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PREAMBLE

The subject of this part of che workshop coucerus the Lransport of
fluld through a poroeus mediwe §oe. hrough o solld watylx (wore siuply, o
solid structure with holes in iv). By their wature, purous media arc
extrewely complex and, in consvquence, so are the flows twoeugh them.  Thus
1t is not surprislog that wany siwplifylag assumptions are made bo our
mathematical models, and that therae sre japortant areas of the subject which
are controversial and not yet modeiled satisfactorily. We can not hope in
this brief introduction te cover all the importaut areas, nor can we address
all the multifarious lssues.

A moments reflection on the following will pive some indication,
perhaps, why our goals can not he too ambitious:

The solid matrlx may be rigld or deformable - the deformation may be
elascic, or follow some other more exotic constitucive relation, and the
holes may be occupiced by wulciphase, miscible or immiscible flulds. Each
phase way be made up of several cowponunts, which aay or wiay not be
interacting between themselves and che solid watrix. The processes way be
isothermal, or non-{isothermal witly very small or very larpe tewpurature
variations; there may be phase changes. capillary forces may be jmporcant -
moving contact lines may feature (e.g. in secondary oll-rucovery problews).
The media may bLe howopeneous, heteropu,pous, waltilayered, ... . The list
is seemingly endless, and it wakes ene womder why there Is such interest in
this area. A few examples will jllustygre where transport in porous media

is encounterad:

+ Civil Engineering - flow and pellution of ground
water, wovewent of weisture awd
beat through building materials

Ly

¢« S0il Mechanies - sell compactivn and subsidence

o Dil Rescrevole Engincering - won-isothermi ) moltiphase [low of
pas amd oll; enshanced oil
recovery technigues

+ Geotheraal Reservolr Enginceriug - electeicity production; district
beating schewes

= Chemical Enginecring - packed-bed catalysis; fileration

+ Agriculture - ircigation of cropy; sproad of
B rients

+ Waste Management . lilerathon; waste disposal ,

In all of these, decisions relating to che design, construction and
operation of systems wre requived, Rate and lecation ol witer injection in
an ol reservoir, rate of pumplug/rite of vecharpe of aguifers, and (Le
siting of radioactive waste depositories ure just a few exomples.  These
problems are mathematically very challenging. Mathematical models are
relatively easy to formulate, but much harder to Juscify. Then we have Lhe
problem of determining the parameters to insert into sur models.
Unfortunnlely‘renulng of laboratory tests on swall sawples (about one metre
in length, say) rarely wenle up to field comlitions (where the scale may b
severial kilometres),

Having ewphasized the challenging natare of the subject, lec we also
stress thut i¢ is pozsible tu make pood Progross, provided voe accepts and
acknowledges the limitations of our mathematical wodels.

The usim of thig shorct lutroduction is to Familiarize you with the basic
concepts, o outlije the eguatbons governing couvection in saturated purous
medta, and then to consider an application drawn {loosely) from radiocactive

waste disposal modelliug.



JNTROMICT |ON If the sample volume ¥ is too jow, the vitiv is sensitive to Vi whea ¥ lies
As already alluded to in the preamble, o poreus mediwe 1s a solld which between le“ and me‘o the catlo has been statistically swoothed amnd the

is full of boles., Usually the number of holes, or rather pores, s ratio Is fairly constaut. When V > vm

X the ratio senses the larpe scale

sufficiently large amd randomly distributed In size, eve. that a yvolwae
variations that occur in Inhomogencous moterial. We take the ratio Vooid!¥

1
averapr is needed to wake sensible progress. o deseribiog §low phenomoena

with VvV . <« V<V as our definition of the porosity, and denote [t hy ¢,
we are malnly interested In interconnccted porven, sinee these are the ones min max

which permit flow. Dead-end pores, L.e. ouvs with only vne opening, are This discussion has introeduced us to thu idea that "waicroscoplic®

"important in certain phenomena, for example absorpcion of poliutants inte quantities can be derived by averaging "mlerescopic® (this does not mean

the sclid. Totally enclosced pores can afteet certaln other problems, [or molecular) quantiiivs over a suitable volume. This volum: §s usually called

example when the compressibilicty of the medbvm §x fwportant, or when there
is a high concentratiou of thew and heat transport propertics are affectled,
POROSITY 1is a quantitative property that describes the fraction of the
medium that is taken up by the various types of houlc,

