.27) g gg-+ k0 =k0" on dQ (third type),

where k is a given positive constant, and 8* >0 and q° are known functions.

(v) Case x* =0 {nonconductive flvids).
No boundary condition has to be imposed on € if (1.23) or (1.24) is satisfied.

1.D. Initial conditions.
1f we are concerned with non-siationary problems, some initial conditions have to be
added. Looking at the preceding equations (1.12)-(1.14) or (1.18)-(1.21) we see at
once that one has to assign

(1.28) Vi = VO{R) , Pimd = Ppix) > 0, Bgap = Bo(x) > 0.

2. Something about the existence theorems.

Let us make precise now which problems we want 1o study in the sequel. For
simplicity, assume that (1.14) or (1.21) can be separated from the other equations (i.c.
P, p* and {* donotdependon 6 in the compressible case, or p* docs not depend
on @ in the incompressible one).

First of all, we want 1o underline that the theories for compressible and incompressible
fluids and for viscous and inviscid fluids are strongly diffcrent.

Roughly speaking, one can say that the equations for viscous fluids (Navier-Stokes
equations) are parabolic and that the equations for inviscid fluids (Euler equations) are
hyperbolic.

But it is necessary to look more deeply to the equations, In fact, equations (1.13) and
(1.20) conceming the density p are both of hyperbolic type, regardless of the
viscosity. ‘

Hence ore can say more precisely that Navier-Stokes cquations are hyperbolic-
parabolic {or incompletcly parabolic, following the definition of Belov-Yanenko [9] and
Strikwerda [37]).

Let us underline now the main difference between compressible and incompressible
fluids. In this second case, one has to remark that the solution of (1.20}, (1.28);
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(where v has to be considered as an assigned vector satisfying (1.23) or (1.24)) is
given by

@1 ptx) = pp(UOLX)),

where U(L,s,x) is the solution of

U(L,5,x) = v(t,U(1.8,2)}
(2.2) U%s.’mi =x.

(U(t,5,x) is usually called the flow of the vestor field v(L,x)).

Hence directly from (2.1) one obtains that 0 < minpg < p(t.x) S maxpg . This fact has
several consequences: the most important is that equation (1.18) does not degencrates;
secondly, if pg(x) = p* , a positive constant, then p(ix) = p* for cach (Lx), and
(1.18) becomes

(2.3) vitv-Vv-fm-Vp* +vedv,

where p* = p/pe and ve = pus(p*)p*.

Equations (2.3) and (1.19) are usually called Navier-Stokes (if u* > 0) or Buler (if
ps =) equations for homogeneous incompressible fluids.

When we consider the compressible case, from (1.13), (1.28)2 we get

t
2.4 ptx) = po(U(0,1,x)) expl- J (div v)(s,U(s,t,x))ds] ;

hence p can degencraie at the finite time ¢ in the point x if
l.

IJ (div v)(s,U(s,t*.x))ds | = + oo,

We can affirm that the principal problem conceming compressibie fluids is to find a-
priori estimates assuring the non-degeneration of the density p . This is obviously
usicrlocaﬂymﬁme,aformﬂdam.uwcwﬂlminﬁwsequel.

We want to present some results concemning the existence of a {unique) solution for
these non-stationary problems. Due to the lack of time, we will just give without proof
the principal results for incompressible viscous fluids and compressible inviscid fuids,
while for incompressible inviscid fluids and compressible viscous fluids we will enter
in the proofs more in detail.



3. Incompressible viscous Nuids (divv =0, p®> 0}

*The principal results are due to Kazhikhov [16], Ladyzhenskaya-Solonnikov [20); see
also Simon [34}], Okamoto [25], Kim [19).

