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Uun;amvemnolllnw —Lich-Thirring inequality, we derive an upper bound for the diowmsion of the
universal attracior for lwo-d | space penodic Navier—Siokes equations. This esiimae is oplimal up o 3 Inpnllmll:
correction. The relevance of this estimatc 0 turbulence and relaied resulls are also briefly discused.

Sur la d wn des s cn turbul bidimensionnelle. En utilisant unc pouvele verion des inégalités de
Sobolev-Licb-Thirring, nous éablissons une borme supéricure de 1s dimension de 1'anracteur universel des équations de
Navies - Stokes bid lies avee d aux limites pénodiques. Compie tenu de estimation inféneure de Is
dimension due A Babin et Vishik, cetie estimation est abors opiimale & un (acieur koganthmique pris. La sigaification de ce

résulial en wrbulgnee bidimensioanelle €5t discudée ainsi que queiques résullals connexes.

1. Introduction

In conventional turbulence theory a heuristical estimate of the number of degrees of freedom of a
urbulent flow is given by

N~ (H' an

In (1.1) 1, denotes the linear size of the region occupied by the Ruid in R, d=2 or 3. The length /_ is a
small scale, determined by the physical properties of turbulence below which viscosity effects determine
entirely the motion, The estimate (1.1) is thus simply an account of the number of psrameiers whach is
required 1o moniter the molion. Jf d = 3 such a scale is defined through dimensional analysis by the encrgy
dissipation Aux « [14),

o= p{Tu), {12)
' pi/t .
<= gAc . (13
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In (1.2) w is & velocity and { ) denotes ensemble averaging. With an appropriate definition of “the
number of degrees of freedom™ and of the quantily (T u)® a rigorous upper bound of the type (1.1} was
given in [6]. In the case d =2 a completely different mechanism determines J,. The role of « is played by
ar eastrophy flux x [1, 12],

X =r{du). (1.4)

In two-dimensional turbulence, the amplification of vorticity gradients leads 10 an autonomous spectral
finx of enstrophy toward larger wavenumbers, just like the amplification of enstrophy in three dimensions
leads to a speciral flux of energy [26]. By dimensional analysis, the only length one can form with » and x

is
()" 09

Ir this paper we prove a rigorous estimate of the type (1.1) for d = 2 and /[, = I, defined by (1.5). Asin 7],
wz identify “the number of degrees of freedom” with the dimension of the universal attractor X of the
d-dimensional Navier-Siokes equations. We study thus these equations in the classical funclional form:

%-%+vAu+B(u.u)-f. (1.6)
u(0) = uy, (.

where »> 0 is the kinemalic viscosity coeficient, f€ H are time independent body forces. Periodic
boundary conditians are imposed. The detailed description of the functional analysis setting is given in [22,
28). We recall that H is the L? space of periodic, divergence free fuactions in & =TI/ (—L/2, L/2),
d=1,ic.

H-{uluEL’(ﬂ)‘. divu=0in l, fnndx-(). Ulemt 2™ Yipa = - g 20 i-l.l}-

Au= —PAu where P is Leray's projection on divergence free vectors. Because of the periodic boundary
canditions P and - A commuie. The nonlinear werm is P{(* V¥ )u) = B{u, ). We denoie by { , )and | |
the scalar product and norm in H, We denote by ¥ = D( A4'/?) the domain of definition of 4'/2. We denote
by ({ , )) and || }j the scalar product and norm in V. The repeated eigenvalues of A are denoted by
Q<A sA,< -+ . The solution u = u(s) of (L.6), (1.7) is denoted S(r)uy. The universal sticactor X for
{..6) is defined as the largest set enjoying the properiics

(i) X is bounded in H;

(i) S(1)X= X forall r20;

(iii) X autracis all the points of H (i.e. dist{(S(2)ug, X) 20 as 1+ 0, ¥V us€H)
11 many cascs, and in particular for the 2D-Navier-Stokes equations, we have instead of (iii}, the stronger
property

(iii*) X attracts the bounded sets of H (i.c. the convergence in (iii) is uniform for w, in 2 bounded set &
of H). In this case, X is also the largest sct enjoying the properties (i}, (ii).

