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INTRODUCTION TO COMBUSTION MODELLING

B. LARROUTUYROU

The following Notes summarize the Jectures given by the author at the Workshop
on Theoretical Fluid Mechanics held at the International Centre for Theoretical Physics
in Trieste, in January 1989.

These Notes consist of the first chapter and of the reference list of the monograph
“Introduction to mathematical and numerical modelling in gaseous combustion”, which
will be published by Gordon & Breach (in the seriea “Applied Mathematics™} in early
1989. This first chapter reviews the most classical models used in combustion theory.
For more details on the subjects presented during the lectures, the participants are
referred to the above mentioned monograph or to the reference list; references followed

by “N” (resp. “M") more precisely concern numerical studiea (resp. mathematical
studies).
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CHAPTER ONE

THE MATHEMATICAL MODELS

We present in this chapter the systems of partial or ordinary differential equa-
tions whose mathematical and numerical investigation is the subject of this book. We
first briefly recail how the basic governing equations of gaseous reactive flows are de-
rived from fundamental physical theories. and we present the main approximations of
these systems which are classically used to describe premixed fame propagation. We
conclude this introductive chapter by giving a short description of the structure of a
premixed flame, in the steady one-dimensional case.

1. THE BASIC EQUATIONS OF GASEOUS REACTIVE FLOW

The problem is therefore to describe the flow of a compressible gaseous mirture
made of several chemically reactive species, while 1aking into account the effects of
species diffusion and heat conduction.

The most rigorous way of obtaining a model including all these effects is to derive
it in the framework of the kinetic gas theory, starting with the Liouville or Boltzmann
equations {see Hirschfelder et al [71], Williams [149]). Nevertheless, the same system of
governing equations can be derived in the simpler framework of continuum r.nechanics,
at the price of some simplifying hypotheses. We now briefly describe this second
approach.

1.1. The general approach
We therefore consider the flow of a mixture of N gaseous species Ay, 1 £ £ < N

(the subscript & will always denote a species). The derivation of the governing equations-
of this flow relies on the following hypothesis: we assume that N “continuous media”
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{or “continua”) coexist in the mixture, corresponding to the ¥V different species. We
therefore have. at each point T° and at each time ¢, N separate densities pi(T 1),
N velocities U£(T,¢), N partial pressures pi{T,t); we assume that these variables
are continuous and even continuously differentiable with respect to the space and
time coordinates. We also define the mixture density p by the relation p{F,t) =
Y. (T .1), the “mixture velocity” T by T = ; #29¢, and the total pressure p by
pk= Y pi (Dalton’s law). Lastly, we assume the local thermal equilibrium between
"

all species at each point, or in other words that the temperature is the same for alt
species T[T, 1) = T( T, t).
The appreach now consists in writing the equations of fluid mechanics for each of

the species, and in deriving equations for the mixture in a second step. For instance,
the conservation of mass for the &** continuum takes the form:

(e + 0 Th) = pn . (1.1)

where gy, is the rate of variation of the separate density of species A, due to chemi-
cal reactions (consumption or production rate, as the case may be). Summing these

N

equations for all species. and using the relation ¥ py = 0 which expresses that the
k=1

chemical reactions do not create mass, we obtain for the mixture the usual form of the

continuity equation:
pit+ T.(pT)=0. (1.2)
The momentum and energy equations can be treated in the same way to give the
following system:

P+ :5-(}’?) =0,

(ot} + % (i T) = pFi + 05 ,

(pe+ 1pU) + ¥ lpe + JUNT) = (040); + pFivy - ©. 7,
{pah + E.(Pk_v.) = pr - ?(pkﬁ) .

(1.3)

We have used classical notations: F denotes the external body forces per unit mass, o,;

are the components of the mixture stress tensor, ¢ is the internal energy per unit mass

of the mixture (pe = 3~ pres), and U = V5. F is the fuid velocity. Furthermore,
&

g denotes the energy flux. and ¥y = t% — 7 is the diffusion velocity of the species

3

Ag. As usual, the time subscript ¢ and the space subscripts i and j denote a partial
derivative when appearing after a comma or a parenthesis.

In the case of a three-dimensional reactive flow, (1.3) is a system of N +5 equations;
it is therefore convenient to consider as independent variables the N + 5 quantities p ,
v (1 <i<3), T, and the mass [ractions Y} (1 < k < N) of the species, defined by the
ident&ies p, = p¥;. To close the model, we still have to give, or to express in terms of
the independent variables, the remaining terms: 7"“. Tij, €, T, pr and V.