‘Theorem A. Suppose that the viscosity coefTicient u* is a positive constant, and that
the bounded domain QcR3 , the initial data vo and pg , the cxternal force f are
regular enough. Assume moreover that infpg(x) > 0 . Then there exists & (unique) local
in time solution (v,p,p) to (1.19), (1.20), (1.22), (1.23), (1.28)1.2. Morcover,
infp(t,x) = infpo(x) > 0. If QcR? orif vg and f are small enough, then the solution
is global in time. '

in particular, the well-known resulls concerning Navier-Stokes equations for

homogeneous incompressible fluids are contained in this theorem (ke py equal toa
positive constant).

4, Compressible inviscid fluids (p = P(p), p* =0, {*=0).

The principal results are due to Beirlio da Veiga [2], Agemi [1]; see also Ebin [11].
Theorem B. Suppose that the bounded domain CcR3 , the initial data vo and po,
the external force f and the function P are regular enough. Assume moreover that
infpo(x) > 0 and P(E)>0 for §> 0. Then there exists & (unique) Jocal in time
solution (v,p) 1o (1.12) (with pe =0 = s}, (1.13), (1.24), (1.28)1,2. Moreover,
infp(tx)>0.

This result has been exiended to the complete system (1.12) (with ps = 0 = {s),
(1.13), (1.14) (with x* = D) by Schochet [29], assuming f=0 and r=0.

§. Incompressible inviscid Ruids (div v = 0, u*= 0).

Let us rewrite the system of equations

(5.1 plvi+ (vViv-f]=-Vp inQr=]0,TIx02,
(5.2} pr+vVp=0 inQr,

8
5.3) divv=i inQr,
{5.4) vapn=0 on LT =]0,T[ x o5,
(5.5) Vim0 = VO(X}, Pusp = po(x) >0 infd.

We want to present & method due to Valli-Zajaczkowski [44]. Other resulis were
obtained by Marsden {22], Beirfio da Veiga-Valli (6], [7], [8], Delort [10).

Theorem C. Let cRM (m22) be a bounded domain with 20e CX42, voe WkA(DD),
div vg= 0, vonan =0, poe WEI(D), infpo(x) >0, fe L1(0.To:WEr(Q)), ke N,
k > 1+m/r, 1<r<+ee. Then there exist T ]0.Tg] sufficiently small,

ve OO0, T*; WEHE)NW LI(0,T*; wk-1(Q)) ,

pe CUI0, T WKA(Q)NCI(0,T s wk-12))

peLl(0,T"; Wktlr(hy)
such that {(v,p.p) is the (unique) solution of (5.1)-(5.5) in Qr+. Morcover, infp(t.x) =
= infpo(x) >0 . If fe CO[0,Tg); WKr((2)), then ve CI([0,T*1; Wk-11(0))) and
pe CY([0,T*); Wk+L1(Q2)), hence (v,p,p) is a classical solution.

(Here and in the sequel WEJS(£)) denotes the usual Sobolev space of (classes of
equivalence of ) functions u having distributional derivatives D%u (kul<k) of r-th
power summuable in £ . The corresponding norm will be denoted by el , Q- N if
1=2)).

Uniqueness was proved by Graffi [13] (see also Beirfo da Veiga-Valli [S]).

For simplicity, let us assume that m=k=3, r=2 and f=0.The general case can be
treated in the same way. We will solve a sequence of linear problems, followed by a
fined point argument.

Step L,
Assign 2 vector veL*(0,T;H3(Q)), Te]0,Tol, with divv=0 and v-ngn=0,

and solve the hyperbalic problem

(3.6) P +vVp=0 in Qp,
5N Pli=p = PO inf2,

Tte solution is given by (2.1). Moreover, multiplying by p and integrating in £2 one
gets

¥ E‘I’?,{ p2=- fvIp)p=- § vV = 0.



Repeating the same argument for the successive derivatives one obtains

P sc iviglpl

Hence by Gronwall's lemma
t
(5.8) By < Tpoly explc fIv(sMlsds).
Step 2.
Solve now the Neumann problem
59 div(pIVp) = - 3 DivgDyvimF  inQr,
I8
(5.10) p-iVpn= i}: viviDingm G on T,
8
(5.11) p=0.

