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1. INTRODUCTION

The subject of hydromagnetics deals with the motion of an ¢lectrically conducting
fluid. The motion of such a fluid is then govemned by both the equations of
hydrodynamics and those of electromagnetic theory (sce, Ferraro and Plumbton: An
introduction to magneto-fluid mechanics. Oxford University Press). The applications of
hydromagnetics arc found in geophysics, astrophysics and engineering. The evolution of
the magnetic fields of the Earth, Sun and other planets are governed by the equations of
hydromagnetics. Plasma confinement relating to the construction of thermonuclear
reactors is another application.

The set of equations of hydromagnetics is

P (%.%_ +20aru) = -V 4-)-‘_1-?;353 1-va,£1-+‘°£ )

‘ . N- Ll. =0 1.2
SRR ®
%% = Gurd (UAB) + 9 7B (1.3)
V-B =0 (1.4)
DT - kYT +P
Dt (1.5)

P = (-'( P, T) (1.6)
where the mobile operator D/Dt is defined by

D _
FD_t.-s %“'H—v

and p is the density, y the velocity in a frame rotating with angular velocity G, B the
magnetic field, p the pressure, T the temperature, b the magnetic permeability, v the
kinetic viscosity and X, 1 are the magnetic and thermal diffusivities. F is the external
force. & w the giscus Mm .

The complexity of these equations both in differential order and in non-linearity
makes progress towards a solution very slow. Some insight can be gained by taking
some special cases. One such case is the diffusionless fluid, ie. v =x=1=0. We
shall also set £ = 0 here for simplicity. The ideal fluid case is of some interest in its own
right.

We shall then study the propagation of hydromagnetic-gravity waves in an
incompressible Boussinesg fluid. The equations are

2
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n
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%{_ =0 (L11)



Here g is the constant gravitational acceleration. When we set B =0, we recover the
equations for gravity waves.

The treatment below is restricied to linear waves. The analysis can be summarized
in four main steps:

() Consider a simple solution of the governing equations (1.7) - (1.11) and call it the
basic state.

(i) Superimpose perturbations of wave-like nature on the basic state. Since the
amplitudes of the perturbations are small then all products and cross-products of
perturbation variables are neglected in the linear theory.

(iii) Substitute for the variables (in the form basic state + perturbation) into the
governing equations and use (i) and (it) to derive the linearized perturbation
equations which govern the propagation of the waves.

(iv) In the absence of sources these equations are homogeneous and hence they will
possess a non-trivial solution only if a consistengy condition is satisfied. This

condition yields the dispersion relation which relates the frequency to the wave-
number vector of the waves,

II. THE PERTURBATION EQUATIONS

Consider s coordinate system O(x, 2) in which Oz is vertically upwards and Ox
horizontal. Take a basic state in which the fluid is stratified vertically upwards and the
flow y and magnetic ficld B are horizontal and vary along the vertical:

U=Uz ,8:-BDx, p=ta(?) ,r.—.f.(z) @b

Equations (1.7) - (1.11) then give the magnetostatic balance

2.2)
where
o}
=P +_§. . 2.3)

[1 is known as the tota} pressure (i.e. hydrostatic + magnetic). The density is assumed of
the form

f’.(z):fw'é-ﬁ J'f?'t""‘m“t- @4

We now superimpose the perturbations:
9=U£+6“—| ) Bg'g_;_'.-l-G.L.,
™= p(M,+eTh) 5 P =fe (+ef) 5 as

and use the Boussinesq approximation in which the density variations py are neglected
except when they occur multiplied by g. Thus

(‘%&‘- + U-%_)LL. + .L_Lrw_’?- = -W[,'+V%’i +g WV -ﬁﬂé 2.6
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V.4 =0 (2.9)



2 = 4 '
(’%: +Uss fi = farz , (2.10)
in which the Aifvén velocity y is defined by

Y = B/'J/“T’- : ' (2.11)

Take perturbations of wave-like nature

{Q.,)g Ly rl} = {._"!-, um, r} el:(b)t'—kat.) (2.12)

where y, ¥, p. p are functions of z only.

We substitute from (2.12) into (2.6) - (2.10) 1o get

. ! u ol 2
P p..r;{_k(’a‘% +P0) _ (P ) oy

where the "dash" represents differentiation with respect 1o z, and
2
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i

(2-14)
& is the Doppler-shified frequency (or intrinsic frequency) and it represents the frequency

.5

of the wave as measured by a stationary observer.
The propagation of the waves is then governed by (2.13). However, (2.13) is not

suitable, in its entirity, to study the basic propertics of the waves. We shall therefore
consider two simple cases first before we return to (2.13).

