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Abstract

In this article we present a new method of integration of evolution differential
equations, the nonlinear Galerkin method, that is well adapted to the long term integration
of such equations.

While the usual Galerkin method can be interpreted as a projection of the
considered equation on a linear space, the methods that we consider here are related to the
projection of the equation on a nonlinear subspace. From the practical point of view some

terms have been identified as small and we Just disregard them sometime (but not always).

g.aboramire d'Analyse Numérique, Université Paris—Sud, Batiment 425, 91405 Orsay,
rance

The Institute for Applied Mathematics and Scientific Computing, Indiana University,
Bloomington, Indiana 47405, U. §. A.

Introduction

Thanks to the important increase in the computing power during the last years one
can now envisage to solve numerical probiems that where unthinkable in a recent past. For
example, in the case of dissipative evolution partial differential equations we can now hope
to solve such equations for long intervals of time and for ranges of values of the physical
parameters which lead to nontrivial dynamica: by this we mean that bifurcations have 7
occured and instead of converging to a stationary solution the system may remain
constantly time dependent even if the external excitation to the system is time
independent. The simplest such situation occurs after a Hopf bifurcation when the system
becomes time—periodic, whereas the Lime and the period do not appear explicitly in the
system.

These new phenomena produce new problems and new challenges Lo numerical
analysis. The long term integration of evolution equations is not an easy problem, and
little has been done in the past, due in part to the lack of motivation. A large number of
existing numerical integration algorithms lead Lo error estimates of the form C(h) exp (T},
where C(h} is an appropriate constant which is small for h small and [0,T] is the
interval of time under consideration. Such an approximation result is irrelevant for large
T and, either the error analysis ought to be refined, or the error is indeed of this order of

magnitude and the algorithm is not acceptable for large T'a.



Another simple way to perceive the difficulty of large time integration of differential

equations is the following. Assume that we want to integrate a differential equation
) ®e=rpuw),e>o,

(0.2) oo -
on an intetval of time of length 0(L/¢), ¢ small. Then it is natural to introduce the new
time variable r = ¢t and the new unknown function ©(7) = u(ct) that satisfies the gtiff

differential equation:

1) - L.

Thus, we are faced with the difficulties of siiff equations, In practice the situation will be
even more complicated; we may need to consider different physical times of order 0{1),
0(1/¢), 0(1/52),..., and we are then lead to introduce several time scales producing several

stiffness parameters of different orders.

The new integration method that we propose in this article combines time and space
discretization, and we would like at this point to explain the motivations of the algorithm.

A classical

Galerkin method based on functions Wy W is a sort of projection of the equation
under consideration {say {0.1)) onto the space PmH spanned by Wi W In this
procedure all the terms in the orthogonal space are considered as small and are neglected,
On the other hand an important and well known aspect of nonlinear dynamics is the
sensitive dependence to initial data: a small variation in the initial data or more generally
a slight perturbation to the system may produce after a long time very important effects
and a very important change in the system. Hence it is appropriate (and necessary) for a
large time integration of the evolution equations o capture the effect of some of the terms
that we neglect in the Galerkin method by reatricting the equation under consideration to
the linear space P _H = Span ["l""'wm]' and this i3 our main motivation.

The nonlinear Galerkin method that we implement here, stems from the theory of
dynamical systemns and inertial manifolds [3,12,2] and proceeds as follows. For time
dependent motions, the permanent regime is represented by a global attractor . which
attracts all the orbits; when the solution of (0.1) (0.2) converges to a stationary solution
Us, and thias is the case usually for very dissipative systems, then . is reduced to the
paint u. . When more complicated dynamics occur, € can be a more complicated set.
The usual Galerkin method produces an approximation of .€ in the space P_H; however
the inertial



manifolds and approximate inertial manifolds produce nonlinear manifolds that are closer
to € than P H, and it is natural to look for an approximation of the equation lying in
such manifolds.

For nonlinear Galerkin methods, we consider & basis consisting of 2m functions

W, Wo o instead of m functions. More geerally we could consider dm functions

2m
where d is a number which is fixed and not too large. The function u is approximated

"~ by U, With & correction term 2

b 3

B = s . = o (t)w. .

(0.3) u(t) e Bim(t)W;: 25 (1) - By (t)w;

At each given time t,z (1) is expected to be small compared to up,(t), and nearly

negligeable. However on long intervals of time the effects of 2 m add up and interact on

u., - Loosely speaking one of the definitions of ug, and z is the following

du
©4)  FT) = PyFlug () +z.()
(0.8)  (Py=P (Rl (1)) + VF(u (1)) + (2,(t) = 0.
Here Pj is the orthogonal projector onto the space apanned by wl""'“'j' in the

undertying Hilbert space H (u(t)cH,Vt); and VF is the Fréchet differential of F (F isa
nontinear mapping from H into itself, YF(y)eH), if weH) . Of course

we need appropriate hypotheses which ensure that (0.1) (0.2) is a well posed and
dissipative problem and which guarantee the existence and uniqueness of Yn and z,, in
(0.4) (0.5). This program is carried out in detail for a class of evolution equations that
includes the Kuramoto—Sivashinsky equation, the two—dimensional Navier-~Stokes

equations and many other equations.