The first three terms in this list are treated in a very clsssical way. The external
forces are usually given (for example F = ¢ for gravity effects). Moreover, we
assume for simplicity that each species behaves as a perfect gas and that the mixture
is Newtonian, by writing:

2 =
o = —(p+§uv.v)5u +p(t‘.'._,'+lfj‘.‘) , (1.4)
where g is the mixture viscosity, the pressure p being given by Dalton’s law:
p=Sp=pRTY 2L (1.5)
k K Tk

R and m, denoting respectively the universal gas constant and the molecular weight
of species A4;. Lastly, we have the following classical thermodynamic relations:

e=Y ha=Y N -2,
k * Pr

T p {1.6)
=):nh2+z:nj ckar - £
% * Te P

where hy is the specific enthalpy of the species 4, at temperature T, k] its specific
heat of formation at the reference temperature Ty, and C}! its specific heat at constant
pressure.

1.2. Diffusion and reaction effects
At this stage, it remains to evaluate the energy and species diffusion terms (g

and p;,\_/;:), as well as the chemical reaction terms (5 ), which rarely or never appear
in the models of classical (non reactive) gas dynamics,
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For the transport effects, we will use the following simplest laws:

T=-AVT+Y phite, (17)
. n

which exptesses the energy flux g as the sum of a conductive heat flux (A is the
inixture thermal conductivity) and of the diffusive enthalpy fluxes of all species, and:

Vi = -pDVYs (1.8)

where D > D is a diffusion coefficient. These relations, which follow from Fourier's and
Fick's law, can be seen either as empirical, or as simplified expressions of the much
more complex models obtained in the framework of kinetic gas theory (see Williams
[149)).

Let us finally express the reaction terms py, in the case where a single chemical

Z pe Ax — Z vie A (19)
%

&

reaction. written as:

takes place in the mixture. The natural integers ui and vy are the stoechiometric
coefficients of the reaction (a typical example of reaction of type (1.9) is the global
reaction for the combustion of hydrogen: 2 Hy + O — 2 H0).

1t follows from (1.9] that the rates of variation pi of the separate densities of the
different species are related to each ather by an identity of the form:

vk, —2 o, (1.10)
Me(ve — px)

w is the global reaction rate of reaction (1.9) {and is independent of k).

The theoretical evaluation of this global raje w is a difficult problem, which in-
volves quantum physics and is still the subject of numerous fundamental investiga-
tions. To make the problem more precise, consider the simple case of a reaction
A+ B — Products. At the molecular level, the reaction only proceeds during a col-
lision of a molecule 4 and a molecule B, provided that this collision is sufficiently
energetic (i.e. such that the “kinetic energy of the relative motion” of the two col-
liding molecules is large enough), and provided that the “reiative orientation” of the
colliding molecules allows the reaction to proceed {see eg. [93], Sivashinsky [127],
Vincenti-liruger [144]). Now, the kinetic gas theory allows one to evaluate the number

r ‘5‘

of collisions of molecules A and B per units time and volume (the so called “collision
rate”, obtained from Maxwell's distribution of the molecules velocities), and even the
number of those collisions which are sufficiently energetic. But of course, this theory,
in which the molecules are seen as solid spheres, cannot consider the second condition:
the “steric factor”, i.e. the fraction of the sufficiently energetic collisions which actually
produce the chemical reaction, can only be evaluated using Schrﬁding.er‘s equation, or
measured experimentally.

Nevertheless, one may think that the expression of the collision rate gives the main
terms appearing in the chemical reaction rate w. For the reaction (1.9), one obtains:

w= I;[ ("—n)“ F(T). {1.11)

my

The way in which the mass fractions Yj appear in this expression is referred to as the
law of mass action. The function F{T) has the form: ’

F(T)= B{T)exp (-—%) R (1.12)

where B{T) is an algebraic function of T, and where the positive constant & is the
activation energy of the reaction; the exponential term in (1.12) is called the Arrhenius
term.

1.3. Governing equations of reactive flows

We have now given the expression of all terms appearing in system (1.3).

Usually, the description of a gaseous reactive flow requires to take into account a
very large number {one or several tens) of species and of chemical reactions (see e.g.
Clavin [40], Giovangigli [66], Warnats [146]): the system (1.3) then includes a large
number of equations and of nonlinear reaction source terms expressing the consumption
or production of the species by the different chemical reactions.