The compatibility condition is satisfied, since
div[(v-V)v] = iz DiveDyvi ,
o
[(v-V)v}n = iE'Vi{DiVa)ﬂl - }i:, viDi(E veng) = - X vivyDing ,
\ 0 i8

as divv =0 and V(v-n} is parallel 1o 0 on 9£2.
Multiplying by p and integrating in L2 it is casy to find

I¥pllg < c(liFly + UGH,).
Moreover, by estimating Ap in £ and Vpa on o}
lipll, < c(IpE + p-1 Vp-Vpily HipGlly).

By using an interpolation inequality to evaluate ilVpll, interms of IVplly and liplly,
one has

(5.12) liplly S c(lpliy)(LFL HIGI) < c1(ipliyiviid ,
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where ¢y is a non-decreasing function of liplly.

Siepd,
Solve, similarly to sicp 1,
(5.13) w+ (vV)w=-p-iVp inQr,
(5.14) Wiwl) = V0 infl.
One obtains as in (5.8)
t L
(5.15) liw(t)ily S [ivolly+ Jll(p'lvp)(s)“]ds] explc Jllv(s)lhds).

Remark now that at this level we are not able to infer that divw=0 and wapa=90.
We need another siep.

Sicp 4,
Project w on Hw [ueL2(Q)i divu~0 and ungg = 0) . Call Ttw this projection.
It satisfies the same assumnption imposed on v in step 1. Morcover, if iv(liy S A for

cach 16 [0,T], by (5.12) and (5.15) we have
firew(tily S callwitll; < calilvglly + c3(llp|h)A2Tj exp(cAT),

where cp=ca(fl) and c3 isa non-decreasing function of lipily . By choosing
A>cpllvply and T small enough, we get Hw(t)ll; < A for each t[0,T].
We arc now in a position to find a fixed point of the map é: v = Rw , Define

K ® [ve L= T;HYE)N vl SA ac. in [0,T}, Rv=v).

We have $(K7)cKr if T is small enough, say T ='T* ; moreover KTe is convex,
closed in X = CO([0,T*];H2(Q2)) , and @(Kte) is relatively compact in X.Asa
conscquence P is a compact map and from Schauder's theorem there exists a fixed
point v = Rw.

Remark that we have not yet solved the original problem (5.1)-(5.5), but

(5.16) wi+ (w-V)w = - p-iVp in Qre,
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5.17) P+ Aw-Vp=0 in Qre,
(5.18) Wid = V0 « Phal = PO inf2,

.19 div[(w-V)Tw + p-1Vp] =0 inQrpe,
(5.20) [(rw-V)Ttw + p1Vpln =0 on Ey+.

Hence we need to prove that w = Jw. Let us show that Qw =0 (Q=I- 7). Apply
Q to{5.16):

(5.21) (Qwh + QUTw-V)Qw] + QI(rw-V)miw + p1Vp) = 0,

As (5.19), (5.20) mean Q{(xXw-V)Rw + p*1Vp] = 0, multiplying (322) by Qw and
integrating in {2 one has

(5.22) 14 [iQue =0,

Qi IQwEQw = 7 [ mw-V(QwIZ) = .

Having assumed Qvg=0,(5.22) gives Qw(t) =0 for cach t& [0.T*].

Let us say now a few words about some gpen problems, which are probably difficult to
be solved (or gven false):

(i)  global existence for 2CR? , extending 1o non-homogencous fluids what is
already known if pofx) = p* , a positive constant. However, one has 10 remark that
the vorticity @ mrot v is not conserved when 9 is not constant, and the same
happens for any function f(p)w and rot{[(p)v]).(The conservation of @ is the crucial
point in the proof of global existence for homogeneous fluids, sec Wolibner {45]),
Schaeffer [28), YudoviC [46], Kato [15]).