The article is organized as iollows. In Section 1 we describe the evolution equation
that we consider; we also describe the nonlinear Galerkin method and state the convergence
result for the method. Section 2 containg the proof of convergence. Section 3 contains the
statement and the proof of some improved convergence result. Another nonlinear Galerkin
method, slightly different from {0.4) {0.5) i3 studied in Section 4. Finally in Section 5 we
congider the two examples mentioned above, namely the Kuramoto—Sivashinsky equation
and the two—dimensional Navier—Stokes equations and we show that our results apply to
these equations.

The improvements of the nonlinear Galerkin method over the usual Galerkin
method is evidenced by the theoretical results in {2] (see Remark 1.1), and by numerical
compuytations that will be reported elsewhere [9] and that shows a significant gain in
computing time. This gala Is explained by the fact that we appropriately disregard some
terms that have been identified as small and non effective. Although the problem is totally



different, the situation is reminiscent to that of incomplete Cholesky factorisation in linear CONTENTS
algebra, where computing time is saved and accuracy is gained, by appropriately neglecting .

some small terms outside the main diagonals.

1.1 The evolution equation
1.2 The nonlinear Galerkin method.

2. Proof of Theorem 1.1,
2.1 A priori estimates

2.2 Passage to the limit.
3. Improved convergence results.
4. Another poulipear Galerkin method,
5. Examples

5.1 The two—dimensional Navier—Stokes equations.
5.2 The Kuramoto—Sivashinsky equation.




1.1 The evolution equation

We are given a Hilbert space H with a scalar product (.,.) and anorm |-|. The

nonlinear evolytion equation that we shall study has the form
L) Ry Au+RE) =0,

where

(1.2) R(u} = B(u) + Cu ~f.

Here, v > 0 is a viscosity parameter. The operator A is a linear unbounded
self-adjoint operator in H with domain D(A) densein H. We assume that A is
positive closed and that Al compact. One ean then define the powers A% of A for
sk, the space D(A%) is a Hilbert space when endowed with the norm |A'. |. Weset
V= D(A*) and we denote by ||.]| = |A*.| the norm on V.

Since A1 s compact and self-adjoint, there exists an orthonormal basis {wj} of

H consisting of eigenvectors of A

w5 =Ajw.,
(13 0 <)11 < izs..., /\j-un 8 jo+w.

10

The nonlinear term R(u) satisfies (1.2) where B(u) = B(u,u), B(.,.) is a bilinear
operator from VxV into V', C is a linear operator from V into H and feH. Let us

denote by b the trilinear form on V given by
b(u,v,w) = < B(u,v),w > Vi VuvweV.
We assume that
(1.4) b(u,v,w} = — b{u,w,v), Yu,v,w ¢ V,
(15)  (b(uvw)) < eqfult it vl iwiiwid, Vo e v,

(1.6) |Cul ¢ czllull. YueV,

where €S9 like the quantities ¢; which will appear subsequently are positive constants.
In addition, we require that B maps VxD{(A) into H and

(1.7) [B(uv)| ¢ cqlult Jult vl {AvH, Yuev, vwed(a),
(1.8) Bl sy lult JAu)t vl vu,veD(a) .

Finally, we require that vA + C is positive, i.e.
(19)  ((WA+C)u.n) 2 aflul, YueD(A),

where a> 0.
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The above abatract setting applies in particular to the Navier—Stokes equations in a
bounded domain of R® associated to the non slip boundary condition or to the
space—periodic boundary condition. Using the same methods as for these equations (see
Lions [4), Temam [10]), one can check that the initial value problem for (1.1) with initial

condition
(1.10} u(0) = U uodl.
has a unique solution u = u(t) defined for all t > 0 and such that
+, 20 T
ueRH) N LE(O,T;V),¥T > 0.

Moreover, if uocV, then

TR S

we#R7;V) N LY0,T;D(A)), VT > 0.
1.2 The nonlinear Galerkin method.
The method is implemented using as a basis of H the eigenvectors w5 jilN, of the

operator A . For every inleger m, we are looking for an approximate solution of Problem
{1.1)(1.10) of the form

m
ml®) = E gy

U, Rt W, = theapace spanned by WineaWo

12

The function u, is determined by the resolution of a system involving another unknown

function tm where
5
z,(t) = [omat hjm(t)w ,

2, R - Wm = the space spanned by w,, (... W, .

The pair (um,zm) satisfies

(1) &)+ Hug)) + (Cug ) + blu ¥} +
+ b(:m.um,v) + b(um,zm,v) = (f,v), chwm,

(112) Az, ) + (Cag ¥) + Bugu ) = (67), WeW,
together with
(113} u (0) = P allp:

where P, is the orthogonal projector in H onto Wm .
The system (1.11} (1.12) is equivalent to an ordinary differential equation for Un
Indeed, the equation (1.12) for Zn is linear and can be rewritten

(L19)  vAzy + (Pyo P )Cz = (P —P )(~B(u, ) .
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The assumption (1.9) guarantees the coerciveness and invertibility of the operator

VA + (Py -P)C on Wm, so that z_ is explicitly given in terms of u by

(L15) 2 = (VA+H{Pyr P JC) Py P )(-B(up)) .

Therefore, the system (1.11)(1.12) is equivalent to the following ordinary differential

system

du
(1.16} Ef'@' +vAu + Pm(Cum+B(um) + B(zm,um) +
+B(u 2z )) =P L 2 given by (1.15).

Note that (1.16) with z,, = 0 is the system obtained by the classical Galerkin method.