I11. THE DISPERSION RELATION FOR A UNIFORM BASIC STATE

When U and V are both constant, (2.13) reduces to
» . 2 A’-P
W -k(H- N/“’ )d‘:-..o 3.1

The solution of this equation has the form

tmz
€ 3.2

.9
+ = -—T'TV—L i}
(3 —— k
This is the dispersion relation for hydromagnetic-gravity waves in a uniformly moving
medium in the presence of a uniform magnetic field.

(3.3)

When V =0, it reduces to the dispersion relation for gravity waves

T
ir
mYek = % . 34
On the other hand, if N2 = 0, it reduces to the dispersion relation for Alfvén waves
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W = k V . (.5

The dispersion relation (3.3) can be writien as

© (k,miU,V, N) = ondit- 9

which means that for every set of the parameters U, V, N, o represents a surface in the
wave number space. The normal to this surface

W [0
%’V“o=(7‘€?7%ﬁ); k)

is known as the group velocity. This is different from the phase velocity yp which
represents the velocity of the wave front

wk - kx-mz = msbal-
so that

w- K =0, E:(k,'m). 3.8)

One of the most illuminatiing methods of studying the dispersion realtion is geometrical.
We assume @ constant and sketch the curve (3.3) in the (k,m) plane. Where there are
curves the waves are propagating and where there are no curves the waves are
evancscent. ‘The normal to the curve in the direction of increasing @ represents the
direction of the group velocity and the direction of the mdius vector gives the direction of
phase propagation (see Fig. 1). The figure shows the existence of vertical asymptotes.
Near an asymptote the direction of the group velocity is horizontal and the wave
propagates with the flow. The vertical asymptote referes to a critical level and the wave is
said to get absorbed at the critical level. However, the manner in which this takes place
cannot be explained when the basic state is uniform. For this reason we shall considet the
propagation of the waves in a slowly varying medium.

-7.
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1V. PROPAGATION IN A SLOWLY VARYING MEDIUM

The generalization of the dispersion relation obtained for a uniform background to
more realistic states can be made when the length scale £ of variations of U and V is much
larger than the horizontal wavelength A (= 2n/k) of the waves. This can be achieved by
using a multiple scale method (or WKBJ method) which makes use of the small parameter

€ = )\/[_ . @.1)

In this case the treatment can be made for general basic states. Define the position vectors
and time by

x = (x2) , X a€X ,T=¢t

4.2)
Consider a basic stale
_
P =o(¥5T) y T = € TLET) , u=U (K0, v=Vixg*>
and let

u=Ureu,y

\L+el_r‘ , W= éLll‘°+eTf,', i =r,@+€ﬁ(4.4)

.9.

Assume

.=l
(105003 =150, w085, T80t & € 0D,

The phase function €-10 defines the local wave-number and frequency by

K = (& m) =(—%%)_’%g),w=%$__ )

Substitution of (4.4) - (4.6) in the equations (1.1} - {1.6) yiclds a basic state governed by

(F +U-V)U -V +YTV-92 @
(Re + L)V = v.9Y s
V-U=VV =o 9
(%_ +U.V) fo =0 @.10)

s oo gt

(84 -ikm-clkY)r+pg2 =-€Q

4.11)

(O +ilky)y =-¢R
(4.12)

A _ 2"‘ -eI
tw f F z2 = (4.13)
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tk.u =¢Vu @.14)

tK.¥ = €WV 4.15)
where

Q =4/oT 4+ U.VU 48 FULVT-Y IV — &V

R =w/1T - ¥-qu + Uy + (e ju K-8,

T =oploT+UVp . .16
Further, we let
< ) ()
S.Ll)‘_r)'“,r} = "goe"{_l&m), v, T, P } @.17

and substitute in (4.11) - (4.16) and equate the coefficiems of €" (n =0, 1, 2,...)to zero.
For every value of n we obtain a system of equations which can be solved before the next
value of n is considered.

Problem ¢

Terms of order €0 give

-11-

Cd vV (Y)W =0

(4.19)
v A @) A
vwp - f ufz  =o (4.20)
. C R
L. =0 E.L_rm =0 @.21)

This is the same set of equetions obtainable for a uniform basic state. Thus

v _(e)uS , fO=N N B,
(] 2 D} A . A
Uy = N (U2

z
us = (5. )TO/(8-6Y)/ST,
4.22)

provided that the dispersion relation
2 G > 27,2
o —(xY) = (k2IN/KE" (4.23)

is satisfied.