Throughout this book, we will avoid the difficulties related to complex chemical
mechanisms by assuming that the mixture is made up of only two species R and P,
whose mass fractions will be denoted ¥g = Y and Yp = 1 — Y respectively, and that
a single one-step exothermic chemical reaction of the form:

R—P (1.13)
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takes place in the gas. Using the relations {1.4)-(1.12), and neglecting for simplicity
the viscous terms and the external forces, we can rewrite the system (1.3) as:

[0+ V.(p7) =0,

{prin + F-(ﬂ"i?) =-p;,
LE+ ?f’.((_ﬂp.\?i = ?.(aﬁ)+of.(puﬁf), (1.14)
(pY): + ¥ (oY T) = —muw(pY.T) + V .(oDVY)

1)< &Y
m

mp = pRT , w(pY,T)=-F(T);

the constant @ = h% ~ k%, > 0 is the heat released by the reaction (1.13) per unit mass
of reactant, and

l -n r
E = pe+ ;z-pf'." = QoY + pC".T + plh% - CoTo) + é—,p'U'2 (1.13)

is the total energy per unit volume. We have used the fact that both species R and
P have the same molecular weight m and the same constant specific heats Cpand C,
{which satisfy Mayer's relation m{C, ~ C,) = R).

This system can be rewritten under several equivalent forms. The following con-
servative formulation: '

(004 V(p7) =0,

(i) + ¥ (o0 T) = -P.i

Jea+ 6.[(e +p)¥]= V.(AVT) 4+ mQu(pY,T) , (1.16)
(oY) + V(oY T) = ~mu(p¥,T) + V (sDTY) ,

| mp = pRT , w(pY,T)= %F(T} y

where:
1
e=pC,T 4+ EpU’. (1.17)
is the sum of the thermal and kinetic energies, will be used for numerical studies in

Chapter 6. The next equivalent system, written in non conservative form, is more
classically used by the physicists interested in flame propagation, and will be shown in
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the next section to lead to the simplified models investigated in Chapters 2 to 5:

[0+ ¥ .(p7) =0,

Prig+ oV Vv = ~py,

$#CTi4 0C T IT =mQupV. T)+ T 0T 40+ 755, (119
pYi + T VY = —muw(pY,T) + ¥V (pDVY) ,

| mp = pRT , w(p¥,T) = %F(T} .

Notice that in systems (1.16) and (1.18), the non linear reaction term w(pY,T) now
appears in the energy equation as well as in the mass fraction equation.

Thus, the systems (1.14}. (1.16) and (1.18) describe the gaseous reactive flow of
two species. under the above mentioned hypotheses (one-step chemistry, no external
forces or viscous effects...). Even with these simplifving assumptions. these systems
describe phenomena which are very different from each other, such as deflagrations and
detonations {see Coutant-Friedrichs [43]); they involve many physical effects {reaction,
diffusion, conduction, gas expansion and acoustics...). most of them being non linear
and strongly coupled.

These models are used in several numerical studies {see Chapter 6 and the refer-
ences therein), but their rigorous mathematical analysis is presently out of reach. This
is the reason why we introduce in the next section some simplified models, which are
classically used in combustion theory {and also for numerical experiments). All these
simplified models will be shown to lead to some decoupling between the reactive and
diffusive effects on one hand and the hydrodynamical effects on the other hand; their
mathematical analysis will be presented in Chapters 2 and 3, while their numerical
solution is the object of Chapters 4 and 5.

2. CLASSICAI’APPROXIMATIONS OF COMBUSTION THEORY

2.1. The isobaric approximation

2.1.1. The isobaric model

The most classical approximation used to study slow combustion (i.e. deflagra-
tions, or flames) relies on the highly subsonic character of these phenomena: the value
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of a representative Mach number Ma is of the order of 10~2, A formal expanson of
the variables in powers of the small parameter Ma then shows that the pressare is
constant in space up to second order, which means that:

AT =P)+5(T 1), 1.19)

with % = O(Ma®) & 1 (see for instance Buckmaster-Ludford [36], Ghilani 62}, Joulin

[77])- The same formal expansion also shows that the pressure gradient 6; is neg_igible
with respect to the other terms in the energy balance equation (1.18.c), but not .n the
momentum equation {1.18.b). If the combustion takes place inside an open vessel. the
pressure P(t) is constant: P(t) = Py (for instance the atmospheric pressure); cn the
opposite, P actually depends on time if the burning mixture is confined inside a losed
chamber.