The existence and uniqueness of a solution u, of (1.16)(1.13) defined on 3
maximal interval {O.Tm) follows from standard theorems on ordinary differential
equations. The a priori estimates that we derive in Section 2 below guarantee that
T, = +=. Also, they will allow us (0 study the limit m + + = and to obtain the

foliowing convergence result.

THEOREN 1.1

The hypotheses are (1.4) to (19). For v givenin H, shesolution v, of
{1.16)1.13) converges, as m - o . to the splytion u of Problem (1.1) (1.10) in the
following gense:

14

(139 up+u in LAOTV) and LPOTH) sscongly, forall T >0, and all
1$p< +

U, v in L°RY;H) weak-star,

RENARK 1.2

(i) We can prove that 2,,, i8 small compared to u, . Thus at each given time
zm(t} is a miner correction to um(t]. Howevet, on long interval of times, z,, modifies
U in & non negligible way.

(i1} Ivis shown in Foias, Manley and Temam [2] (where C = 0), that the global
attractor . to (1.1) lies at a distance in H of P H bounded by C(A}/Am+1). In 2]

we constructed an approximate inertial manifold ) for (1.1) of equation
(-2 )¢ = (WA) ™! (1= )(-B(P . ¢))

such that . lies at a distance < C(A/Ay, )*/% of 4. Thus, for large m, 4 isa
better approximation of . than P_H . By replacing I by P, m We construct with

Ly | Galerkin approximation (based on w ) of

m+1¥om

(A)™ (I-P )(-B(P, ) -

The algorithm considered in Section 4 corresponds to another (better) approximate inertial
manifold 4 for (1.1), introduced in [13]; ¢ lies at a distance ¢ °(“1/"m+|)2 of Ay
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Other aspects of approximate inertial manifolds appear in Marion 5] [6].

2. Proor of Tueonew 1.1,
We start by deriving various a pricri estimates on the norma of U2 {(Section
2.1). As already mentioned, these estimates yield in particular that u .z~ are defined

for all t > 0. We then investigate in Section 2.2 the limit m -+ + o .

2.1 A prigr esti
Let us take v=u_ in(L11), ¥ =2z in(1.12) and add the corresponding
equalities. Thanks to {1.4), we obtain

@D gE i1 ®+ vl + (Cugu ) + iz 12+

+(Czpzp) = (f.um+zm) .

Hence, by virtue of (1.9),
2
22) S 1unl?+ atlu P+ D < 1911w 21 -
Since we have
@23) (vl = 1Ak 2 ab v, we,

it follows from {2.2) that

16

1d 2 2
3 atluml® + ez, 1% P, + 2

< Sl )Py +lz )2 + ;}qmz

2
(2.4) Tl + alllugl? + 9% < 2L L.
Dropping momentarily the Lerm orllzmlf2 and using again (2.3), we obtain

|2

d
Floml“+ aAllum|2$a§T |f|2.

Hence, by inlegrating
2
Illm(t)l2 < Ium(0)|2exp(-—m\lt) + %ﬁ&—(l—exp(—a,\lt)). vi> o,
1

Therefore

The sequence L remains in a bounded set of

(25 pm@tH), m med .
We come back to (2.4) that we now integrate between 0 and T . This gives that
For all T>0,u_ and z_ remain bounded i L2 0TV
(2.6) m m n L% )

343 M=o .
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We aim now to derive an estimate similar to {2.5) for the sequence Zp, - Taking

V= 2, in (1.12), we have

Uiz I? + (Capyz) = = blugy ) + (Tz,)

Thus, by use of (1.9) (1.7),

@7 ol i < 1Bl 2] + |1z,
< eqlug il Au ¥ 1z | + M1z -

Since u W and zmzwm, we have

1 t
28)  lAug) <At o< 2k pu ),
29)  lAzgi2 At el a2 A 1z

Combining these inequalities with (2.7) we obtain

112l S el Pl + 12
(2.10) Y PAETSE LTS

This gives, thanks to {2.5), that

(211)  z_ remains bounded in L*(R¥;H), as m-+a,

18

Using again (2.8) {2.9), we also infer from {2.7)

adpalznl Segat o [ i+ 1)

Hence, since Al < Am < Am+l'

aad sl Seglug | Hugl + 27 11y
This inequality along with (2.5) (2.6) shows that

(2.12)  Forall T >0, .\rf‘ +1%m Temains bounded in L%(0,T;H),

m
a8 m4t+tw,

du
We conclude this section by deriving an estimate on gz . Due to (1.4) (1.5), we
have

18wy, € g [uiHhult v v, Yo, vev .
Therefore, the estimates (2.8), (2.6) and (2.11} imply that B(um), B(zm,um) and

B(u2,) remain bounded in L2(0,T;V') . Also by virtue of (1.6) and (2.6} Cup,
remaing bounded in L2(0,T;H) . Hence, the differential equation (1.14) gives that



(2.13)

19

du
For all T >0, 3y remains bousded in L%(0,T.V"),

a8 m-+w

(remll that "pmn -qvl’vl} S l) .

22

(2.14)

P he limi

We first note that, since Ap~to s m-te {2.12) implies that

Forall T >0,z +0 in LE(0,T;H) strongly, ss

m-++a

Thus, using the estimates {2.6) and (2.11), we have also

(2.15)

Forall T> 0,7, —0 in L%(0,T;V) weakly, and
L°®* H) weak-star, a8 m~+ .