(ii) free boundary problems, even for homogeneous fluids. In this last case, the
result is true in the class of analytic functions (see Reeder-Shinbrot [27]) in an
horizontal slab. A lack of regularity sppears in the approximating problem, hence it is
not clear how to apply the same method for Sobolev or Holder spaces. Moreover,
admitting existence, Ebin [ 12] proved that the free boundary problem is not well-posed
(in contrast with the fixed boundary one).
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6. Compressible viscous fluids (p = P(p), u* >0, {*20),

We want to present a global in time existence theorem which is due to Valli [41],
extending some ideas of Matsumura-Nishida [23], [24]. Other local exisience theorems
were obtained some time before by Solonnikov [35], Tani [38), Valli [40].

1t is useful 1o introduce the mean density

P gy o). (12 = meas (),

which is a positive constant in consequence of (1.13), (1.23) and (1.28)2.

Theorem D. Let £2cR™ (m<3) be a bounded domain with 9QeC3,
voe H(NE(Q), poe HXQ), infpg(x)>0, feL=(R*H)()), fie L=(R+;H- 1)),
Pe C2(R+), p*e C(R*), {*eCZR*), PE)>0, u*(§)>0 and {+(5)20
for & > 0. Assumc that livglly, lpg-p*il; and supr+{IF(H) + M(L,)) are small
enough. Then there exist

veLE R*HIONNCYRLHIAR) , w6 LE REHKOINCRRALAQ)

pe CR(R+HAQ) , pe CRRSHID)
such that (v,p) is the (unique) salution of (1.12), (1.13), (1.23), (1.28) 2. Moreover,
infg_p(Lx) > 0.

Here CH(R,:X) means the space of continuous and bounded functions on
R, = [0,+s) valued in the Banach space X , and R* = (0,4} .

This results has been extended to the complete system (1.12)-(1.14) by Valli-
Zajaczkowski [43], where some results on inflow-outflow problems (i.e. vngn#0)
can also be found.

First of all, let us assume for simplicity that pe =1, {»=2/3, p°=1, P§)=§,
and consider the new unknown

(6'1) c(t'x) = P(llx) -1 "

which satisfies Jo =0,

We can rewrile the equations in this form

(6.2) v+ @V -Fe(o+1y(-Vo+Av+ Vdivy)  inQu,
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(6.3) g+ div(iov) +divv=0 in Qu.,
(6.4) vign =0 on Jee,
(6.5) Vie0=v0(X), Oump=polx)-1>-1 inQ.

Let us just show how to get some global a-priori estimates in L*(R+;HX(2)) , since the
proof of the existence of a local solution can be obtained by linearization plus & fixed
point argument, and is not difficult in concept, though precise cstimates on the lincar
problem and several calculations are needed.

Consider the problem

(6.6) vi-Av-Vdivv+Vo=H ‘ in Qe
(6.7) g +divv=L it Que s
plus (6.4) and (6.5), where

(6.8) Hs- (vV)v - (o+1)la(- Vo + Av + Vdivv) + I,

(6.9) L=-ogdivv-vVo,

In this paragraph we will indicate by U+ §, each equivalent normin HY(Q).

Step 1,
Eliminate the terms Vo and div v multiplying (6.6) by v and (6.7) by ¢ and

integrating in €2 . Adding the two cquations, from

(6.10) ‘{Vc-v -- ‘! odivv
onc obiaing
6.11) % OV + Hot) +« WPwi S c A2 + N.L. ,

where N.L. means some norms related 1o nonlinear terms (which we expect to be
“good”, since they will be smalier then the linear terms because we assume small initial
data). This procedure can be repeated for v; {and for tangential and “interior”
derivatives of v up to order two), since in all these cases the boundary conditions
permit integration by parts as in (6.10). Remark that the term  v-Va contained in L
(and the others similar to it which will appear in the sequel) must be integrated by parts
in this way

14

‘{(V-VD%)D% =- 5- ({ divv (D%c)2, lals2.

Moreover, by considering scparately equations {6.6) and (6.7), onc obtains.