Conslder some location r, in the porous wedium, and conslder a sphore

a REPRESENTATIVE ELFMENTARY VOLUME (or REY in short). This jdea should be

familiar from discussien (for example in G. Batchelor's book: An
Intvoduction to Fluid Dynamles) ou the contingum hypothesis [n Fluid
dynamjcs; in the present cnse we are averaging over larper scales. To be

useful, the REV must satisfy the following criteria:

(1) Where ever the REV is placed within the porous medium domain,

(say) centred on We can take cthe ratio of the void volume (vvold) to

0
Lt should contain both gsolid phase and veid space;
the total volume (V) of the sphere, and plot it against V, for varying V as
(15) The void space should contain some multiply-connected
shown
subdomain;

\J'“‘_ ‘r | 1aheAegtnce e (iii) The averaged parameter should be statlstically weaningful.
v [ | - - The analysis of tlow and heat transfer is wsually based on the
1 i
e e transport equations resulting from differential balance laws, f.e.
| I h-nv‘,cncom .
i 1 conservation laws, applied to small volumes. The prediction of global
' L]
} i effects such as flow resistance or heat flux froem a given system normally
] ]
a ! ! >V requires detalled {nformacion on both veloeity and temperature fields, For
( Vain Vean a continuous medluw, thiw informatioen is extracted {rom the solution of the

M‘ltﬂtﬁ.e“‘. inhsamsgtace
] :) "aicroscopic® transport equation (Navier-Stokes ad energy cquatlons),
Figure 1
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subject to appropriate fuitial and boundary couditions. When the flow is
through a complex structure such as a porous medium, these equatious are
generally still valid within the pores, but the geowetric cowplexity of che
flow domains makes it quite iwpossible to solve for the derailod velocicy
and temperature flelds. To get avound this dlifficulty, physlcal phenomena
in povous media are generally desciribed by “macroscopic equations® valid

over sowe REV. The resultant averaged cquations govern sultably averaged

variables such as velocity, pressure and temperature.

In porous media, the interstitial ar peintwise tluid velocity ¥ is not
& useful entity, since it is wvoluwe Fluxes that easily measured and
relevant, The natural velocity te use is the so-called Durcy velocity,

which is defined by
|
g=g | vas
§ 5

vhere S is the total boundary area {including selid portions) of the REV:

T4

/

3

Figure 2

1o is usually assumed that the averiape foterstitial velocity amd Lhe barey
velocity are related by:
q = ¢y

where ¢ is the porosity.

Darcy's law
The basic equation governing fluld flow in porous media expresses
conservation of mowentun. Davey's law (1856) relates the volumelric flow
rate Q flowing through a poreus wediow direetly to the energy loss,
inversely to the heipht of the medium, and propurtional to o factor terwed
the HYDRAULIC CONBUCTIVITY (K). The figure illustrates schematically the

kind of experiment Darcy peyformed,

Q — =2 l'r
_I ht‘ht
B T
- \" h.
N h,
.lf
@ —d [
Figure 3

Here fluld enters a packed sandhied, of length A2 and cross-sectiaonal area A,
at the top and flows through the system at a voluwetric flowrate Q. The

difference in the hydraulic heads ar the top aud the bottow of the bed is
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weasured by water wanometers,  This dilfercnee ig uivenlpl'hz- Darcy’s law

is

KA(hL'hZJ - K"Mhlun-hlmllmn)
Q=" at

where h = z + p/pg is the hydraulic head. This result {s emplrical - it is
derived by experimental observation. HNote thar:

(1) if there were no sandbed (i.e. na purous medium) the relation

would {pvolve Qg(und wot Q), assuming the flow to be inviscid;
(ii) the relation is analogous to the Poiscuille law when gravity is
absent,
The hydraulic conductivity K is dependent on the properties of the
fluid, as well as the pore structure of the medium. It is usual to replace

the hydraulic conduccivity by an Intrinsic permeability k defined by
K - k28

I
where k is the perweability of the porous mediuw and In principle is only a
function of the pore structure; g is the cocfficicnt of viscosity of the
fluid. The hydraulic conductivity is ctemperature dependent, since the
properties of the fluid (density and viscosity) are temperature dependent;
the intrinsic permeability is not tewperature dependent.
Darcy’s law is often written in differential form so that in one-

dimension:

Q dp
Sk,

I
[PAE TR TR TvY
where g is the Darcy spaodL. It ts vsually assumed that Darcy's low is valid

i three dimenslons, that & is a secund.order tensor, dependent upon the

directional properties ol the pore structure, and 4 is a vector given by

® It =

q- - Vp , lIgnering pravivy,

Often, in practice, the porous medium is assumed to be homupeneous acd

isutropic, so that
k

- . By

q L

l.e. the tensor can be replaced by a sealac.