The need for estimating th¢ Hausdorfl and fractal dimensions of the universal attractor for dissipative
EDE's (and ODE's) aniscs from the [requent occurrence of situations in which the geometry of the unstable
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nifolds of some fixed poinis forces many trajectories 10 spend inordinate amounts of time far away
m their uttimate destinstion. Thus, in numerical experiments one encounters these unstable manifolds
rich are part of X, of course) as sources of apparent sandomness. There are many ODE's which display
h behavior. The Minea system |20, 5] is an example. One cannot expect PDE behavior 1o be simpler.
¢ instance, a nonlocal Burgers equation has Minea subsystems as inertial form and thus exhibits the
ne behavior [8). Estimates of the Hausdorfl dimension dy( X) and fracial dimensions dy,{ X) of X in
: case of Mavier-Stokes equations have been obtained by several authors |2, 5-7, 9, 12, 15, 21, 25]. In
. two-dimensional case one can express these bounds in terms of the nondimensional Grashof number

gL (1.8)

A,

is 2 generalization {11] of the classical Grashof number in Bénard convection,
The best known upper bound on dy,( X)in the periodic cese is given in [25] and is 4y ( X) < dy(X) <G,
)ere ¢ is 2n shsolute constant. In this paper we prove bounds of the Lype

dy(X) £ dy( X) S G {log (G +1))'". (19}

timates involving G?? were predicted 10 us privately by O.P. Manley siready in 1981, In [2] o lower
nund for certain choices of the body forces f and of the geomelry of the problem was given in terms of
£ viscosity 85 d,,(X) 2 ar~*. Although this estimate is not nondimensional {it assumes a certain size of
e periods and of the forces} its nondimensional counterpart would be dy( X) 2 ¢G1/, thus bringing (1.9)
¢ particular choices of f logarithmically close to being sharp. 1n [10), an upper bound of the dimensions
the universal atiractor for the Bénard problem was given in terms of the Prandtl, Pr, and cluisical
rashol numbers, Gr, a3 dy,{ X) < cGr(l + Pr)’. The present work suggess that one could expect a
wnd of the type o(l + PO)*'Gri7 (log(Gr 4 1)'”. In this work we denote by ¢, . € Various
wmstants; some of them are absolute constants and some of them depend on the aspect ratio L, /L,. We
3 not attempl 10 oplimize our estimates with respect to them. Such an endeavor would be, however,
weful for low Grashof numbers.
The proof of our main result is based on the techniques of [$] applied in V instead of H and relies on &
sfinement 10 L™ |4] of some L” estimates for Bessel potentials of orthonormal functions due to Lieb [16].

Huusdorfl and fractal dimensions of bounded Invariant sets

We consider a set X salislying:

(i) X is bounded in H;

Gi) S(O X=X forall 120
et us recall the definitions of Hausdorfl and fractal dimensions [18, §).

Vefinitlon 2.1. Let X< H be 2 compact set. The Hausdorll dimension of X, denoted d{j( X'}, is defined by

di(X) = inf {d>0p{{ X} =0},
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where
Kh(X) = limud, (X)

and

A &
25, X) =int }:r,‘tXc'UIa.. B,Openbaﬂsinﬂofradiusr,sr}.

=1
Definition 2.2. Let X H be compact. The fractal dimension of X, denoted dfi(X), is defined by

dﬁ(l’) = limsup 'ol(”:('”

rlo lo‘('/’j
where n(r) is the minimal number of open balls in A of radius r needed to cover X.

Let X bea ‘m satislyi:,; {i) and (ii). Because of the regularity properties of (5{r)), ¢ > O it follows that
X<V and X is compact in ¥. The following proposition shows that the HausdorfT and fractal dimensions
of X when computed in V are the same as those computed in ¥,

Pmpmmon. 2.3, Let d}i(X) and d},(X) denote respectively the Hausdor!l and fractal dimensions of X
compuled in V. Assume X satisfies (i) and (i3). Then

dg(X) = di(x). @
d(X) = df(X). (22)
Proof. 1n view of the Poincaré inequality, if X<UL 8"(x,.r,} then XCUL B%(x, r//R}). (We
denoted BY(x,r)= (wE V{lu—xli<r}) and B¥x,r)= {uﬁ;ll‘lu—x|<r].} Onlthc o:hu ﬁld. it i
well known that for any ¢ > {), there exists a constant k(1) > 0 such that .
1S(e)u = S(r)od < k(s v,
scc [22]. Taking, for instance =1 snd denoting k = k(1) we infer that if XCU™,B"(x,r,) then

Xc U;"_,B"(S(l)z,. kr,).
Alter these observations, the proof of proposition 2.3 is straightforward.

