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Other Triple-Deck Flous

Flow past an aligned flat plate of finite length

—
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Classical boundary-layer solution
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Concentrate on wake near tralling edge X = D
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Due to discontinuity In boundary conditlons seek simllarity solution growing
from X = 0 (Goldstedn, 1930). Assume sub-viscous layer has thickness 3,
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Try U= x1/3A2f°f'(n) . n= [% ] Y P o u' 1 DX [ 1 ]
s ;ll:l“ D Re* %W Ty 2,2/3 Rel” 3473
1[4 x -
vel [i] (af* - 2)
hence require
3% & 2ff% - rlz = 0 X » Ro—u' - R-y. .
-3/4
flo) = f*(0) = O , fln) » Wy Iw. When X = O(R ) need to rescale.
Numerical solution ylekis Same triple-deck scaling as beforel {Stewartson 19689, Messiter 197Q)
u=a[veef%]°. for X% co ¥ 1 bef
X e . Upper Dack As ore.
(c» 1.288...})
For ¥ = O(1}, Middle Deck As before.
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u-uom»f[x] U . . .
Lower Deck y=R 4%y = re "y, x = Re % %0x
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From boundary-layer equation w, + wy - Pt va ' Uy ¢ Vv =0
uu-J'uavu -0 0=-p
o1 1 oY ¥
U=va=0 ony =4, X<0
Solution which matches with the lower layer is
U=V =20 ony®O0, X>0
y
u =0
' L3 U=su, (0)(Y +a) o2 ¥ 3 m
Hence v
U-sU (D}Y as X 5 -»
c oy
V- — as ¥ @ .
atd)'? )
P = ; i—_"f dE .
Singularity at X = 0 - boundary-laysr approximation breaks down. Bl
Same equations as before, but different boundary conditions.
~——— Linesar irrotational flow. solution by Jobe and Burggraf (1974),
. As before: Define drag coefficient, C , by
V-x2 4 v .UReY 2N - - 2 -1/2,-2/3 °
- p - U”v ~ Uu Re X Drag
C = N
N e 1 2
1 A 2 5P "D
T pr - 2 Re~1/%y"8/3
x o Then by integrating skin friction over surface,
where D is length of plate, and - -
o P €~ 1.328R0° %% + 2.85R7 7% + ...
T 173 UGD 0 + T
L X Re = —— Blasius Trlple-deck correction

Other tralling edge problems have besen examined, o, g.
Perturbation pressure gradient should be small compared with inertia and (a) aercfolls with wedge shaped trailing edges
viscous terms in lower layer, But
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——, Equation (4.1); O, Janour {1951}; — ~, Blasius {1go8); A, Dennis (1973).

P(X)

X
Fiooms B. Induced p distribution. ———, Present results; —-—, Messiter (1o70);
— -, lending term of equnation (2.13),
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Frovng 8. Lower deck displacement function, A{X}. ——, Present results; = —, Messiter (1970}
puted; ——, Mensiter {1970) d; -, leading term of equation (2.12).

(b) aerofoils with cusped tralling edges at incidence
(c) oscillating aerofoils.

Gross Separation

Neighbourhood of separation point.

.V-S[x)w!iox"”ﬁ... n>0

/

)
x =0

Conuntant Preasurs

Frea streambine must come off tangentlally, othervwise deceleration
associated with stagnation point will lead to separation upstream.

Assume small velocity perturbations for x| <« 1, and that slip velocity
normalised to 1 at separation point. Then

u«1+u, ate,

where
uxz-p‘. V"'Dy. Ux*V’-o
27 - n
Yp=20 - p’l-nsor-shnﬂ

Boundary conditions on y = 0, x <« O and ¥y = 0, x > O ylekd

pl—nSor-"slnnB ult.hn-%-&m. m=0,12,... and50>0.
With n = 172
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Adverse, Infinite pressure gradient at x = 0. Usual argument is that this

u '
leads to separation, hence require S_ = 0: Brillouin-Villat conrdition. ry
o 1/2 -1r2
Sychev (1972} argues that P - |X| -« |x| as X 3 -w
5 = 0{e) where ¢ = Re™" 1a.[ 2 1/8
o A3E l‘[ 5 ]¢°|x| + E x| + E,
2
oC
A —%-a X3¢, Pa+-—2 x87 as X 4+ +w
-} 8a?
Blowing velocity = v - Re '3 % (x)34 =
Lo PlE)
. Re~ 1731724378 A= { x-g %
P .
’ R
where L co. D:' Da' E‘ and Ez are known constants.
Numerical solution by Smith (1877), Korolev (1980)
LA 0.44 .
No slip - U~ l.lo * c”a(—x)”" On global scale
Cont inulty - v~ RQ-ua‘:/a(__x)-au y ~ Re”1718 gaohn/'xsn as x + Os
where A is the boundary=layer skin friction.
p - el=x)"*"2 Gross separation past a bluff body
x +
non | inear - U~ t:”'(-nl"'
shear + y -~ e Bx)"V g2
P~ u w (=x) « ¢®
x Re yy - .
{ Schamatic)
Interaction when
-1/2 172
c(-x)vz . Re 3‘,:4,
(~x)
i.e. £ =~ Rg-llle
(-x) ~ Re™>®

Standard triple-deck scaling, but expansion now proceeds in powers of re /18

rather than Re /%,

Lower Deck Problem

W+ VU -P

X Y- l’uyy' U!*V)"D
U=y=0 ony=0
u_>y+nly”2+l321nyf.ﬁ a8 ¥y + w



Free streamline

- 2 2, _Bs2 ~is18[ 2 _8s8 arz
¥y~ kox + gk‘x + R [ ﬁaol ]x
+ T+
curvature leading order tripte-deck correction

inviscid solution

How is the position of separation fixed?