¥ d o 's Law

Darcy's law is usually conuidered valld tor erveping flow where the
Reynolds number for a porous wedium {5 smaller than unity. 1In order to
define this Reynolds number, we Lutroduce che concept of hydraulic radius,
which Ls defined (1f the medium is particulate in nature) as the vold vo luwe
of a porous medium divided Ly the surface area of the medlum. Suppose the

medium is made up of regular spherical particles, each one having volume V
and surface area SP' and hence dlameter Dp such that

6V
b = -EE .
P P
tlow if ¢ Is the porosity of the medium

vojid valiupe void volume

© 7 total volume = (void volume + volume of particles) *

hence void volume = T%: (velume of particles). 7Thus the hydraulic radius R“

is glven by
e «D
Ry = [1-:]""9 NS R0
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where N = pumber of particles.  For noenspherical particles, the effleoctive
particle diameter can be deflined by 6V/5, whure ¥ is the volume of the
particle and § its surface avea,

The Reynolds number is now dellned as:

Vi
~H
v

Re =

«D
€ 6(L-¢)v

qD
- —P
6(1-¢)u
where v = interstitial velocity (= q/¢), amd » - u/p i Lhe kinematic
viscosity of the saturating fluid, Usuglly, in lact, the numerical vonstant
is omitted and we take

D
x_ Y

L T

- Darcy's law is considered valld for Re® < l.
N. B. 1f the porous material is fibrous, Chen the hydraulic diameter is
defined as 4A/P, where A = cross-sectlopal area and P = length of perimeter.
eoretica erjvatjops arey’
There have been many attempis to place Davey's law on a [irw
theorerical foundation. Two hoteworthy approachies are thuse of 1. B. Keller
[1], who uses a multiple-scales qpproach, and of J. Bear and Y. Bachwat f2y],

who use averaging technlques. Buth approaclies start from the Navier- Stokes

equations.

a) When the Keynolds number exceeds unity, lnertia effects becuwe

X
important. Typieally for 1 < Re < 10, Darcy-type exporiments (without

gravity) give results as shown in Figure 4.

. ez

SLITRAE LElF
- E

v ' ] ) 'Y [T
Huw MAHE imtis)

Fipure 4
Instead of the linear Darcy law, there ls a nenlinear (guadratic)
relationship. Based ou & varicty of theorctical and experimental
Investigations, artempts have been made to develop peuneral expressions
describing the nonjinenr prusswre-flow relationship In porous media (svu
Scheldegger [3] and Bear [4]). One of the carlicr expressions was doveluped
by Forchhwimer [5]), based on semi-theoretical ohservations of nonlimar flow

in tubey. Forchheimer propoucd a quadratic ecquation of the form

which generalizes to:
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- EP - ﬁ q Eﬁ 9y
where g is the Darcy velocity.

This farm is by ne means generally applivd - mauy workers stmply toke
over the form of the convective dervative occurring in the Navier Stokes

equations, i.e.
o[f %ﬂ + —%(n . E)ﬂ] - W Fat e

This form has been the subject of criticism in the literature - the
criticism arises from the fact that wodelljng the inertia this way increasas
the order of the governing equations and can lead to ill-posed problems.