Problem I
If we consider the terms of order €] we obtain a set of non-homogeneous equations

with & homogeneous part identical to problem ¢. The solvability condition yields the
conservation law

RBA/T +V-E =o0, @.24)

-12-



As z varies the positions of ket vary while the values k4 (corresponding to m = 0} also
vary. Noting that the direction of a ray is given by the direction of the group velocity

in which which is nommal 1o the wave normial curve we can trace the ray trajectories by constructing
the wave normal curves at different heights. Some of the ray trajectories are shown in
- A Fig. 2. Here we assumed that V is constant and non-zero and U increases from small
A- = E /w ) g = * (!—1* u) . 4.25) positive values for z = 0 10 large values at z — =. The types of ray trajectories fall into
two main calcgorics:
(i) rays which propagate away from a critical Jevel but get reflected back towards the
Here the encrgy density E is given by critical level where they are absorbed. These rays propagate on one side of the
2 2 critical level with the region betwecn the critical leves being a region of
o) N, N 2
E =Ji{l-g‘+‘gu|+N ”ﬂﬂ‘}' @.26) A ;
' (i) rays which propagate upwards against the flow, get bent and finally get reflected by
(,D L @ ) Za
and the group velocity v is obtained from the dispersion relation i 4 : ! Il
I [
2 T AV IWA =T~ T =
v, = (V) vy _ NfI 2) o _(.ZINT2 @ | | 1 : |
I I | I e — e
A— is called wave-action density and I is called wave-action flux, The equation (4.25) in [ | : I |
the absence of the magnetic ficld was derived by Bretherton and Garett (1968). ] [ I )
l S R PE ¢
Let us examine the dispersion relation (4.23) as the profiles of Y and I vary. For w2sNZ (e V.UV, (YU V k>0
simpliciry let
! |
_ A A ] { Z4
U=U2x ,y=Vx,. (4.28) | |
Then (4.23) take the form | I k
2 7 -t—7>
1 2 A2 2 9
my kR = kN/(w-kV),Geu-kU. I !
(4.29) | |
[ / !
74" Nil! :
The asymptotes occur at Keep Where w2 >N (1) Uc (1 - adNDS v k<0
k / (§)V>U>(1-m2m2)'4v
= offut V) MU>V
oL ( Figure 2
The increasing sumbers indicate ihe increasing height
-13-
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the strong flow 10 propagate downwards. Other types of rays arise for different velocity
profiles. Let us now justify absorption at a critical level. The vertical component of
group velocity wy is

a2 2
- N'kwm *’;E'vz k'N?
Wy = =~ e m—m{w N
using the dispersion relation.

Near a critical level © = k(U £ V), we have
/
U = Uc+ Uf. (Z—Z‘)a---

NV = V-.-.-'r V"(Z-—Zg)-g----

Then
W = ‘:‘),_—' kU,_,(z— ,_)4-..‘
Thus -
S .
wy = G o= A(z2) | Ascadan-
Integrating we get

|

At+® = Z.-z 2 Bsnstac

The wave takes an infinite time to reach the critical level.

-15-

V. FULL WAVE TREATMENT

We now return to equation {2.13):

"
Pur' & P‘Lrl_‘_{ k(?l:,-l- Pl}' _ ,!2(?+ N}&’“)}"“"(s.l)

This equation can be transformed into normalized form by

W= qu;. 5.2
30 that
¢+ 9@ b =0 (53)
where
(koUsKOVEWD ] (. N*
3(2) 2w ‘3—173 _k (l+ 32p

2
+ RV ( ew! 428V’ ltVU"j/ 8" 54

If o is real then g(z) is real and the result of multiplying (5.3) with the complex conjugate
9* of ¢ and subtracting from the equation obtained by multiplying the complex conjugate
of (5.3) by $ is (see Eltayeb 1977, §2)

49*43”... fbﬁb"" o
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Hence the quantity

# =% (—L'q;*qg') 5.9

-ta
is a constant and is closely mlawd}he wave action density.

For any legitimate solution of (5.3) -A- is conserved everywhere except possibly at
the singular points of (5.3). We note here that O = 0 is a singular point of (5.1) but not a
singular point of (5.3). Accordingly ﬁ- is continuous across @ = 0.

To relate * to the physics of the problem, we consider the energy flux in the
vertical direction, Now the energy flux is composed of three parts: (i) the rate of working
of the pressure forces py: the flux of kinetic energy i-puzu and (iii) the Ponting vecior

1
flux ;E A B where E is the ¢lectric field (E = —u A B). Hence the mean energy flux, F,

in the vertical direction is given by
2
F=pw +¢r.(zu::rr+u FF) 2VTR NI -UTE 6

where the overbar denoies the average over a period. Thus
= (D)
F=- é‘[‘) *‘ ésh

For a given wave (i.¢. fixed horizontal phase speed ¢ = w/k) fl-represents the downward
flux of energy.