We now study the convergence of the sequence LW The estimates (2.5), (2.6) and

*
(2.13) insure the existence of an element u and a subsequence m' + + w such that

(2.16)

u—u in L2(0,T,V) weakly,forall T >0, and

Lo®*;H) weak~star, as m' « + w,

du_, . )
T — 8 0 12%(0,Tiv") weakly, forall T >0, as

m-+4w.

20

Due to a classical compactness theorem ([4,10]), it follows from (2.16) that

(217)  Forall T>0,u_,»u in L30,T:H) strongly, as

m-+o.
Thanks to (2.14) - (2.17) we can now pass to the limit in (1.11). The only difficulty

concerns the bilinear terms. Let veW  befixed and let m' 2 m. Thanks to (1.4), we
have

b(l‘lm'.umnv) =- b(umhvruml) .

In view of (1.7}, b{-,v,-) is bilinear continyous from VxH into R. Therefore, (2.16) and

(2.17) imply that

b(um..v,um.) - b(u.,v,u*) in L](O,T) strongly,
forall T>0, 8 m'-+ 4+ .

Hence,

b(um.,nm.,v) - b(u‘,u.,v) in LI(D,T) strongly,
forall T>0 as m'~+ + .



21

Similarly, we have

b(zm"um"v) = b(oiu‘vv) =0, a8 m'++ @,

b(u V) h(utaosv) =0, 8 m-++w,

m"%

where the convergences hold in LI(O.T) strongly, for all T > 0.

Therefore, we find at the limit that u' satisfies
d ] . ] L
(2.18)  Fplu v} + M(u v)) +(Cu ¥) + blu u v) = (£v),
for all veW = and by continuity for all veV . Furthermore, (2.16) yields that
(219)  u (0) —u'(0) weaklyin H.
Recalling that u,(0) = P ug, we conclude from (2.19) that
*
(2.20) u (0) = U,
In view of (2.18) and (2.20), u" i a solution of Problem (1.1) (1.10). Hence,
*
U =u and the whole sequence U, converges to u in the sense (2.16).

In order to complete the proof of Thecrem 1.1, it remains to check the strong

convergence results in (1.17). Let us introduce the expression

22

T
X, = % fu(T) -u(T)2+ J0{4|um —ul? + (Clugy =), uy, —u) +

+ Az I? + (Czpz, )}
Then, we note that it suffices to show that

(221) lim X_=0
m-++w m

Indeed, thanks to (1.9), (2.21) gives the strong convergence of U, towards u in
L%0,T,V), VT > 0. Also, (2.21) yields that

(2.22) v () ~uft) in H strongly, forall 420,

Combining (2.22) with (2.5), we can apply the Lebesgue dominated convergence Theorem

and therefore obtain the strong convergence of u. towards u is LP(0,T;H) for all
pe[l,+=). We can also note that, besides the strong convergence results (1.17) for U
(2.21) yields

(2.23) 2, + 0 in L¥0,T;V) strongly, forall T >0, as

m-++4ae

This remark will be useful in next section.

We now prove (2.21), Integrating (2.1) between 0 and T, we obtain
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T
o (T + joluuumu2 + (Cugggy) + iz + (Crgay )t =

=1y (0)[2+IT(fu +2_)dt
“3m g mmi
so that Xm can be rewritten

(2200 X == (uy(T) u(T) + 5 la(D 2+ §{u_ 012+

T 2

+ [ (2 g} + vhul’ - (Cun ) -
0

- (Cum,u) + (f,um+zm)}dl .

By use of (2.14) {2.16), we can pass to the limit in (2.24} (which is a linear expression with

respect to v and zm) and we obtain

T
. 1 2.1 2
Lim Xy == DI+ § gl + [ =l - ) + upjar

and using equation (2.18) with u‘.v, replaced by u,u, we find that this limit ts 0; hence
(2.21).
Theorem 1.1 i3 proved. o

3. Improved convergence resylts
Our aim in this Section is to prove the convergence of the nonlinear Galerkin

method in stronger topologies. We shall derive the

24

Tueonew 3.1

The hypotheses are (1.4} to (1.9). For u, given ig V, the solutiop u, of (1.16)
(1.13) converges 40 the solution u of Problem (1.1) (1.10) a8 m ~ + w, in the following _
sense

(31)  uw_~u ln L%0,T;D(A)) and LP(0,T:V) strongly.forall T >0 and all
1< P<+ao,

u, <u in L*®;v) weak-star.

PROOF, The proof reties on further a prior estimates on u_, and Zon

m
We start by deriving an estimate of un in L"’(R"‘;V). Let ug take v = Au o i

(L1, v= Az, in (1.12) and add the corresponding relations. We find
. 2
(G § N P T I L I L (YT
—(Cu m.Aum) - (sz,Azm} - b(um,um,Aum) -

- b(zm,um,Aum) - h(um,zm.Aum) - b(um.um.Azm) .

The different terms in the right-hand side of (3.2} are majorized as follows. We

have
(3 (A +z)] < (1Au 12+ Az 1% + Sie2.