(b) Another controversial ares of modelling in porous media concerns
the effect of surrounding impermeable howularies, 1f present.  The Darcy

equation leads effectively to an Inviscid (or potentlal) theory - e.g. II

q = - E ¥p and the fluid is {pcompressible so thay ¥+ g =0 (sce later),

then Vzp =~ 0. Thus no-slip conditions which are usually kmposed on fluids
at solid boundaries cannot be applied. To get round chis difficulty, many
use a model atcrributed to Brinkman [§) - essent fnlly we just add back in che

usual viscous term of the Navier-Stokes equation, eg.

p{% g% + -%(g - !)u] - - % ﬁ 4t g wiy
4

This has been juscified for highly porous medla, but Nield {1 hasy

demonstrated fts limitations for less porui.. wadia,

The equation of continulty [ollows by volume averaging the usual
single-fluld equation:

de + div(pv) = 0.
at

Without poing into the detalls, we way slwply replace the actual fluid

velocity y by the Darcy equivalent } q. giving

de -
LYY + div{pg} 0.

Bisperslon

Balore discussing the equation governlug heat transfer within a porous
medium, we need to review a process which s peculiar to porous media,
naiely that of dispevrsion. Transfer processes in porous media are
complicated by the complex pure network. 1In additlon to being advected
along by the wean Darcy velocity, and diffused by molecular action, heat
(and msse) are wprasd or dispersed by local variation in the flow profile
ecros¢ individual pores (hydrodynamic dispersioen), and by the different
twisted, tortuous paths inevitably followed by fluld elements which are near
nelghbours and travelling with simflar velocitics at some stage (mechanical
dispersion). lydyadynamic dispersion is equivalent to the well-known Taylor

dispersion [8] fv tubos:
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Mechanlcal disperstion:

e

&
P

Figure b

The analyses of these processes are difficult. The net mathewatlcal
effect is char “diffusion coefficients” become velucity-dependent tensor
quantities. Even in an isotropic wedius, It is found that longitudinal
(streamwise) dispersion is usually greater than crvansverse dispersion. To
illustrate the nature of dispersion, consider a 'blob’ of heat injected into
& wedium. In a stacic pure fluid, che blob would simply spread out
(diffuse) spherically. In a unifory stiewm of pure fluid, it would be
convected along as a (growing) spherlcal blob, [u a ‘uniferm' flow in a

perous medium, however, the Llak woyld be distoried into an elllpsoid:

Uniformly flowing +

pure fluid ’ .

In a porous medium -

Figure 6

In practice, the coefficlents in the dispersion tensor are dftficult to
determine, and so most people work with some constant effective scalar

dispersion (or diffusion) coefficient. We shall also do this,

Enerey Equatjon
As far as the therwal behavicur of a porous medium is concerned, for
any geomecrical point and its assocjated REV, we can define fwo average

temperstures: T, for the solid phasa and Te for the fluid, In mathematical

wodelliing, two alternace methods are used depending on the difference

between Ts and Tf. In the first wethud, the difference is assumed to he

negligible, and the thermal hehaviour is described by one equation for the

average ctemperature T =~ Tﬁ =T This approach (which i{s the comwon vine) is

£
considered valid when the flow veloclty s not tou high and solid and [luid
phases are well mixed. The sucond wethod, which applies when the difference

1s significant, uses two cquations linked by interphase heat transfer terms.
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Underlying the wodel equations ave the Jollowing simplifying
assumptjons:

. the solid matrix is homogencous, non-delormable and chemicully
inert with respect to the fluid;

. the fluid 1z single phase and Newtonfau; Lts density varies anly
with temperature and not with pressure;

. no heat sources or sinks are prosent; thermal radiation and
viscous dissipatioun are negligible.

When Ts - Tf. we have

e, g% 1 (pCJf(u - UT - awlt

where
{pc) = elpc)y + (1-e)(pe) .
Here (pc)f and (pc)s are the heat capacities of the fluid and solid phases

(at constant pressure); A is the effective diffusion coefficient for the

saturated medium (replaces the disperslon tensor). When Ts ” TE' we take:

Ty 2
(1-:)(pc)s YRl ASV Ts + I|(Tr - Ts).

ar
c(pc)f Ezf + (pc)f(g . g)TF - Afva[ + h(Ts - T[)

where h is the heat transfer cocEflcfent between the two phases. Note that
A - As + Af, and that the determinacion of As' Af and h is very difficult,

both from theorerical and experimental viewpoints,
In free convection problems, the Uberbeck-Boussinesy approximations are

generally Invoked, f.e.

=17

. the thermuphysical propertics of the soturating tluld p, u, and
coefficlent of cublcal expansion @ are assumed to be constant,
except in the buoyancy term (in the momentum equatlon) where
varlations In fluld density delve the motion.