What happens 10 4 at critical levels? We must look at the solution of (5.3) in the
vicinity of critical levels z¢ occurring where © = £ kV. Expand V and U about c lo
reduce (5.3) to

i
h T
¢ —— =0
b C‘z - Z")Z b (5.8)
- 17-

with a general solution
3
¢ = (z_,“zc)_[A + BAn (z—zc)] .« (59

The solution has a Jogarithmic singularity which means that the solution expericnces a
phase junp across z = zc. In order to ascertain the value of this jump, we can appealto a
number of methads. The casicst and less demanding method invokes causality (Miles
1961), It simulates an initial value problem by assuming that at the level z which the
wave is approaching, the amplitude is increasing so that © has 2 small negative imaginary
part.

W oz Wy~ LWy ) lw;jl“(wal (5.10)

Then (5.8) becomes

¢(| + [z_z;ﬁ_ L'JJ': )]2¢ =0 (5.11)
R0V,

The argument of z — z¢ + k(U £ Vi) is

_ W .
“tll-n.e = k(U,fj:V,_')(Z-Z;) (5.12)

As z decreases from large positive values 10 large negative values, 9 varies continuously
from 0 to + & depending on whether k(U's £ V'c) >< 0. The cormect solution on either
side then is

r~

s(=- ¢)i[‘A+ B (2-2)7 (TE] ) 227

(5.13)

(@~ z)’L[A + EJn.(z‘-z) ] ;2<2,

-18-



Evaluation of S-on either side of the critical level gives

R (CA®) zie” ;2>
4 =

Re (cA'8) 5 2% .14

- 2.. (5.15)

This result, which is general and applies to any flow V and Alfvén speed V, can be used
1o study the reflexion of hydromagnetic-gravity waves by shear layers.

For example, consider 2 layer of fluid of thickness L bounded above and below by
uniform states i.c.

U,,Vl ,' ZLD ("fa—qi\.]:)
U)V = UCZJJV(Z) 3 0.‘!-2.1’-L (vfaumI[ (5.16)

Us, V3 5 z=L (femam)

region 1 U.-

A wave of amplitude 1 is incident on the layer. It gives rise to a reflected wave, amplitude
R, and a transmitted wave, amplitude T. Then

tw,2 ~tm 2
IJ';=IC +Re '

‘MyZ
“’5 = Te‘- ’ ) (5.17)
where
61-...;\]?': I;Nz '. ‘=13 (5.18)
¥ ¥ 'k+m}- ’ §=h

and my, m3 are chosen to satisfy the radiation condition.

Now evaluation of gk below and above the layer gives

Ay, = M (T 1R0).

#-

abgue

= Relms) {T1% . (5.19)
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If there are no critical levels within the layer, then ﬁ-is conserved and hence

R = T+ Eg? »1
m (T— 187) = Re(my) TI? w B >

2 2 12(_0“ 3) 2 Thus the amplitude of the reflected wave is grearer than that of the incident wave. The
[R ‘ - I - ™, IT‘ . (5.20) wave is said to be over-reflected. Over-reflexion must be due to absorption of energy by
the wave at the critical level. This cannot be ascertained without non-linear study.
If mj is imaginary then IRIZ = 12 and {o1g] reflexion takes place. However, if mj is real m I
then the wave is partially reflected and partially transmitted across the layer. | :
. ! !
If there is onc critical level within the layer then we use (5.5) and (5.19) to get 'eé:d_\g r | l "
| I
»~
2 T 2 2 ool I !
Re(mg) 1T = m, (IZ1RF) 3 W8, k(UEV,)% 0 521 ke ,“—+ - k.
l |
' |
Thus ! 1
L X 2 2 '
IRl = T Kelm) g . PRYY; T
I- SR w et 5 k(uity))zo. oo e T
Itis possible to isolate situations in which the presence of the critical level enhances the gm

reflexion coefficient and others in which it depletes it.

rfaﬁ T
Suppose that

i) Uc+ V>0 k
() Uc+Ve<0 *
(i) kew.<k<k_inregionI
(iv) Koo, <k < Koo in region IIL

/
a—4.
Y
x>

- e i e e —— ——

F
r

¥\
i

-

Then my > 0 and the transmirted wave is evanescent so that m3 is purely imaginary. Also :
k >0 so that k(U'c + V'c) < O and a critical level occurring where @ = kV, is present in k
the layer. The lower sign in (5.22) is relevant (see Fig.3). Thus




Anocther case arises when In order to determine P :mpletely we must find B. This can only be done by
M k<k<0 U<V, solving equation (5.1) in region 11 (sce Eltayeb 1981, J.F.M. 105, pp. 1 - 18).
() Uc-Ve>0

Giii) Us-V3 >i‘3

Then a critical level with & = — kV occurs in region IT and k(U'¢ - Vi) <G and m <0
while the wave in region IT! is evanescent. Then the lower sign in (5.22) is relevant and

IR = I T e < I

The critical level depletes R because of energy absorption (see Fig. 4).
+M-
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I
:
-
|
|

Figure 4
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