 Let us recall the estimates of 4 X) and dJ{(X) given in (5] (see also [6]). For each u € X we define the
linearized operator

W (u)=rd + B(u,?) + B(-, ). (2.3)
The evolution of an infinitesimal displacement v, slong the trajectory S(f)u, obeys

89 4 (S(r)wg)o=0, 24
v(0) = v,. (235)
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I o (0) A - -+ Ary(0)] is an atbitrary N-dimensional volume element at ug, (9,(0) A --- Avy(0)e
AYH), its evolution in time along S(r)ug is given by

LA Ao an (0 +Te(# (SR A -+ Avy()[ =0, (26)
where Q(1) is the orthogonal projection on the lincar space spanned by the solutions v,(1)..... vy(1) of
{2.4) stariing, at =0, from v,(0),..., vy (D).

1t is proven by a geometnical argument (sec |5, 6]) that if /T Te (o (S{ug)Q(1)de hwomcl and
remains positive for large T and all choices of ug € X, u,(0),..., uy(0), then N (resp. $N) is an upper

bound for 4H( X) (resp. df{{X)}. All (he geometrical arguments can be carried gver 1o V withoul change.
The volume elements must, of course, be Laken in AV, We obtain

Theorem 2.4. Let X satisfy (i) and (id). Suppase Ny = 1 is an integer satisfying, for all N = N,.

qu=limint  inf, : [Tl (s(e)u)@(s)as >0, an
ni0),..., euil)@ ¥V

where the infimum is taken over all u, € X and linearly independeni v,(0),.. ., 1y (0) unit vectors in V;
Q(s) depends on v,(0),..., 0,{0) and is the orthonormal projector in ¥ on the span of vy(s),. .., 0y(s),
solutions of (2.4) with initial data ¢,(0),..., v,(0). Then

dli(X) s N,, (29)

d;(x)snlzix*(%% +1). (29)

where N is any integer 2 N,.

3. The main estimate

The eigenvalues of A can be computed explicitly and it is well known that

M+ - 4hyzeN? forallN21. {33)
From the Rayleigh-Ritz principle follows that

TrAQ2 M+ - +hy (32)

for any orthogonal projector @ in ¥ of N-dimensional range.
In order to proceed, let us recall the identity

(B{v,u), Av) =0 3.3)
valid for v € D{ A) [23]. Differentiating, we oblain
{B{u,0), Av) + (B{v,u), 40) + (B(v,0), Au) = 0. (3.4)
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Thus we have
((B(u,v) + B{v,u),v)) = —[B(o,v), 4u). : (3.5)

Suppose now that 0 is an orthogonal projector on ¥ whose range is spanned by the onhonormal (in ¥)
VECIOLS ¢, ..., ¢y Let w€ X, Let L{u) be the linear operator

L{u}v=B(u,v)+ B{v,u). (3.6)
Then Tr L{u)(Q can be computed using (3.5) as
N ¥
TeLn)@= L (L4, 4)) = = L (B4, 4,), Av).
i=1 i-
Now since ¢, u are divergence free and since Aw = —Au, it follows that
N
TeLl(u)Q= Ef(ﬁ'vﬁ.)ﬁudx. (3.7
i=-1 0
Let us denote by p(x) the function
N ‘
plx)= LIl (38)
and by o(x) the [unction
N
a(x)= T |ve,(n)[" (29)
iml

Here we used the notation |M|? for the sum of the squares of the entries of the matrix M.
T follows from (3.7) and Holder's inequality that

ITrL(u)Q| <ol aloliSiglduly g, {3.10)
Let us notice that, since ¢, are orthonormal in V and Au= - Ax
LVO,' V¢, dx = §,, (the Kronecker symbotl). (3.1}

Therelore, using a vectorial version of an estimase of Lieb and Thirring (17, 24] it follows that

1/4
foliélg, < €3 Em.l’) =c,(TraQ)". (3.12)

The constant ¢, is independent of N. This fact, which is due 1o the orthogonality in L of the vector valued
functions ¥4,, is the main improvement achieved by the use of the Lieb-Thirring incqualities instead of
standard Sobolev inequalities.
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In order to estimate |pjy= g, we use 3 L™ refinement of some L? inequalities for Bessel polentials due to
Licb [16]. Tn this case p(x) = EX,16,(x}|? and ¢, = A'/%, sre orthogonal in L? vector valued functions.
_ One has {4]

~
Il < t;(l L L IM.I’)- (3.13)
i=1

For the convenience of the reader, we give an alternate proof of (3.13) at the end of this paper.
Now we estimate

34
(L[ﬁu(x)[‘ndx) S e Ay Y Aul. (3.14)
From (3.10), (3.12), (3.13) and (3.14) we obtain

ITeL(1)Q| 5 ¢(1 + log A;*Tr40) (A" Te 40) 14wl (3.15)
Now we shall apply (3.15) for u = S(5)w, with xg € X and ((s) described in theorem 2.4. Let 1> 0, Then
1 [ Te(wr(stmQ(s) s
- -EL'TMQ(:)G:-!- %L'TrL(S(:)u.)Q(s}d:
' > -:-J:TMQ(:):I:-:,-:— '(1 +1og A7 TrA0(2)) (AT Tr A0(2)) /Y A(S(s)w,) | ds
> 2 [TeA0()ar- o [0+ 1og A T AQUNA TeAQN) )
. 11
x(} [1A(strw)’ a,) .