(a} Solve inviscid free-streamiine problem to fix slp velocity

(b) Integrate boundary layer equations from stagnation point to separstion
point to find A,

{c) Given A find change in free streamline solution.

Far downstream
Smith (1979a)
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Wake has an elliptic shape. Difficulty with wake resttachment.

Smith (1985)
PRYLPY
R
Sadovsk11 Vortex
Unsteddy Triple-Deck

Examp le

Oscillating rivet/ribbon y = (X, T) ,

where t = Re" 141 unsteady triple-deck scaling
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Uu=o0, V-I»FT oh y = HF(X, T)
u o+ Aly + A(X, T)) as y + o
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Suppose F = 0, {.e. no forcing. Then
U= Ay
is a solution. What happens if seek linea solution

U~aAy + Cl . atc.
Seek normal mode solution for G. with

U= 0 exp (KX - f0T), otc.

Then
IKU + V =0, F w
y ¥
A - U + AV » KPP - U” » 0
U=Vason ony=0,
U 3 AR as y =,
F=kxaA
Set E=sly -2, s = ()7
EU! - ee =0
= ‘K1P1 sl
U = — " alg) £ = -
s () ' °o
(]
o
*
®? J AI(Q) dq = as? %A (g,) :  Eigenralation.
[ 4
0

Hence given frequency, 1, and wall shear A, c¢an solve for (complex)
wavenumber K. For Qz nc unstable waves can be found. fI = ﬂc
specifies frequency of neutral curve in terms of T variable. Conventionally
stability analysis performed In terms of scaled variable

-]
t = gt - 7 = Re!’%t = Rel 7
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In terms of T variable neutral frequency, w given by

w =Re % =r'3
[-] [ °

' N
w * -~ Im{K) » O

- >
R R
— i Triple=-deck lower branch asymptote
. . ! Multiple-deck upper branch asymplote
i Orr~-Sommerfeld approximation

Orr-Sommerfeld theory ylelds an accurate dispersion relation  betwsen
frequency, wavenumber and Reynolds number for parallel flows:

"R (unty). 01},

where u, satisfles Navier-Stokes squations. Write

y - \ioly) + ;cxplitx - lct), etc,
Substitute into Navier—Stokes equation, then

(1R) 7} 0% - k%)% =ty - €100 - KPhp - u ¥
where De d .

dy
Solution to this  equation with no sl boundary conditions ylelds
eigenrealation
Fla, ¢, R) =0 .

This theory s often epplled to quasi-paraliel flows where the valocity
profile uo(y} actually varles slowly with x, e.g. the Blasius boundary
layer. If the slow dependence W x Is neglected then the frozen valacity
profile uoly] doez not satisfy the Navier-stokes equation - as a result the
Orr-Sommerfeld equatlon is a heuristic approximation. Note that R Is assumed
both order one in deriving the Orr—Sommerfeld equation, and asymptotically
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targe so that the basic flow can be assumed to be quasi-parallel - this is
inconsistent. However, Orr-Sommerfeld theory does yleld a critical Reynelds
number for instability.

Triple-Deck theory is only valid at large Reynolds numbers - hence It does
not yleld a critical Reynolds number. However It provides a consistent way of

obtaining higher order corrections, n particular the effacts of
non-parallelism can be Included (Smith, 1979b).

Above approach can be extended in many ways.

I. Receptivity problems:

-

usU(1+ e
-

— «

amost separated flow reglon

Interaction of modulated freestream in region of almost separated flow can
lead to the generation of Tolimlen-Schilichting waves (Goldstain, Lsib &
Cowley, 1987).

I1.  Nonlinesr Effects ‘can be examined:
(a) i the npeighbourhood of the neutral curve {analytical) - Smith
' (1979¢c).

{B) for order ons triple-deck frequencies (numerical) - Tutty & Cowley
(1986). Tollmlen-Schiichting waves are found to grow untli a
singularity forms with an associated rapid shortening of scales
(cf. transition and unsteady classical boundary-layer separation).

(c) for high frequency T-S waves (analytical) - Smith (1986).

In saddition, the analysis can be extended to thres dimensions, and a
systematic deseription of effects important in  transition to turbulence
can be identified, s.g.

1t

Tollmian- Sr."“k-lvr“-g waves

1.

v,

(a) resonant triad interactions - Smith & Stewart (1997).
(b} Tolimlen-Schlichting/Gbrtler wave interactions - Hall &  Smith
(1988),

Similarly asymptotic analysis cen be performed to look at Iinesr and
nontinear instabllity W the neighbourhocd of the upper neutral curve.
For example Smith & Bodonyl (1982) have shown that Hagan-Polseuills pipe
flow Iz unstable to nonlinear disturbances.

The stability of Gbrtler vortices has been examined by Hall & Lakin
{1988) using a high Re asymptotic approach. Goldsteln & Lelb (1988) have
examined the stabllity of shear layers using the Idea of non equilibrium
critical layers,
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Fiaurs 7. Comparisons with the (nonlinesr) sxperiments of Kachanov & Levchenko (1084). {a},
() The growths [versus distance x) of phase and smplitude for the fundamental and subharmonic
components: OOQQ {fundamental), @@ @@ (subharmonic) experiments; — - -, theory, from
(.14} combined with the triple-deck scalings. (¢), (d) compare representstive experimental values
(OOOQ., with typical scatter/reading error shown ] ) of the subh ic amplitude nnd phase

with the theory ( ). verasus normalized/slow time, using figure 17 (b) of Kachanov & Levchenko
(1984} and figures 4(c}), 4(f), 5 of the present paper. .