Also, by using (1.6),
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(3.4) 1(Cug Au ) € cllull(Au ], Finally, for the last term in the right—hand side of (3.2)
AP T
< 15| Au + -y,
T2l At + 5 lug I (38)  IblugupgAz ) <eglun 1 il Au 12 Az,
v 2 2. ¢
» $Tg A"+ y 1Az + = lu | Huyl
(3.5) [(Cz Az ) € eqllz Az |, Combining the above majorizations, we conclude from (3.2) that
v 2 3‘% 2
VAL Ry L 2
(39 Sl 2+ vlAu (24 vAe (2< 202 4 22y, 42
- & v U l™ + vlAzg |7 S SHT + 2z 1% +
2
We then bound the trilinear terms by using (1.7). We have + cgllu |l (1"'|'-1m|2||u,-n|l2 + |zml2||7-m||2+|"m|2||3m|i2)u
(3.6) Ibugup.Au )] € |Bluu ) fAe |, where cg = cg(v) dependson v.
<calu 1/2 w [l Ay 32 This gives in particular the differential inequality.
< cqlug 172 fu gl Aug (72,
< {with Young inequality),
c dy
4 mn
<y VAug 24 S P 0, (10} T ¥y + by
where c, i3 an absolute constant. Similarly, where we have set
10(a g At € Bl A2 + 2l 2l 2 1202, 5%, g2
m m M/l 2 T3 A8y vl omt Wl Hipgel - G4) yple) = Nu g (O b (6 = 22164 + - Nz 1%
Ern(t) = eg{t+ ()12 lug (01 + (2,012 iz, (2
Also + Jug(8)) e ()2
(37) [b(uggzeAug ) € cglugy |2 14730 14214z )2 A0,

<Yy |Ay (248 A
g 1aug 4+ pu i e, 1Az,

v 2 2. %9 2 2
$ Ty 1A |® + Fy FAzg 17 + L e
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By integrating (3.10), we find that

! t ¢
@12)  yylt) S yOdenpl] g (9109 + juhm(s)exp([,sm(o)da).

Vt20.

This inequality combined with the a priori estimates (2.5}, {2.6), and (2.11) provides &
bound of u , in L¥(0,T;V), forall T > 0.

A bound valid on R* is obtained by application of the uniform Gronwa!l Lemma
that we first recall (see for instance [1] [12]).

LEwus 3.2
Let &b,y be three locally integrable positive fupctions on |ty +e| which satisfy

& e (tg+al) and Fegy+hfor 21y,
t+1 t+1 t+1
013 [ sedscay [ T hoas cay [ yto)ds <ag, fox
t2 to s

where a,.a9,8, are posilive constants, Then

(3.14) ¥(t) ¢ (a3+a2)exp(al), i tgt+l.

28

Returning to (3.10), the assumption (3.13) is checked thanks to the a priori
estimates of Section 2.1. We know that U2 are bounded in L"’(II"';H). Moreover, by
integrating (2.4) between t and t+1, we find that

t+1 2 t+1 9
I llu,lids, j llz,lI“ds are bounded for all t20
t t

by a constant independent of m .

Consecuently, the functions y ., h . g given by (3.11) satisfy (3.13) with constants a's

independent of m and we infer from (3.14) that
(318 yp®) = u @) <cq V21,

where cq = cg{v) is independent of m .
Hence, {3.15) provides & uniform bound for ilum(t)li. t 2 1, while (3.12) gives a
uniforra bound for 0 <t < 1. Therefore,

(3.16)  u_ remains bounded in L®R¥;V) a5 m+ 4w,

Then, integrating (3.9), we obtain that

(3.17) Forall T>0,u

m 8nd 2, remain bounded in L%(0,T;D(A)), a8 m~ + .
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Our goal now is to derive an estimate analogous to (3.16) for the sequence 2, - By
taking Vv = Az in (1.12), we find

viAzy | = = (Caphzy) - blug b,
< (thanks to (1.6) (1.7)),
< eqllzgliAzgy | + eqtu ) 2u 11 Au_ |24z,
+ 1114z, | .
vl Azl < ollagl + eqlugy |/ 2ie h Au 112 4+ 1)

Az) + (fAz, ),

Then, usiog {2.8) (2.9), we obtain

AL Bz < colley I+ et Y2y |3/2 s

which gives for large m

he |1<-—m—(c»\”‘iu M 1372 4+ 1))

This inequality combined with the estimate (3.16) enables us to say that

{3.18) 2z, =0 in L"’(R+;V) strongly, As m- + o .

du,,
Finally, the last a priori estimate we shall need here concerns T From {1.7)
and the estimates {3.16) — (3.18), we bave that B(u ) B(zm,u ) and B(u Z ) are
bounded

30

independently of m in L‘{O,T;H) for all T > 0, while Au_, is bounded in L2(0.T;H) .
Thetefore, the equation (1.16) for u,, Eives that

du
(319} Forall T>0,—® remains bounded in L%0,T;H), a5

m=++w.

The convergence results (3.1) will follow now from the estimates (3.16) — {3.19).
First, combining these estimates with our previous convergence results ((1.17) (2.14)

(2.15)), we obtain that, a3 m—+ + o,

(3200  u -uin L%(0,T;D(A)) weskly, for all T >0,
(321)  u ~u in L°@®V) weak-star,

du,
(3.22) "‘ - a‘ in L3(0,T;H) weakly, for all T > 0,
(3.23) z,~0 in L2 (0,T;D(A)) weakly, forall T > 0.