Now lor each 5, x(s)=A;tTrAQ(s) satisfies x(3) 2 c,N? (see (3.1), (3.2)) and also x(s) 21+ Ay/A,
4 oo +X, /A 2 1. The function g(x) = x'/%(1 + log x) is concave on x » 1/¢. Since our functions x(1)
verify x(2) 2 1, we can apply Jensen's inequality and infer that

111+ 1og A T AQUNO Tr ()} s

s (l Hogl,‘“?L'TMQ(:)d:)(A,"%I;qu(:)d:)m.

Therelore
ITI:TrJI(S(I)IIo)Q(I)d:Z ;[.'TTAQ(I)(’I*(,(I +|0!l['%'TtAQ(:)ds)ln

X(Ai—l.‘i.f;TrAQ(s)ds)'”(%L"A(S(J)u,”‘ds)ln.
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Let us denote

mis) = § (e dem 5o [ TeAQ)
and let us consider also

¢ Cr, )= ;%(%Af;mh)““’),,,.

Then -

%I;:TI' -i_tS{:)u,)Qtl)dl 2 rA;m = CoAm'4(1 + log m)'/%.

Let us define

S0y i 11
C= (rk,)"ﬂmmp( tﬁp'-‘;j:lds(s)uolid:) .

=

Then there exists a 1, depsnding only on X such that
C(t,uy) s2C, Vra"i,. YueX,

and for t2 ¢, (5.!6) yields

-}- I;Tr.((S(l:)u.)Q(:)ds > phym = 2CPAm74(1 + log m)',

By elementary calculations we find that

m = 2o (1 +logm) P2 7 — o TYH1 4+ 108 )7, vma2l,

and hence
3 [T s (st ua)@e)ds 2 tm = phee T4 + g O
s N?

L

We conclude thal (see (1.7))

gy 2 '—A'—ci!f— =01 4+ log ), ¥NeN.

1 N, is defined by

+ J1.2 -
N,-Is[!c—?] 1 +108E) < N,

- !A,c{f‘n(l + mE)m' Y uy € X.  J 2.

b1l

(3.16)

317

{3.18)

(3.19)

(3.20
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then g, > 0 and

_ - 2 a2 .
max —% 5 max —7HlU MIR e 24N M
i<j<N, N 155N In V5/sN N'—N.' N""N."

¥ N> N,.
Minimizing in N 2z Ny we deduce from (2.9) the [ollowing:

Theorem 3.1. Let X be & set satislying (i) and Gii). Let T be defined i isan i
ity ). in (3.19). Assume N, is an inleger

Then
Au(X) < Ny, . GB2)
dy(X) S 26N, (3.22)
Let us define the average (Au)® by
. 1 1
(Bu) =2, h:r_l.slap( o] fo las(;)u.l’d:) ) . (3.23)

Via (Au)? we define the spectral enstrophy flux x and the smallest scale of motion {, associsted to it by

4 1 t
x= r(Au)’-:A,(li:r_n_s:p(-s.u.px}LIAS(:)u.fds)m) . (3.24)
RItL
W= (%) Genlmzn. (.29)

From (3.19) we observe that {(Au)? = #IA1C?, x = #'N\C2, 1, = A V/3(C) /. Therefore, Laking I = A '/
!2 : A
() - 620

With these definitions we can reformulate theorem 3.1:

Theorem 3.2. Let X satisfy (i) and (ii). Let the aver 2 i

; : age {Au)* on X be defined in {3.23). Let x and [, be

:1: associated ‘spectal enstrophy flux (3.4) and corresponding microscale (3.25). Let /, = A; 172 be taken
represenl. the macroscale. Then, there exist  nondimensional constanis cg, ¢, such that

d"(X)Sc‘((:—:)’-tl)(l-Hog(l+;f))m. (3.27)
du(X) < 2.6:.(;!:-]‘(1 +lo|(;-:-))m. (3.28)

Let us give how an upper bound for C. Taking the scalar product of (1.6) with Aw and using (3.3} we

-
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obiain
14d : Auf?
L Lut + A <11 au s UL, 1AL,
Integrating we pet

v £|Au(.)|'ass|-(o)|’+.|{|3.