{6.12) g;l%vllfi- IviE < cQloif +1808) + N.L. ,
(6.13) ol sciivi} + NL.,

Finally, ligl; can be estimated directly from (6.7).
Adding all these estimates we (essentially) get

(6.14) gl-(uvn? + i + B2 + o) + vk + ol + ivyid + lio? <
< c(iivig + liotld) + N.L. + c(If +HEdZ,) .

Step 2.
We need 10 estimate only one of the norms Ui and lollj (since they are connected by

(6.6)). However, as we said, we can control “interior” and tangential derivatives of v,
but the normal derivatives give some difficulties. On the other hand, we shall see that
the normal derivatives of g can be estimated, whereas it is not clear how to do the
same for tangential derivatives. The wick is to consider (6.6), (6.7) as a Stokes
problem, i.e. to utilize the estimate

(6.15) ivilf + Hot < cQivalf + Idiv vig + 1) + N.L. .

Since v, is slready controlled (see (6.11) for v; and ay), the crucial point is lo
cstimate

idiv vii.
Step 3,
As we said before, it Is only necessary to estimate the normal desivatives of div v. Let
us begin observing that on 351 we have essentially

(6.16) Aven = (Vdiv v)n
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(up to first order terms and second order terms containing only one normal derivative at

most).
Hence by adding to (6.6) the gradient of (6.7) multiplied by 2n we get

2(Voa)+(Van)=-ven+fn+NL,.

In this way we estimate Vo.n and we repeat the same argument for the second order
normal derivative of @ . On the other hand, by (6.6) and (6.16),

2(Vdivv)nz Von+vpen-fn,

hence we have obtained “good” estimates for the normal derivatives of div v,

By considering (6.14), (6.15) end these estimates on div v {plus Stokes problem in
local coondinates near the boundary for controtling the tangential derivatives of D2v),
we et

617 o+ WSNL. + (i} + 162,

where
@ v + Holld + tviig + Nod
v = Wil + ol + Wviid + o] .
(Remark that w2 @).

Siep 4.
It is essential now to estimate in & “good” way the nonlinear terms. We need to obtain
something like

6.18) N.L. scy(p +oP), B>1.

in such a way that (6.17) gives the boundedness of ¢ in R* if Qu.p and IIfII% + 1II'III_2l
are small enough.
(In fact , if we have

®s-vil-c@+oB) +cafd +ne03), PB>1,
¢ cannot be unbounded for small data).
Estimate (6.18) heavily depends on the structure of the nonlinear erms. Hence initiaily
we were optimist assuming that these terms had to be “good™: for instance, quadratic
terms in Dv would have been 100 strongly nonlinear. However, looking carcfully at H

16
and L in (6.6}, (6.7), we arc able to get (6.18) for P = 2. Some sharp estimates
concerning multiplication in Sobolev spaces must be repeatedly used.

Finally, it is easy to get
Ivi2 + o < clp + @3 +103) |
which i the a-priori estimate we need.

Let us finish with some remarks. The method now presented yields to the existence of
stationary, periodic or almost-periadic solutions (for small ). Moreover these solutions
are locally asymptotically stable (see [41] and Marcati-Valli [21]),

The existence of stationary solutions has been proved also by other approaches, the
most interesting one due to Beirfo da Veiga [3), [4] (see also Padula {26], Valli [42]).
The free boundary problem (local in time) was solved by Tani [39] and Secchi-Valli
[31].

Let us mention some open problems:

i  global existence (for large data) if IcR2, finding some new a-priori estimates
on infp and supp. As we already saw, this is related to good estimates for the
L=-normof divy, -

(i)  global existence for the free-boundary problem, even for small data. No result
of this type is known in spatial dimension larger than one.

7. Compressible bulk-viscous Nuids (p = P(p), p* =0, {* > 0).

We want just to mention an interesting result due to Secchi [30], which is also valid for
the complete system (1.12) (with p* = 0), (1.13), (1.14) (with x* >0 or x* =0).