This gives, in particular, the weak convergence result in (3.1), Next, to check the strong

convergence results in {3.1), we introduce the expression
1 2. (T, 2 2
Y, = 5 llu (T) - u(T)|% + yj (1Aug = Aul? + (A )i,

and we note that it suffices to show that



k)

lim Y_=0,
Mate M

_ (indeed, the strong convergence in LP(0,T;V} follows then from the estimate {3.18),
thanks to the Lebesgue dominated convergence Theorem). Integrating (3.2) between ¢

and T, we obtain
T
2
(I + 4] (18ugi? + 182,07 = 20, + 3 g,

T
(3.24) z_ = j o (EA QG +20) = (Cuy Aug) = (Coyy Az ) -

=blupu_ Au_}—blz A )~ b(um,zm,Aum) - b(um,um.Azm)}ds,

so that Ym can be rewritten

T
Yy = = (D)) + & (T2 + L fug 1% + vjo (- 2(Au Au)

+|AufPyas 4 2.

It follows easily from (3.20) and (3.22) that

T
Lim = (u(THuTN) 2] (Au Auis) =

T
= - JuD)® -2uJo |AulZds .
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Next, we can pass to the limit m-+ + o in Zm by using that w and z_ converge

m
weakly in L%(5,T;D(A)) ((3.20), (3.23)), strongly in L2(0,T:V) ((1.17),{2.23)) and are

bounded in L”(0,T;V) {(3.16), (3.18)). In particular, since the passages to the limit in the
different trilinear terms in (3.24) are similar, we will only consider hete the first one. We

have

T T
(3.25) Jo by Ay _)ds -L} b{u,u,Au)ds =
T T
I 0 b{u,—v, um,Aum)ds + JD b(u,um—u.Aum)ds +
T
-[0 b(u,u.A(um--u))ds

For the first term in the right—hand side of (3.25) we obtain, thanks to (1.8) (3.16), and
Holder inequality

T T
1], Doty v )en] <o o s 72 gl A 2 Ay,
T
scjogum—u|‘/2 |A(u—0)( /2 |Au,_]ds,
T T T
2,.1/4 2,.1/4 2,,31/2
<ol logimalin)' 4 1A a4 1A a2

which, along with (1.17) and (3.17), shows that this term goes to zero a3 m ~+ + . Then,
for the second one, by using (1.7),
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T
IJO b(u.um—u,Aum)dsl
T
gc:Jo]u|U2||ul|1/2||um—u||l’2IA(um—u)IllzlAumtda
T
<ef ool 1A 2 Aug s,

T T T
¢l bupotlan) ™ ([ 1A P 4 1Ay e

and this goes to 0, a8 m~ + w, by virtue of (1.17), (3.17).
Finally, the last term in the right—hand side of (3.25) is linear with respect to u  and one
checks easily that this term goes to zero, as m~+ ®, thanks to (3.20). We have thus

shown that
T T
Iob(um,um,Aum)da - Job(u,u,Au)ds, 8 mata.

The limit for the different terms in {3.24) can be studled in a similar manner and one

obtains finally

T T
, 1 2,1, 2 2
tim Y ==L @i+ e —uI Au|2ds + [ {(1,Au) -
dim Yo == F DI + 3 hugl? ~of (Aul?as + [ (.40
— (Cu,Au) — b(u,u,Au)}ds,
= (by integrating the equation (2.18) with u v replaced by u,Au)

=0.

This shows the strong convergence results in (3.1) and concludes the proof of

Theorem 3.1. o

3

4. Apother ponlinear Galerkin method

We present in this section a second nonlinear Galerkin method for approximating
Problem (1.1) (1.10). Its motivation and its relation with the first one were explained in
Remark 1.1

We assume that ug i given in V. The method is implemented by using as a basis
of V the eigenvectors of the operator A and we are looking for an approximate solution

Un of the form

m
um(") = jE lsjm("}wjl
um£+ - wrn = Span {wl,...,wm] .

We again introduce the unknowa function 2.,

2m
zm(t) = | £m+lhjm(t)wj

zm£+ - Wm = Span [wm+1,...,w2m} .
In this second method, the couple (u.2,,) will be determined by the resolution of the

following system

(80 Gy + U 9) + (Cugyv) + blug up v) + bz v)

+ b{u m,v) + b(zm,zm.v) = ([v), Vv:Wm,

m'z

(4.2) V{(zmvv)) + (szﬁ) + b(umlum!;) + b(zms“mlv) +
+ b(um,zm,;) = (I¥), Wtwm,
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(4.3} u (0) =P u,.
Note that the equation (4.2) can be rewritten

(4.4) vAz  + (Py P )Cz + (PopyP ) (Blz ) + Blu,,zp, N=
= (PP )(-Blu,)

We denote by D(um) the linear operator (operating on z,. ) in the left—hand slde of (4.4).

The existence of a solution {um,zm} of (4.1) and (4.2) defined even on a small
interval of time is not straightforward and we must prove that the operator Du_) is
invertible on Wm; furthermore the proof of the invertibility of D(um) depends itself on

the derivation of suitable a priori estimates. Indeed, for VeW . we have

(45 (D) = vV + (CV9) + b9,
2 (thanks to (1.5) and (1.9)),
2 ol ~ oy 19119 1
> (since VeW , see (2.9)),
2 13— e a1 2y ).

However, if m is chosen such that

«s)  a=epi{Piugt 24,
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then due to the general theotems on ordinary differential equations, (4.1) (4.2) possesses a
maximal solution {um.zm} defined on some interval [U.Tm); on this interval the system

(4.1} {4.2) is equivalent to the ordinary differential system for Un

an qT Um + VAU, + Pm(Cum+B(um+zm)) =P_f
tm= D(ug) " {(Py P (E-B(u )} .