From now on, we will assume that the combustion of the mixture of both species
R and P appearing in (1.13) occurs inside a two-dimensional infinite rectangular open
tube § of width L, § = {(z.y) € IR?. 0 < y < L}. Denoting now u and v the com-
ponents of the mixture velocity ¥ and using the above considerations (i.e. neglecting
the spatial pressure variations}). we describe the propagation of a flame in the tube §
by the isobaric model:

pr+(pu)e + (pv)y, =0

PU + puly + pru, = —p, |

PUt + puty + prvy, = ~p,

g pCpTy + pCpuT; 4 pCpoTy = mQu(pY, T) + V.(AVT), (1.20)
pYr + puly + prY, = —mw(pY, T)+ V .(pDV?) '

Y
{ pRT =mPy , w(pt.T}= %-F(T) -

Remark 1.1: Another model is also proposed by Majda [98] to descrize the
combustion of a gaseous mixture confined in a closed vessel in the limit of zera Mach
number. The mathematical analysis of this system, in which the reactive, diffusive
and hydrodynamical effects remain coupled, has been carried out by Embid {53]. using
techniques similar to those emplayed for investigating the Navier-Stokes equatioas (see
e.g. Temam [140]). »
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2.1.2, The one-dimensional steady case

We have not mentioned for the moment the boundary conditions associated to the
isobaric model (1.20). We now derive these conditions by considering one-dimensional
steady solutions of this model, which will be shown to be simply given by a system of

two ordinary differential equations. .

Indeed, the mass conservation equation (1.20.a) writes in the one-dimensional
steady case:

(pu}! =0 L] (121]
whence pu = ¢, an unknown constant. Setting G(T) = -T-R;EF(T), we can then rewrite °
(1.20} under the form:
CC—’,T = QYG{T) + (AT:):: ' (1 22}
Y = =YCG(T)+ (pDY:)e )
- mPo
pP= RT 1
u= S, (1.23)
p
Pz = —Clr .

The equations {1.22} are therefore decoupled from (1.23): as will be seen in the next
chapter, equations (1.22} (together with the associated boundaty conditions) determine
T, Y and the constant ¢, the variables p, u and p being given in a second step by (1.23).

When one considers the propagation of a flame inside the tube S (that is, the
patticular form of combustion which takes place when the ignition of the mixture
occurs at one paint inside the tube or in some part of it), the boundary conditions
aasociated to equations (1.22) are of the following type:

T(-00)=T., (0<T.)},
Y(-o0)=Y, (0<Y.<1),
T(+oo) =Ty (Tu<Th),
Y(+o00)=0;

(1.24)

T, and Y, respectively denote the temperature and the mass fraction of reactant in the
fresh mixture in which the flame propagates, and T} is the burnt gas temperature; the
last condition expresses that the combustion is complete: there remains no reactant
behind the flame (see the Figure 1.1 below for a representation of the solutions of
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{1.22}). Furthermore, the burnt gas temperature is simply given by writing the overall
energy balance equation (obtained by integrating from —oo to +30 the sum of the first
equation (1.22.3) and of the second equation {1.22.b) multiplied by Q}:

Tho=Tu+ ~Q—Y2 . (1.25)
G

This relation can be used to réwrite system (1.22) under a very simple normalized form;

A
Lewis number) are constant,
ek
introducing th lized variables & = I-:-&- Z= -}:- and ' = Eﬂz, we
and introducing the normali TomTy Y. ;Y

assuming that the positive quantities A and Le =

obtain for (1.22) and (1.24) the following equations:

1’.‘9,' = Zf(@) + 9:':' 1
{ 1 {1.26)
2y = -Zf(O) + E;Z,',r on R,
B(~x)=0, Z(-)=1,
{(—){+oc)=1 , Z{4+ec)}=0, (127)

where f{@) = EA,—G'(T). The mathematical analysis of this model (1.26)-{1.27) is

»
briefly presented in the next chapter.
2.1.3. The one-dimensional unsteady case

We now consider the one-dimnensional unsteady solutions of the isobaric model
(1.20); these solutions are given by the following system, written here under conserva-

tive form:
Pt (pu)- =0,
(pu)d + (P“z)l = -Pz
(PCpT )¢ + (puCpT )z ~ (AT )e = mQu(pY.T) , (1.28)
{pY )t + (puY )z = (pDY), = ~mw(pY, T} . ‘

Y
PRT =mPo, w(eY,T)= L F(T}.