Theorem E. Suppose that the bounded domain QcR3 , the initial data vp and po,
the external force f, the functions P and {* are regular enough. Assume moreover
infpo(x) > 0 and {*(¥) >0 for £ > 0. Then there exists a (unique} Jocal in tlime
solution (v,p) to (1.12) (with p*= 0), (1.13), (1.24), (1.28)1,2. Morcover,
infp(t,x)> Q.

One has to notice that equation (1.12) {with u* =0) is a second order equation which
is not parabolic in the usual sense. On the other hand, div v essentially satisfies the
heat equation with Neumann boundary condition, and this is a crucial remark in order to
find the solution.
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The existence of a global solution (cven assuming small data) is an open preblem,
excepting in spatial dimension equal to one (in this last case there is no real distinction
between viscous and bulk-viscous fluids).

8. One-dimensional compressible viscous fluids
(p =P(p), {* +4p*/3>0).

In the one-dimensional case & suitable change of variable yields toa sitnpler formulation
which is an useful twol for showing the existence of & global in time solution for large
data. We want to present a resuit due to Kazhikhov [17], [18] (for f = 0) (sec alsc
Kanel' [14]).

Theorem F. Let Q = Jab[, voe Hi(Q), poe HI() , infpo(x) > O,
fe LIR*L=(Q)), PeC/(R*), PE)>0 for§ >0, v* = ({* + 4u*/3) a positive

constant, Then there exist

ve L2R+HHM)NCYRHI()) , vie LARYLAE)

pe CYRHI) , pie CRRALUA))
such that (v,p) is the (unique) solution of {1.12), (1.13), (1.23), (1.28)12. Moreover,
infQp(tx}>0.

Define
b
p'm gl_—a-.lp(t.x) , Ma-p*,
and set
U©.Lx)

X y
y=ytx)m  {pod)dd = _I pPaANL, xmx(Ly)=a+ J R[(R7 18
uty) svtx),  nLy) =prlix),
where U(Ls,x) is defined in (2.2), (2.3). Since infpp(x) > 0, the map x — y(0,x)

has an inverse Ay —x.
It is casy to sec that equations (1.12), (1.13), (1.23), (1.28); 2 are transformed into

y
(8.1) u+ POy )y - (VAT huy)y = fLat J n(t,£)dE) in M= R x JO,M[,
(8.2) mi=uy in Maa,
(8.3) u(t0)=utM)=0 in R¥,
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(8.4) ups0 = upiy), Ni=0 = Noly) >0 in]OM[,

where up(y) = vo(A(y)) , Noly) = [pa(AYD].

For simplicity choosc a=0, b= p®=1(hence M =1), v* = 1 We want just 10
present some a-priori estimates for u and 1) in L*(R*;H1(£2)), which permit to find a
global in time solution for large data.

Step L
Sel

y
Riy)= J [P(1) - P(§-D)Id§

(which satisfies R(y) 20, since P'(§) > 0), muliply (7.1) by v and intcgraic over
10,1[ . Recalling that

J‘P(Tl.'l)y“ - - J'P(ﬂ'l)“y == le(ﬂ'l)ﬂl ' Jiﬂl - Jluy =0,

one casily obtains

o ' 1y y 1
(8.5) %J [+ ROD + [nhud = [ £, m) S Gyp /10 (fupytr.

Hence by Gronwall's lemma
1 ey

(8.6) J u2 < cug.Mo) exp{ J Mol _dt) ,
and

t1
(8.7 J J nlul < c(uomod

where |l - ll, is the norm in L=(0,1).

Step 2.
We need now to find an estimate for infiy, N(LY) and supm_T{Ly). Since

8.8 (Mluy)y = (1 My = Qogmyt,
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multiplying (8.1) by (logn)y we get
14 1 1 1 &
7 & | Gogm} = [ uilogn)y + [ P iylloghly - § 100, [m)togm)y .