The following linearized cquation of state ls generally assumcd:

# = ppll - al(T-T]
where the subscript denotes some refercuce state.
Thus, to summarize, a typical wodel ser of ¢quatjons governing free

convection is

g-g-[)

dq i
Lg— 4 a8y =-8p1pp-74
¢ 9t fi k

ey &+ (oeyeta « HT = avhs

p = pgll - a(T - T

These equations may be made dimensionsless by using:

length scale - H
(pe Il2
time scale -
A
velocity scale - A
oclty sca ey
preysury scale E?iﬁi;

temperature scale - AT

yielding
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Veg=20 Thiermal condicions: {(n lsothermial boundary, T « constaut

. () Adiabatic or perfeelly Insulating:
mjla + la(u . g)]g - VP - g - Ralk
1

Pr]e dc - .
A.py.yr-o.
2T 2
+ (g VT=VT In layered media, chere should be contluulty in tewperature and also i the

ac
~ .1 normal fluxes of mass aud temperature at the futertaces.
with k = g g, and p = P+ popz.  The dimeuslonless groups appearing in

these equations are:

aks(pt}[
HaT - the filtratiou, er Darcy -. Rayleigh

Ra = Y
number
v(pc!EH2
Pr = m . the [iltration, or Darcy -, Prandt]
VU §
(pc}
- T—ETI - hear capacity ratio .
™

In most applications Pr >> 1 and so the inertia terms are neglected. In
consequence, free convection in poruus wedia dupends en the Darcy-Rayleigh
nunber, on initial and boundary condictiens, and on geomerrical paramecers

such as aspect ratios.

ound. ondj
Hydrodynamic condicions: {{) an an jwperweable surface the norwal
veloclty component is zere: g » g = Q
( nermal Lte surface)
CLi) at a free surface, the pressure is

cunsbaud .
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Applivation

1. Introductijon

As an example of the application of the model equations, we examine the
two-dimensional porous-medium analopue of the ¢lassical Rayleigh-Benard
problem, known as the Lapwood problem {9]. Specitically, wo consider a two-
dimensional rectangular contatoer of height B and width W, and filled with
saturated porous waterial. The lateral Loundaries of the contaluer are
adlabatie (1.e. perfectly insulating), while the upper and lower boundardies
are held at isothermal (constant) temperiatures T

- AT/Z, T, b AT/2,

¥} U

respectively, where AT > 0 so that the contafner is heated From below,

All boundaries are assumed fwpermeable

T. - ‘Tla

Ly L.

I

Tov 4T/
" hd =
Flpure 7

The problem may be thought of as a very ctude model of either the Flow

Induced by an underground radionctive waste dcpository, or a simple

geothermal flow.

221

On inveking the Boussincsq approximation, waml assuming that thwe Darccy-

Prandel Is large, convective [low s poverned hy the cquat bunes:

Ecg-(_l (]I)
0w -9 - Lgtie- s (.2)
. 2,
(pczn g{ + (pclf(g YT - AV (.3
PPy - - GPO(T - TO) (1.4)
with
T~ T, + 8172 on z = 1 Hy2 (.5
W= 0
gf -0 on x = £ W2 (1.6)
u==0

The eguarjons are put In 4 more convenient torm by substituting (1.4) juto

(1.2), and by taking the curl of the reswltant cyuatfon:

0~-#curl q+ P77 x @) . - (1.7n
This equation shows stralght away that a necessary condition for no flow
(q - 0) ia thae 9T x g = ) L.e. the isotherms must be perpendicular to the

gravity vector. It should be ewphasized that this result is qulte gencral
for Darcy-Boussinesq flulds. Now in the present two-dimensional problem we
can eliminate equation (1.1) by [ntreducing a streamfunccion:

u - gf W o - gf , {1.8)

curl g = [-gﬁ + gf]i - Vz#i. hence (1.7) and (1.3) hecome:

0-9% 45 fk e I (1.9)
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y ¢ gL i g 2
(P} %f * (’"%r{gf . g .%} - W (1.1 y L at
(v = plpg) is the Rayleigh weber; V5 - 55 L"E ] L_E'
with h™ ix dz
in thls problem the jwposed temperatures have isotherws that we arc
T =T, + aT/2 an z -~ t H/2 (1.11) .
b =0 perpendicular to the gravity vector and se there Is a poessibility of a no-
flow solution. Setting v = 0 and T =~ T(z) in the cquations we scee that
AT/ax = 0 on X = ¥ W2, (1.12) there 15 a solutlon T = -z, which is usually called the conduction solutiou,
-0