1t will be shown in Chapter 2 that this system of nonlinear partial differential
equations forms a well-posed mathematical problem when associated to boundary con-
ditions similar to {1.24):

{T(—oo,t) =Ty, Y(-xo,0)=Y,,

T(+o0.t) =Ty, Y(+00,t)=0, (1.29)
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and to the following additional initial and boundary conditions:
T(z,0) = To(x), Y(x,0)="Vs(z), (1.30)

u(—oo,t) = u, , p("—m,t) = Pu “31)

where v, and p, are given constants (the reasons for choosing these initial and bound-
ary conditions will clearly appear in Chapter 2). ’

In fact, the investigation of the solutions of {1.28)-(1.31), both from a mathetmati-
cal and a numerical point of view, uses instead of (1.28) the Lagrangian form of (1.28),
which we now derive using the usual mass-weighted Lagrangian coordinate:

(£.t)
£= / (2", 1) ds’ (1.32)

2(0,¢)
{see Courant-Friedrichs {44]). Although the use of this transformation is classical, we
detail the calculation for sake of completeness. We first define a Lagrangian coordinate

(i.e. a variable whose value, defined at time t = 0, remains constant during the flow
for ench fluid particle} by setting:

= ﬁ " gl 0)de’ (1:33)

We also set 7 =t . Then £(r.t) represents the Lagrangian coordinate of the particle
which is located at the abcissa z at time t and the last relation is to be read as
£(x.0) = f; plx",0)dx’ . Inversely, r{£. ) is the position at time r of the fluid particle
whose Lagrangian coordinate is £. Therefore we have, by definition:

r.=u, of 6—81:1:(5.7) = ulz(€,7), 1] . (1.39)
We can then write:
d Hem | o Or or -
3’1'_ ‘/z(n,r) p(l‘ ,‘r)dz = -8_T(£. f)P['t('fl f)- r} - 5'1,'(0! f)p[.'l:(o,f), TI
=& oo, , '
+ jz(o,r) b—f(: ,T)dz"
) ] 0 ’(c‘r) ap( 1] d r
= WTHTI— yTh - 1 ]
(pu)[=x(€ (pu)fx(0, 7} r]+'[r(u.r) 7 ', 7)dr

2 £.7)
=/ [pr + {pu)e](',t)d' =0,
z(0.7)

(1.35)
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from {1.28.a), whence:
3(£v')

=(£.9)
/ px’ r)d’ = ] plz',0)dz’ = ¢, (1.36)
20,7} =(0,0)
which is exactly (1.32).
Differentiating (1.32) with respect to £ gives:
' 1
plz&imhrl”

We then have in matrix form (wriling-simply u(€, ) for u[r(,7),7]):

(:: f:)z(p;‘ ‘1‘)' (1.38)

(5 4)-(c 7).

Remark 1.2: The mass balance equation {1.28.2) has been crucial for introducing
the new variable £. This amounts to noticing that a variable ( satislying {; = p,
C, = —pu | |e (1.39)} could have been introduced directly, since (1.28.a) insures that

((:) = (Ct) *

1=pzg, of %z(f,r} = (1.37)

which implies:

We can now derive the Lagrangian forn of the fame propagation equations (1.28).
For any quantity F we have Fy = F, - puF¢ , F; = pF¢, and (1.28) becomes:

o+ p7ug =0,
u,+pg =0,
Y, T
T, = ";Q wighiT) | ('\PTz)e '
A (1.40)
T .
Ye= -mf-(-“'—:—:—l + (0" DY) .
... pY
| PRT = mPy , w(p¥,Tj= E-F(T}.

Assuining as above that the Lewis number Le = pC:\D is constant, and assuming also
P
that the ratio % is constant, we can rewrite {1.40) as
Q mPy A
T,= YF(T) *Re, 7 Tede o
(1.41)
Y= -YF()+ gpe RC Yo

-13-

mPoue = RT, , (1.42)
Pe = Uy .

It should be emphasized here that the use of the Lagrangian coordinate (1.32)
uncouples the equations (1.41) for the “combustion variables” T and Y (which 1ake
the form of a purely diffusive reactive system) from the equations {1.42) for the “hy-
drodynamical variables” p. u and p. .

{pRT: mP ,

The systems (1.28) and (1.41)-(1.42} are investigated from a rigorous mathemat-
ical point of view in Chapter 2; the numerical study of their solutions is discussed in
Chapter 4.