The condition {4.6) means that m is large enough (recall that Ap-tte a8

m - + @) . Our aim in the sequel is to show that (at least for m sufficiently large),

T, =+ = lLe. that (4.7) bas a solution U, on R* . Furthermore we prove that this

solution converges towards the solution u of Problem (1.1) a3 m+ + .

Our main result is the following

Taporen 4.1
The hypotheses are (1.4) 10 (1.9). Astume that u, itgivenin V. Then

) Thereexisisn constant K = K(ug) dependingon g only through flugl such

that, jf m satisfies

8  a-crazlilyg

the system (4.7) (4.3) possesses 3 polution v, defined of wt.
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ii) The sofution u , of (4.7) (4.3) converges to the solution u of (1.1)(1.10)g3 m++

(49 uy-+uin LXOTD(A) ad LP(OT:V) sironly forall
T>0 sndall 1<$p<+w andin LYK,V)
weak-star.

EROOE.
The constant K in (4.8) will be determined later (see (4.26)). We start by
assuming that (4.6) holds so that {4.1), (4.2) possesses a solution [um,zm} on some

interval (0,T ) and we derive some a priori estimates for {u } on {0,T,,). The

W2
m*’'m
derivation of these estimates has some common points with those of Theorems 1.1 and 3.1

and certain details will be omitted.

(i)  Apriori estimates (1). We take v = ug, in (4.1} V= z, in (4.2) and add the
corresponding equalities. Thanks to (1.4), we obtain

@10) 3G 1ugl? + Al 4+ (Cu_u_y+ wle_ii% +

+(Cz2 ) = (f,um-i—zm)

Therefore, the analog of (2.1) is satisfied and, as for (2.5) and (2.6), we obtain

i8

(4.11) u,, is bounded independently of m in L’(O.Tm;H)

(4.12)  u_.z_ are bounded independently of m in L%(0,T;H)

m'“m
for all T,0<T<Tm (and T=Tm if Tm<+m).

i) A priori estimates (I[). We now take v = Au, in{41), V= Az in (4.2) and

add the corresponding equalities. We find

(413) 53 N b + ol Au 12 4 v| Az )2 = (EAQ +2,)) - (Cug Au)
- (sz.Azm) - b{um,um,Aum) - b(zm,um.Aum) -
- b(um.zm,Aum) ~b(z7, ,Au ) ~ b(um.um.Azm) -

= bz AL ) = blug 2 Az )

Some terms in the right—-hand side of (4.13) are bounded as in the proof of Theorem
3.1. The majorizations {3.3)-(3.8) are still used here.
Then thanks to (1.7), (2.8) and (2.9), we have

W) b ug A € cqlzg 2z B 121 A )32,
A
: catr::)al‘ g l?1 Az,
2
< cqllu 1% Az |,

2. % 4
< pplAz | + 5 ol
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Also

(419)  IblagaAu i < cglot e, 1Az, /2 1A ),
A
s c:,(x‘—m":)‘” hulllzg 1 Az, ),

C
3 LU PR

(416)  [blzgu Az gzl Ve 1M 2 121 Au 112 Ag ),

< %(%:‘3-1-')‘/ Yu, Bz, 11 Az

m' oy

c
10 2
<Krlazg 12+ L iz g2
Finally, for the last term in the right—hand side of (4.13)

(@1 b Az ) € cqlug | Yo ) 2z 12 A 132,
[
1
<oz 1Az 2+ 5L (a1 o 120, 02

Combining (3.3)-(3.8), (4.14)—{4.17) and (4.13), we obtain the differential
inequality

2
6c
d
(418) Sl 1P + wlAuy 12+ vl Az 12 2402 4 e 2

+ cpgltup 2 {t+Hu i + Jug 12 fu ) + Bz + Tu 2, %)

+

where ¢, = €9 (¥) dependson v.
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This gives in particular

2
6c
2 2
(419) G2 <247+ S 0% + el 2040 12

2 2 2 2 2
+ Y P12 4+ iz 2 4+ fu 12 1%

Integrating (4.19) between 0 and T and using the estimates {4.11), (4.12), we obtain
that

{4.20) u,, i3 bounded independently of m in L™(0,T;V), for
al 0<T< T, (and T=T, if Tp <t

Thus, if T < + = (4.20) provides a bound on ||um(t)l[ for 0<t<T, . Let us check
that an analogous bound exists if T, = + o by applying the uniform Gronwall Lemma.

It is easy to infer from (4.10) that

T L
4.21) L u g ds,L Hz,,|%ds, are bounded for ¢ 0

independently of m .

By combination of (4.21) and (4.11), we see that (4.19) satisfies the assumptions of the
uniform Gronwall Lemma, and, as in the proof of Theorem 3.1, (3.14) provides a bound
independent of m for llug,(t)ll, ¢ 2 1. Since (4.20) gives & bound for flug, (Y, 0<e <1,

we have that
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(4.22) v is bounded independently of m in L"(O,Tm;V)

Then, integrating (4.18) between 0 and T, we find that

{4.23) u,, and z are bounded independently of m in
L30.T:D(A)) forall 6<T< T, (and T=T,, if
Tm <+,

(iti) A priori estimates (JII). By taking ¥V = Az in (4.2), we find
Az | = —(Ca Az ) ~ b Az}~ bz Az )~
- b(um|zm!Azm) + (r’Azm)i
< (thanks to (1.6}, (1.7), (1.8)),
< eqlizgli Az | + glug |V 2hu il Aug |2 Az | +
+ cqlagl 2 Az 1w +
+ eqlug | a1 a0 2142 112 4 18] A2y

Hence, dividing by IAzm|, and using (2.8), (2.9}, along with the estimate (4.22), we

obtain

~1/2 /4 —1f2 —1/4
viAzl Sedmt 1Az |+ el et 2 | 4 ea— hag | +

+ |f{, on [G.Tm}.