This no-flow situation, however, is unstable because light, buoyant fluid

We now non-dimensionalize by writin
& underlies heavy fluid. As the applied tewperature difference AT incruases

X Z g {so that the Rayleigh number increases), the fluid becomes mwore and more
-y Tow U
(1.13) buayant and motion is likely to ser In. To test whether woclou dous occur,
A " (pc) v we test to see LE swall perturbations te the conduction selution are dawmped
PR 1 S A i
x .
Hz(PCkM by rhe system or not.
The governing system becomes, on dropping the primes for convenience,
2. ine abjlit a
) We substituce
vy . . BadI (1.14)
p=if, T=-z¢(, ¢l (z.1)
ifde 9T I 2
g% + h{gf ax gf 82} - ¥T (1.15) inte {1.14-17) and retain only terms that are linear in e¢:
with 24 Ra 2T
Vg = - e {(2.2)
T e+ 172 onz =1 }/2 (1.16) -
v=-0 } oT 14k _ 25 (2.9
at * h ax . '
aT/éx = 0 on xy = 1 1/2 1.17
i } / (1an f-0 onz et 12 (2.4)
p=0
W apkaT{(pc)
Here b = | Is the aspect ratio of the container, and Ra - *-——:;——JE- ] . =
gf-c on x = & 172 (2.5)
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These linear, constant-coeflicient, pactial differential equations may be

solved by the method of normal moces:

3 - Aei(lx + pz) + ot

(2.6)
$ - Bei(!x + hz) 1ot
In Fact to fit the boundiry conditions, we necd
# = A sin {max) sin (orz)e?t (2.7

T = B cos (max) sln (nxz)e’"
and m,ne IN
with ® = % + 1/2, z = z + 1/%@ substituting intu the p.d.e's (2.2,3) gives:

2.2
A BRI, n212 -.Ra mxB
nl h
(2.8)
2.2 79
ok + BEIA _ oA + nx"|B
h h2
For a non-trival solution to these cquatiovns:
2 2 22 Ra
—5 {(m~ + n"h") L
b 1
-0 (2.9)
mﬁ o+ !5 (m2 + nzhz)
h
or
22 222 2. 22
Ra = <) (a° + nh)" + &5 (w” + a'n?) . (2.10)
a“h m

The boundary between growing disturbances {¢ > 0) and decaying disturbances
(¢ < 0) is, of course, ¢ = @, and the corvesponding curve {s called the
neutral stability curve:

2

2 2 222
Ray n = 2,7 (0t (2.11)

Sepred rab

T vatnvations ol Uiy eqpenvalines Ra,, wilh aspecd vt

Fipure 8

The plot the variation of the Rayleigh nuwber Ra with aspect ratio b for

various (m,n) modes is showun in figure B. The {m,n) mode corresponds
physlcally to a flow with m herizontal cells and n vertical cells. Whatever
the size of the container (i.e. whatever the value of h) the mode which
appears Flrsc as the Raylelgh number increases [rom zero (fi.e. heating is
applied with Lncreasing intensity) has only one cell in the vertlical

direction. Futhetmore the smallest value of the Rayleigh number at which

the (m,n) mode appears is equal to Aanz and this occurs when the aspect

ratio is h = m/n. Note that the mode of lowest Rayleigh number (for a given
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container) changes from {m,1) to {wtl, 1) aL an aspect ratlo and Rayleigh

where 0 < ¢ << 1, aund deflue r = ch as a slow-tlme scale. The governing
number given by

equations are (2.14-17) with the 8T/3t term replaced by ¢28T/Bf.