22, Thermo-diffusive approximation

\Ve have observed that the reaction-diffusion and the hydrodynamical eflects are
decoupled in the isobaric model (1.20) in the one-dimensional case. both for steady
and unsteady solutions. This decoupling no longer appears in higher dimensions. This
is the reason why the physicists have introduced an additional approximation. the con-
stant density approzimation. which consists in neglecting also the density fluctuations
in the mixture (see Barenblatt et al [3]. Sivashinsky [127]). This approximation is more
drastic than the isobaric simplification. and miore delicate to justify from a physical
point of view; but it leads to a simpler model in which a decoupling again appears,
which has allowed numerous improvements in the understanding of lame propagation
phenomena. This model is essentially valid for situations where the hydrodynamical
efiects play a secondary role with reapect to the reactive and diffusive effects, in other
words, when the gas flow is not (oo {ar from being uniform. Let us finally mention
that this essentially qualitative modul retains many features of flame propagation phe-
nomena, including cellular Aame instabilities, and formally teads (using the well-known
asymptotics for high activation energies) to the Kuramoto-Sivashinsky equation for the
evolution of the flame front (see Chapter 5).

In the framework of the constant-density approximation, the equations (1.20)

become:
p = Constant , (1.43)
(which is the “new equation of state"),
Ut v, =0, :
{ pur + puti; + pvuy, = ~pg , (1.44)
PU+ pue + pov, = —py
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{ pCyT: + pCouTs + pCotT, = pr_-*.('n _»_Y:_‘..(Aﬁ*) : (1.45)
pYe + puYe + pvY, = —pY F(T) + V.(pDVY).

The “combustion variables” no longer appear in the system (1.43)-(1.44) describing
the behaviour of the “hydrodynamical variables” u, v, p. If one is interested in the
flame structure, that is ia the temperature and mass fraction fields, one may therefore
consider the system (1.45} while assuming that the velocity (u, v) is given and satisfies
{1.44). For the case of a flame propagating in the infinite rectangular channel §, it is
natural to choose a velocity field paralle] to the tube walls: v = 0; (1.45) then takes
the form:

{ CoTi + CouTs = QYF(T} + p=t T.(ATT), (1.46)

Yo+uY, = -YF(T}+p~' T (pDVF) inS =R x (0.1} .

These equations are associated to initial data, and to boundary conditions of the form:

T{~x<,u.)=T,, Y({~00,y,8)=Y,, (1.47)
T(+x,4t)=T,, Y(+oo,y,t)=0 forye(0,L) andt >0, .
at both ends of the tube, and
T(r0,) =Ty (x.L,)=0, 1.48
Yo(2.0,8) = Yy(2,Lit)=0, forz€R andt>0, (1.48)

in the case of adiabatic, non catalytic walls. The mathematical and numerical inves-
tigation of this model, known in combustion theory as the unsteady thermo-diffusive
model, is presented in Chapter 5 in the case where u = Conatant.

When the Lewis number Le iz equal to unity, it is easy to check that any steady
solution of (1.46) satisfies the identity QY = C,(T3 = T). This solution is then given by
a system containing only one partial differential equatioh. which can be written in the
following normalized form (notice that (1.44} yields u = u{y) for a steady solution):

&(-co.y) =0, O(+c0,y) =1 for y€ (0,L), (1.49)

~40 +u(y)0, =g(0) in S=Rx(0,L),
0,(z,0)=08,(z,L)=0 forz e R.

Some mathematical results concerning this two-dimensional elliptic problem set in the
infinite strip § are presented in Chapter 3.
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3. PREMIXED FLAME PROPAGATION

3.1. Introduction

Before presenting the mathematical and numerical investigation of the above mod-
els, we feel necessary to briefly describe from a physical point of view how a flame prop-
agates inside a gaseous mixture. \We are going to do this by considering the simple
case of a planar {one-dimensicnal) steady flame.

The simplest way of describing this flame, i.e. of describing the solutions of {1.26)-
(1.27). is to use the classical “high activation energy limit". The analysis therefore relies
on the fact that. in aciual problems, the activation cnergy £ is large compared to the
values of the product AT in the considered range of temperature: the Arrhenius term
«=£/RT is then highly nonlinear. This fact has been intensively used by the physicists to
analyse flame propagation. since the pioneer work of Zeldovich and Frank-Kamenetskii
[154]. and especially in the last fifteen years (see e.g. Buckmaster.Ludford [36], Clavin
{40]. Clavin-Lifian [41]. Sivashinsky [127]).

In the framework of the high activation energy limit. the structure of the planar
stearly flame is derived using matched asymptotic expansions [see e.g. Buckmaster-
Ludford [36]. Clavin-Lifiar [41], Joulin-Clavin [78] and [93]). But we find it simpler
and more instructive to follow here a more physical (and less rigorous) approach, in
which we simply use physical arguments to determine which terms of the governing
equations are dominant and which terms on the opposite are negligible.