Moreover
1

1 1 1 1
| wtogy = f uiogmy - fulogniy =& [ wlogny + [ -]

1 1
J POy (logn)y = - J p'm-l)n.snz; <0,
A bence integrating over 101 '

) 1 1 1
¥ Jl(lom)'f, + j Jrovinng = 3 Jluogno)i + J uttogn)y - [ uollognoly +

el t1 8
+ ] [l § §1es Jmdogmy .

Using now (8.6) and (8.7) we get
1 t 1 1 1
) (tlogmj + | JP‘(ﬂ-'m-hi S c(uono) +c[eM.(] (logm)? 1172,
and from Gronwall's iemma
i 1]
(89) J o] + | [Penrmn} < cluomo .

On the other hand, from (8.2) and (8.3) we know that
1 1
Jﬂ - J‘ﬂo =1 ]

hence for cach te R, there exists a point y) (0« 10,1[ such that

Nty =1.
As a consequence, Poincaré's inequality shows that for each te R,

(8.1) Hlogn(l; S cluomodd) .
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By using Sobolev's embedding theorem H(0,1)cCY([0,1]) we finally get

(8.11) 0 <infp N(t.y) S supm_T(LY) < +ee.

Step 3,
Foom {8.7), (8.9)-(8.11) one obiaing at once that for each te R4

®12) Im(oiy + J‘ Jln§.+ J‘ ju’, % c(uomod) ,

which is one of the global estimates we need.
Moreover, multiplying (8.1) by uyy and integrating by parts we find

TR 1 1 1y
8.13) I&'J u,"'J'I""%, -JP(ﬂ'l),u,,+Jn'2n,u,u,,-Jf(t.Jn)u,, .

By (8.12) and interpolation
1 1
Jn§u§ < st)l'pug J“% % clugMou) luyllg Muyyllg

hence a standard argument gives
1 L1
(8.14) J u'*;, +J Ju';‘,, < c(upnod) ,

which is the last estimate we need.

Some interesting questions arise if we assume that [ = f(x)e L™(£2) . We find again a
global in time solution, since we can repeat the arguments we used in the proof of
Theorem F considering the problem in the set Qr for cach TeR*. Butin general we
are not able to show that (8.11) holds, since the estimate on Jogn depeadson T. Can
we sy anything about the asymptotic behaviour of n (Le of the density p)? Is it
possible to obtain that (8.11) 1s valid alse in this case?

1t is not difficult to realize that an answer to these questions has to be related to the
existence of a sfationary solution (u,n) satisfying (8.11). A result of Beirfio da Veiga
[4] shows that such a stationary solution does exist if and only if the pressure P and
{he external force field f satisfy a suitable compatibility condition. For instance, if
P(p) = ApY and f(x)= A (A>0, y>1 and A given constants), then the stationary
solution satisfying (8.11) exists if and only if
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IM < ACYA-1)7.
Starting from this result, a first answer concerning the asymplotic behaviour of the
density is given by Straikrabe-Valli [36), where it is proved that a (regular enoug)
solution to (8.1)-(8.4) satisfying (8.11) exists oaly if the same compatibility condition
on P and f discovered in [4] for the stationary solution holds. Hence, when such a
condition does not hold, the global solution must asymptotically develop either vacuum
or infinite density.
As & consequence, it is not possible to extcnd Theorem Fto the case f = f(x) if this
compatibility condition is not satisfied. An interesting open problem is 10 prove this
existence result when such a compatibility condition holds (for instance, choose
P(p) = ApY and f small enough in L™(£2)). A panicular casc was solved by
Shelukhin {33], assuming that
Jezl: clEISPE)sckl, VE>O.

Under this hypothesis the compatibility condition is satisficd for each f=f(x).
Another open problem is concerned with the existence of an atractor for this system of
equations. The presence of the (hyperbolic) equation (8.2) makes difficult 1o apply the
standard methods, since they are usually employed for dissipative systems. A first
partial result proved in [36] shows thal if a (regular cnough) solution 1o (8.1)-(8 4)
satisfying (8.11) exists, it has to converge o the stationary solution (remark that under
these assumptions the compatibility condition between P and f must be satisfied).
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