Hence

—1 /2 —1f2 —1/4 4
(e~ e 2 - e Angl s e L4+ 1
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which implies for m sufficiently large

(420)  HlAz e l/h el

. 1/2 ,

Since Mzmi 2 Itzm||, {(4.24) yields that

m+1

{4.25) z,,+0 in L"(o,Tm;V) A M4 w.
(iv) Passage to the limit. Let us first check that the solution u. of (4.7) is defined on

RY, for sufficiently large m. From (4.22), we know the existence of a constant K

independent of m such that
(426) o I SK, for 0<L< T, .

Therefore, if m satisfies

—1/2, a
“’clK’\m-r{ 2%,

we have by (4.5)
(Du (69,9 2 FWIZ, for 050 < Ty, Ve,

80 that the operator D(u, ) is uniformly coercive on (o,Tm). This implies immediately
’I‘[n =+« and shows Theorem 4.1-i).
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We now assume that (4.8) holds, K given by (4.26). Then the estimates (4.22),
(4.23) and (4.25) hold with T =+ o and these estimates are similar to (3.16), (3.17),
(3.18). Therefore we can now pass to the limit m - + o, by using arguments similar to
those in the proofs of Theorems 1.1 and 3.1. The details are omitted; one obtains
successively that u,, converges towards the solution u of (1.1) (1.10) in the sense (1.17)
and (3.1). This shows (4.9).

Theorem 4.1 i3 proved. o

$._Examples
In this section we intend to show that Theorems 1.1 and 4.1 apply to the

two—dimensional Navier—Stokes equations and to the Kuramoto—Sivashinsky equation.

5.1 The two-dimensional Navier-Stokes eguations

We restrict ourselves to the space—periodic case where the wj'a are proportional to
sines and cosines; for other boundary conditions and in particular the no—slip boundary
condition (Dirichlet problem} the eigenfunctions are not known but we intend in a
forthcoming article to extend our results to more general bases.

The Navier—Stokes equations for an incompressible fluld are written
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61 RAi+ (@ Tu+Tp=t
(5.2) div u = 0,

where u = {“l'“2} ia the velocity vector and p the pressure; v > 0 is given (the
kinematic viscosity) and f represents volume forces. Equations (5.1), (5.2) must be
supplemented by a boundary condition. We shall assume that the flow is periodic with
period Ll', Ly, in directions X} Xy and we denote by Q = (D,Ll) x (0,L,) the period.

As usval this boundary value problem can be reduced to an evolution equation for u
only in an appropriate Hilbert space H; H is a closed subspace of L2(ﬂ)2. its definition
and the details can be found in [11]. The equations have the form (1.1) {1.2) with
C=10,feH and Au= ~ Au, B(u) = B{u,u),

2 89,
(Bl = T jnu, 72 i, YobdD(A) .

The eigenfunctions w_ are simply the functions (see [10]):

m

T}Tsin (2x 1), -I-}:Tcos (2r 1K),

where 1= lipdy) ¢ W, § = Gyrdph 1l = (3+9)'/2, and
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yxp  dgx

x_1171 ‘272 . .

= + . ‘The hypotheses {1.4)—(1.9) reduce to standard properties concerning B
L El L,

that can be found for instance in [11]. Theorems 1.1 and 4.1 apply.

5.2. The Kuramoto-Sivashinsky equation
This is an evolution equation in space dimension 1, with a Burgers nonlinearity, a

fourth order dissipation term and a second order antidissipative term. It reads

"+-83§+va-n

(5.3) 2

We consider the solutions of (5.3) tkat are periodic in space of period L. The existence

and uniqueness of solution of (5.3) is easy; however the stability of solutions for large 1

has been proved only for odd solutions and we therefore restrict ourselves to this case 7, 8].

Hence

54)  H=(a¥-%D, uisodd

4
_uwt L LL _d
D(A)-Hper(—!,,z)nH,A-E{

In order to satisfy (1.9) we transform the equation with the translation method used in [7,

8] for the study of the long time stability. This congiats in setting
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(5.5) v=u+¢

where ¢ is an appropriate function in D(A) constructed in [7, 8]. The new equation for

u reads

(5.6) a“ 84“ 3 +u %”’IE*“&T &(9),

s(w)=-d—}’ d—zf 3.

This equa.tlon ia of the form (1.1), (1.2) with » =1, A as before, f = g(y), while
B{uy)=u H'x'

2
_d%u d du
(5.7) C““d_x?+u3$+"pai

The choice of  such that (1.9) holds is one of the main tasks in [7, 8]. The relation (1.5)
10 (1.8) are easily proved using Soboley's imbeddings. Finally we note that (1.4) is not
satisfied but instead, we have

(58]  Dbluuu) =0, YueV = D(AMY) .
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The replacement of {1.4) by (5.8) induces some slight changes in the proofs of Theorems 1.1

and 4.1, which are left as an exercise to the readers. REFERENCES
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