For those readers who might be tempted to skip over this section because of the
announced {ack of mathematical rigor in the forthcoming analysis, let us already point
out that this analysis for high a.ctfvation energies will appear in the next chapter to
be completely justified from a mathematical point of view, and that they are strongly
encouraged to foilow the elementary physical analysis presented below!

3.2. The analysis for high activation energies

* To simplify the analysis, we consider a planar steady Aame with a Lewis number
equal to unity: Le = 1. It it then easy to see that any solution (c,©, Z) of (1.26)-(1.27)
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satisfies © + Z = 1. We are then left with a single equation:

{ ~0p: +¢0; =g(0) ou R, (1.50)

B(-x)=0, G{+x}=1,
where both the function © and the real c are unknown (we have substituted z for 2’
and we have set g(s) = fis)(1 = 8)). Assuming for simplicity that the temperature

dependance of the reaction term is only given by the Arrhenius exponential factor
e~ £/RT (with T = T, + ©(T, — T..)), we use the identity:

£ £ -B8(1 ~ @)
o (~z7) =00 (7)o (Tan9y) (51
e £ T=Tu_ . . )
where 3 = RE T > 0is the reduced activation energy (also called the Zeldovich
v L
number), and a = TLJ;Z& > 0 is a nondimensional heat release parameter. and
b

rewrite (1.50) as:

~8(1 - 8}

-0" + @ = I{(l - 0) exp (T:T(]———G_)

) = g3{(0) on R, (1.52)

O-x)=0, O(+x)=1,
with K > 0.

e therefore want to describe the solution (¢, ©} of (1.52) for large values of the
activation energy, i.e. in the limit § — 4 20. The basic remarks are the following:
-A(1 ~ )
1-al -8)
exp(-4(1 - ©)), and is therefore negligible compared to 1 (its value for
© = 1), except in the region where 1 — © = O(37), let us say where:

(i) for 3 large, the function exp ( ) essentially behaves as

1-559<1, . (1.53)

with x = O(1);

{#i) we admit (from experimental evidence) that this region where the
reaction term is significantly large, hereafter called the reaction zone, is lo-
calized in a bounded interval [z,2;] of IR;

{i5i) we also assume that the mass flux ¢ remains of order O(1) when
B — +o0,
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As a consequence, we assume that the reaction rate can be neglected outside the
reaction zone [x,,7;]. We have there:

-90"+¢0 =9, (1.54)

whence © = a + bexp(ez) for some constants a and b. Using (1.33) and the boundary
conditions in {1.52), we get: d

O(z) = {1 - :—,)exp[c(z -n) forz<m (1.55)
in the fresh mixture ahead of the reaction zone, and:
O=1forxr2> 2 (1.56}

in the burnt gases, behind the reaction zone. It can be noticed here that (1.55) could

also be written as © = exp(cx) with an appropriate choice of the origin.

Let us now evaluate the reaction zone thickness. From (1.33), the variation of
temperature inside this zone is A6 = £37!. At the left extremity of this zone {for
I = 1), the temperature gradient is:

Oulz1} = cO(21) = ¢ + O(37) (1.57)

from {1.35); in the same way, the tempecature gradient at the zight extremity of this
zone is (in first approximation}:
O (22)=0 {1.58)

from (1.56). Then an average value of the tempei‘ature gradient inside the reaction
Zone is:

6. =3 +0(87"), (1.59)
and we can evaluate the reaction zone thickness 3 — r; by writing:
A 12«
—f = = -+ 087 1.60
Bn-n=gm=0g (87%) {1.60)

Then, the reaction zone becomes infinitely thin when S tends to +0o. In the limit,
the reaction is localized at one point z = z, and we have:

o= {pole=Bl rxsi e
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It is interesting to notice here that the limiting solution © given by ( 1.61) satisfies:

{ -0 40 =cbs ,

~0) =0, B(+m)=1; (1.62)

thus, in the limit 3 — 4o2¢, the reaction term 95(©) tends to a Dirac delta function
located at some poigt = = F.

The solution of {1.52) would then be completely determined in the limit 8 — 400
if the value of ¢ were known. Evaluating this value requires an internal analysis of the
thin reaction zone.