Now, il #{(0) = u, belongs to X it follows, since X is bounded in ¥, say X' C B0, 1), that

1 1 U VL sy |
g oo flasomtane B+ St
Denoting by G the quantity
G 1L (3.29)

i
we obiain, laking the square roots and then limsup, ., in the last inequality, that
CsG. (3.30)
In c:)nclnsion we have proved the following:

Theorem 3.3. Le; X satisfy (i) and (ii). There exists 8 constant ¢, such that

Ay X} se,GVH 1+ log )7, (3.1
4 (X) $2.6,6Y7(1 +10g GV (3.32)
Remark 3.1

(i) As indicated in the introduction, AV, Babin and M.L Vishik provide in [2] a lower bound for the
dimension of the universal atracior X of the (wo-dimensional Navier—Stokes equations for certain choices
of  the body forces f and of the geometry (L, /L, sufficicntly smail). This lower bound was given in terms
of the viscosity as dy{X) > e»~*; although this estimaic is not nondimensional, its nondimensional
counterpart would be dy(X) z ¢G', showing thus that for particular choices of £ (3.31), (3.32) are
logarithmically close to being optimal {for G farge).

{ii) Although the example of [2] shows thay X can be indeed of large dimension (as ¢G/?), it is
interesting (0 recall here the example of C. Maschioro [19] who shows that for particular choices of f
corresponding o arbitrarily large values of G, the atracior of the iwo-dimensional space periodic
Navier—Stokes equalions can be frivial, i c. reduced (o one single stationary solution which attracts ali the
trajectorics. For the sake of completeness, we give here a very simple and short procf of the result in [19].

We take L, =L, =L>0, ii=vp{®)sin(2ex,/L), p>0. f=rhi. Now & is an eigenvector of A
corresponding lo the Brst cigenvalue A, (=X, = Ay=A,), and since B(it, i) =0, we have

v+ B(R. &)=/, (3.33)
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al @ is also a stationary solution of {1.5) for this particular choice of f. It is easv 1o check that
p(»¥2ri/L2), 30 that G =|f|/v?X = (1/¥22#)p and G proportional 1o p can be chosen acbitrarily

us show now that any solutions of {1.6) and (1.7) (for this choice of /) converges to ii as § — co. We
(1) » u(r) ~ i@ and it Tollows readily from (1.6) and (3.33) that

%; +rAw+ B(w,5)+ B(u, w)=0. {1.34)

uccessively take the scalar product in H of (3.34) with w and Aw. Recalling (1.3), (3.4) and the
ity { B{v, 0}, Av) =0, ¥ v € D(A), we find

3 21wt ol 4 (B(w, ), w) =0, (3.99)
3 o0+ rtAwi+ (B(w, 43), w) = 0. (3.36)

nultiply {3.35) by A,, and subtract (3.36) to find (by using also A& = A &)

3 3 (= M) + o1 = A wl?) = 0. (3.37)
IIV‘C

|Awf? = Agliw? = ’5_5,1;(*,-Au)(v-w)’zA.lé(M—h)(w- w)! = A (i = A, iwi?),

{w,} is the sequence of orthonormal eigenvectors of A. We deduce from (3.37) that w(r) -
(w(1), w)w, ~Oin ¥ as I = eo. Then using also the facl that (B(w,. w,), w,}=0for1 </, j k<4, we
1in (3.35)

(B(w,5),w)= n(-.a).--’);:' (-.~,)~,)+£:| (w.w,)(a[.v_ 3::|(...,)..,.-.),..,,)

we oblain that w(r) itself converges 100 in M o3 1 — o0,

i)} Both results in (i) and (ii) above leave ttally open the question of the structure of the universal
ictor of the 2D-Navier-Siokes equations in the space periodic case: We do not know if it is reduced to
cmary solutions and their unstable manifolds or if more complex components can appear.

nally let us give, as promised, the following:

fof 3AN. For k. &,,....EnER and ¢ = LI {4, we have (see [3)

A i
e < :..,m(los iLﬁ%Ii" + 1)
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Therefore for x€ R

E El‘n(-‘)

1
<ol < c,,( z “!")('0! l-lze ‘:.l I)
l 'e317]

scly ‘Ellt.l’)(los—rz"'b:ﬂ- + 1)

and 30, since the coefficients §,,..., £y are arbitrary,
2 lox)f 52¢|o(|°l ALUIN + l)-

which yields (3.13).
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