— 2 2
b= Ju(mel) » U, Ra = a7 (2ur))" fw(atl) = R““ (2.1) We substitute (3.1-3) into the governing equacions and equate powers of

Finally returning to the eigenvaluc problem, we note from (2.8) thac

B = - -1 A, when o = 0,

¢. At O(c¢) the governing system is (2.2-5) with the 3T/3c term wissing, and

Jia the (¢, T) replaced by (w(l), T(l)). Thus,
m,n
v <A Yo o (3.4)
3. Honlinear Analyvsis ™ o am n (3.5
According to (2.6) and (2.10), the amplitude of the (m,n) mode where,
increases exponentially when Ra > Ra_ . Thls is physically unreasonable
", - -
*m.n = sin{max) sin {(nxz),
and results from the severe approximation that we mwade when linearizing.
_— T (max) sin (nxz). (3.6)
When the perturbations become larpe, the neplected nonlinear terws are ' Juﬂm N

iwportant. Palm et al [l0] analyzed this post-critical situation, The idea

At 0(:2) we have
is simple: we just continue the expansion that we started in the linear

Ra 2+{2)
vopl?? , —wndl — _

stabflicy analysis, for Rayleigh nunbers that are 0(¢2) away from Ram n and b Au ! 3.7
2) (1) () (1) ...(1)
2,2 _ 1 2ot _afae® otV gV 0
for fixed h. From (2.10), if e PR RN PR ar . (31.8)
2
Ra - Rnn,n 0. plus homogeneous boundary (enditions; this has solution
then o = 0(:2) This su i ne
. gaests wa write ¥ - B(z) *m . (3.9)
. .
Ra = Ra_ |1 + "R}, (3.1) ? -
' ! =BAL(r)_aqp (2na2)
m.n 74 L 22} 4 by g, (3.10)
Bub SR '
v= 0 el B A (3.2) My

where B(r) is unknown.
T=-24 tT(l) * ¢2T(2) ¥ ‘3T(3) + ’

1R, (1)
3, 12,0, 1t 3 artD
At 0eT): R VRN e T = T o 3.1b
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2 1Py {”(2) a7t apt?) gp(D)

h  dx h | 0z Ix ax dz
(1) ..(2) (1) ...(2) ()
U A I A éL___} + éI____ (3.12)
az Jdx dx dz ar
After a little algebra, we get
(&} malt A )
1 v2¢(3) + P i - —1 sin {mxx) sin (nxz) (3.13)
Ra h dx
m,h h/Ra
W,
203 1 3» _ pua? .
VT . dﬁ—-— - B {oaB sin{2nxz)
X hJRﬂm n

3
+ gﬁ;[sin(lnxi) . sin(nni)]cos(uni)}

R -39 cox (max) sin(nxz). (3.14)
Jllall

.

Muleiplying (3.13) by 1. (3.14) by TV Luding the resulting equations
and then integrating over the domain of the contalner glves a "solvahiliey

condition®:

a4 a_zm_{dl ] A2} i (3.15)

dr ~ B(mtl)
where d1 - 3R1(2u+1)/u. When Rl <0 (Ra < Pu“ n)' there ls just one steady

solution to (3.14), viz. A = D, When Rl > 0 (Ra > l!a'l n) there are three

steady solutons: A =« 0, A = 2 d:/Z. A Muear stabllity snalysis then glves

the bifurcation pictuce shown In filgure 9.
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" Stable

— = = unstabie

Flpure 9

3. eco ukcations: uble mvala

As the aspect ratlo increases through one of the double olgenvalues
given by (2.12), there is an exchange between primary modes with the mode of
the lowest critical Rayleigh number changing from (m,1) to (m+l,1); iu
general we refer to bifurcations from the trivial branch as primary
bifurcations. This type of exchange, which has been discussed in a
qualitative way by Schaeffer {1i], 1s Inevitably associated with sccondary
bifurcations (l.e. bifurcations from a primary branch)., Bauver, Keller and
Relss [12] showed how weakly nonlinear theory may be applied to analyse the
local structure as the exchanga cakes place, and the theory was subsequently
employed by Kidachi |13| In the Raylelgh-Benard problem. Here we use the
theory to analyse the exchange between the leading primary modes (m,1)} and

(mt1,1) near the double eigouvalue Ra = Rn“ which occurs when

h = H. We seek solutions to (1.14-17) tn the form:
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(W.0) = <Wgtg) + Floa v (1.9)
Ra = Ra (1 + R, (3.6)
h o= H(l + %zzn) , a.0

with 4 = sgn (h-H) and where ‘1' 01 are funccions of x, y and the slow-time

scale r = czt.
Proceeding as we did earlier and omltting all detail we find chat:
(WO.OO) = A(r) (*u,l' 9“‘1) + B{r) (*m+1'1. anl.l) . (3.8}
where A(r), B(r) are the amplitudes of the (m,1) and (m+l,1) modes

respectively. Applying solvability condicions to che 0(:3) equations yellds

the evolution equations for the awplirtudes:

2
dA _ _momh s Al 2
ar = Bl {dl AT - oy } ' (3.9)
2
dB _ _x (mt]lB 2 2
. cmlefy o7 (3.10)
with
¢ - (bmel) (mel) /202 ey~ nChmi3)/(2mey? |
_8 . .
o -4 {<2m+1)nl o} .o, (utlj{(szx)nl + n} . (3.11)
The equations prosses three solutions which do wot depend upon the
interaction of the (m,1) and {m+l,1j woder, viz
(1) A=B =0, trivial wode (3.12a)
(i) B0, A2 - dl' dl >0 pure (m,1l) wode (3.12b)

(i41) A~0, 8- a,. dy > 0 pure (mtl,1) mode  (3.12¢)
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The amplitude of the disturbince 1s zero for Ra < ulu{Rnl*,uuz*}_ where

. 2} o [y 24hl
Ray = R“n{1 ' (zm.l)u} » Ray ““n{' (2n'1>"} '

*
but bifurcares at RaI* and Ra, . These bifurcated solutious underpo

secondary bifurcation because ol the presceace of wixed-wode solutions in

which neither A nor B are zeve. These solutions are given by

d.-a
2 _ 5% g .
Ao, T €dg - ¢y >0

c,d, -d,
2, Zf?tTTi _ ey - dy >0 €3.124)

It is a strajghtforward wutter to deterwine the linear scabilicy of the
various soluclons and the detail is owitced.

The results of the above analysis are swwaarized in Figures 10(a)-(d).
In Figure 10(a) a perspective view of the situation when b < H {5 shown. We
see that Lhe (m,1) mods, given by (3.12b), bifurcates from the trivial

solution a4t Ra = Rali; this primary branch is stable. At Ra = Raz* there is

a further hifurcatjon ty ¢he (B+tl,1) wode given by (3.12c) and this mode
undergoes secondary bifupcagion at Ra = Rn:, where
Raa* - Rau 1. ziﬁmillh;ﬂl]
(2u+l) Nl

*
The (m+l,1) mode is unstabile for Ra < Ra; but is stabilized by the seceudury

bifurcation. As h - i, (Ra ¥

*
L+ Rdg } - Ra“ amd the primary branches approach

each other, wich the range of Rayleigh nuuber for which the second primary
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{a)

h<H

Fig. 10
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mode 1s unstable diminishing. Act h = H, all the bifurcation points colncide
with the pure modes stable and the mixed modes unstable. As h increases
further the branclies separats again with the (m+l,1) mode becoming che
leading primary and with the alxed modes now bifurcating off the (m,1) mode.
This situatlon is shown in Flgure 10{c): the (m+1,1) mode bifurcates at

Ra - Raz*. the (m,1) mode at Ra = Ral*. The secondary bifurcation now

*
occurs at Ra = Raa , where

* 2(6m¢5)(h-H)
Raa - Rn“ {1 + }

(2m+1)%H
leaving the primary mode stable as before.

In Figures 10(b}, (d) the ‘end-on’ view along the length of the
Rayleigh number axis is displayed in order to cltarify che shape of the
secondary bifurcation branches. Note that che secandary branches actually
continue out Infinity but we have truncated themin the figure.

The most imporant aspect of thils analysis is that it reveals that at
certaln Rayleigh numbers there Is more than ona stable steady flow. In
general engineering syscems this feature 1s cruclal, for it shows us that
altenative modes of convectlon, transferring (perhaps) signlficantly
different amounts of heat, exist and gaust be accounted for in performance
agsessment and system design studies,

4. d Rout 40
As might be expected, the solutions described above do not remain

stable for all high Rayleigh numbers. For example, Kimura, Schubert

" and Straus [14] have shown that, In a square coutalner, the steady

uncellular flow is destabilized by a Hopf bifurcation to a periodic flow,
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e instabflity in the boundary layers that forw as ;:auylciuh } “
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calculations and have mapped out the route to chacs as the Rayleigh number
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