To do this analysis, we need to evaluate an average value of the second derivative
of the temperature inside the reaction zone. Using (1.57), (1.38) and {1.60), we have:

= = 9:‘12)_91'(1]):

O,
Tz — &)

2
¢

~3—+0(1). (1.63)
Comparing (1.59) and (1.63), we see that, inside the reaction zone, the first derivative
€, is negligible compared 10 the second derivative O..; we will then consider that the
temperature satisfies inside the reaction zone the equation;

-0" = g4(0) . {1.64)
Multiplying this equation by 20" and integrating over the whole reaction zone, we get:

& g " 8(zy)
-/ Zle) ]duzLM 93(9)d0 , | (1.65)

whence, from {1.56)-(1.58):

1 .
=2 / 95(0)d6 . (1.66)
{z:)

Since (by definition of x, ) we have considered that the reaction term gg(@) is negligible
for © < B(z,), we may modify the lower bound for the integral in the right-hand side

of {1.66). We can finally write:
1
c= QL 9(0)dO , (1.67)
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which gives the value of c and achieves the analysis: in the limit 3 — +00, the solution
(c,©) of {1.52) is given by (1.62) and (1.67).

3.3. The structure of the steady planar flame

The same analysis can be catried out in the more general case where the Lewis
number is non necessarily unity, leading also to the steady planar fame structure
shown on Figure 1.1 below, where one can basically observe three different regions:

(i) the fresh mixture, where © ~ 0, Z = 1;
(ii) the burnt gases, where © = 1, Z =~ 0

fiii) and, between these two regions, the flame, that is the tegion {whose
thickness L is of the order of ¢=? from (1.35)) where the temperature and mass
fraction variations occur. The flame can itself be divided into two smaller zones:

* the pre-heat zone, of thickness Ly, where convection and diffe-
sion balance each other (see (1.54)), and where the temperature profile is
exponential;

* and the reaction zone. whose thickness 25 — z, is of the order of
287 L, from (1.60), where diffusion and reaction balance each other (see
(1.64)).

Figure 1.1: Structure of a steady planar premixed flame.
Insert Figure 1.1

It should be noticed here that the reaction rate is negligibly small everywhere
outside the reaction zone, but for two mainly different reasons: in the hot gases, there
is no chemical reaction because there is nothing to burn (2 = 0), whereas, in the fresh
mixture and in the pre-heat zone, the reaction does not take place at a significant rate
only because the mixture is too cold.

The flame we have considered is steady in a reference frame where the mass fux
is constant pu = ¢ (see (1.21)), and therefore where the fresh mixture at —oo has a
positive velocity ¥(—c0) = cp{—noc)™ = V;. The same Bame could also be observed in
a reference frame whete the fresh mixture at —oo is at rest; the fame then propagates
towards the fresh gases, at the velocity ~V. The mechanism of this propagation now
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clearly appears; the burnt gases being hot, the heat released inside the thin reaction
" zone by the exothermic chemical reaction diffuses forward, towards the fresh gases; the
temperature of those slices of the mixture which are located just ahead of the reaction
zone increases because of this diffusive heat flux, 50 that they eventually react in turn.
This description shows that the mechanism of laminar flame propagation is controlled
by the balance between convection and diffusien in the pre-heat zone, and the balance

between diffusion and reaction in the reaction zone. s

Remark 1.3: Let us finally express the result (1.67) for the reaction term gg
given by the Arrhenius law in (1.52); we get:
2K
i
which shows that the preceding physical analysis is meaningful only if the Arrhenius
prefactor J behaves as 32, More precisely. the analysis presented in Section 3.2 shows
that the solution {c. @) of:

wer o Bt Orexe [ P8
-0 +c6 = 2(1 O}exp(l_a“_e)) on R,

=2 j’l g3(0)d6 = (1.68)

(1.69)
B(-oc)=0, B(+) =1,
tends in the limit 3 — 430 towards {co, o) given by ca =1 and:

—98 + ct'e;) = cgby ,
1.70
{en(-oo)=0. gl +0) = 1. (1-70)

This result can be extended to the case Le # 1; one easily shows, using similar
arguments. that the solution (¢,©, Z) of:

_e!l+ ce! = _pizexp (_—‘3(,_}:-9)—-) )

2Le 1-a(l-9)
1 . Il ﬂ‘ '—6(1 - @)
S +cZ =-m2exp(—-——-l_o(l_e)) onlR, (1.7)
B~} =0, O(+o00)=1, ’

Z(-C!)) =1, Z(+OO) =0,
tends in the limit 8 — +oo towards (co, 90, Zo) given by ¢p =1 and:
-07 + c0®g = cobsz ,
l " |
—'E‘;Zu + Cezn = ~cpfz . (172)

E)o(—oo) =0, BG(+)=1.
Zo(-o0) =1, Zp{+oc)=0.9
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